
EE318 Electronic Design Lab Report

Title of Project:

Hand Gesture Controlled Wireless Vehicle

Group D11

Ashay Awate(06D07012),

Milind Kothekar(06D07017),

Neha Rambhia(06D07011)

EDL Guide: Prof. Apte

Course Instructor: Prof. Vivek Agarwal

Abstract

The project is to make a vehicle that can be controlled wirelessly by hand gestures. This

involves two modules. One is the glove that translates the motions of the hand using an

accelerometer and wirelessly through RF modules transmits it to the vehicle in question. The

vehicle here being the second module that interprets the signal sent in by the accelerometer

and modifies its motion with respect to the signal given by the hand gesture. The car itself

simulates the motion of a vehicle using a servo for its steering mechanism and steppers for its

movement, speed control.

At the end of 11 weeks, the project has achieved its basic objective and can make extremely

basic turns as well as modify the speed of the vehicle. More complicated motion can definitely

be extrapolated from this basic behavior.

1) Introduction:

Everyone has imagined being able to move an object with a flick of their wrist at their whim at

some point or the other. A very natural tendency to move objects with the movement of ones

hand is something of great convenience, and to be able to control a car, its speed, direction

with the same motions is every child’s dream.

In our project we have put together a car, which is a model of the cars we drive today, with

servo motors controlling the direction of the car’s motion, which is controlled by a glove. The

glove is worn by the user, is mounted by accelerometers and it transmits data wirelessly to the

car.

Fig 1. The car and the glove

2) Project Modules

A. The glove

This module has the accelerometers and an atmega 8 that helps the flow of data in the

circuit of the glove, or is the brain of the glove.

B. The Car

In the car module we have an atmega16 that controls in the received signals, interprets

it and controls the motions of the car. It is also connected to the stepper and servo

motors of the car

C. The RF circuit

This is the transmitting and receiving module of the entire setup. An ASK transmitter is

fitted onto the glove, which facilitates transmission of the accelerometer data from thr

glove to the car. The car is fitted with the receiver.

Fig 2. PCB boards of the car and the glove respectively.

Fig 3. Block Diagram of the entire project

RF Receiver MicroController Signals Interpreted

Output

Stepper Motors Servo Motor

Speed Direction

Vehicle

Hand glove Accelerometers MicroController

r

RF transmitter Hand Glove

3) Components of the circuit

a. Accelerometers

We have to measure acceleration in two directions (X and Y) to

change the speed and direction of motion. The accelerometers

help us measure the direction and the magnitude of acceleration

in that direction, hence recognizes the hand gestures. As to

which direction and how fast we are moving the hand. Therefore

we decided to use a 3 axis accelerometer for the purpose.

Fig.4 top view of MMA7260

After some searching we narrowed down on a product from

Freescale- MMA7260. This is a 3 axis accelerometer. The IC package

is 16 pin QFN package. A PCB has been designed to test the

accelerometer. The accelerometer has been tested, and the

corresponding readings have been calibrated in the code, to run the

stepper motor accordingly. Fig.5 PCB for

accelerometer testing

The features of this sensor include:

 Variable sensitivity selection: 1.5-6g

 Sleep mode

 Low power consumption: voltage: 2.2-3.6V current: 550uA

 Low cost

Principle of working:

The accelerometer uses switched capacitor

techniques to measure the g-cell capacitors and

extract the acceleration data from the difference

between the two capacitors. The ASIC also signal

conditions and filters (switched capacitor) the

signal, providing a high level output voltage that

is ratiometric and proportional to acceleration.

Fig6. Simplified Transducer Physical Model

Problems we faced:

Soldering the IC was very difficult because of the package.

After soldering, the accelerometer was not found to work. AT the X,Y and Z outputs, the

voltage observed was zero.

Possible cause of damage: soldering may not be proper, accelerometer may have been

overheated while soldering, while doing the continuity test, the currents entering the

device may have damaged it.

Another board and IC was used and worked. We took a few readings of the accelerometer

at in various tilts. The second IC on further testing also stopped working. Cause: spike in the

IC probably.

b. Atmega microcontrollers

In the project, there are two microcontrollers that we need. One for the handglove and the

second for the car. We chose microcontroller of the Atmel’s AVR series because of the

following reasons:

 Some members of our group were familiar with AVR coding.

 The ISP programmer (parallel port and USB) for the AVR microcontroller are easy
enough to make.

 There are good development tools available for writing and debugging programs
including WinAVR and AVR Studio.

 They are easily available.

 The microcontrollers available in the series suited our required specifications.

Hand Glove Controller:

The microcontroller for the hand held controller had to have the following specifications:

 It had to be small since it was to be mounted on a hand.

 Since it would take in the analog voltages of the accelerometer it would be preferred

that it would have ADC’s.

 It should work on the voltage range of 2.7v to 3.6V.

 It should have inbuilt protocol to help in transmitting of data.

The ATMEGA8L microcontroller was found to suit all these specifications.

Vehicle Microcontroller:

The microcontroller for the vehicle had to have the following specifications:

 It had to have some inbuilt protocol to receive the data sent by the hand glove(USART)

 It should have some ports available to drive a stepper motor and a servo motor.

 It should have a low power consumption.

 Working on 5 volts was preferred.

 It should have a good interrupt service routine, since we had planned to use interrupts.

 It should have a good crystal frequency.

A lot of Microcontrollers satisfy these criterion, but we chose the ATMEGA16 microcontroller.

c. ASK transmitters and receivers

We are using ASK (Amplitude Shift Keying) transmitter and Receiver circuits with USART

protocol.

Configuration:

 433 MHz,

 ASK modulation

 1 kbps nominal data rate

 Maximum 10 kbps.

The Tx and Rx were chosen because of the simplicity of use, relevant data rate. The range is 2m

without antennas, which is relevant and suits the wireless handling we need.

The minimum data rate we required was 720 bps as we wanted to sample each of the axis

readings 30 times a second.

Data rate = 30(sampling rate of each axis) x 3(no of axes) x 8(no of bits per packet of data)

 = 720 bps

The data is transmitted serially in the form of data packets.

4) The vehicle

Fig 7. Above side view of the car, left is the top view of

the car.

The vehicle is a 4 wheel vehicle that is driven by

synchronized stepper motors. The turning of the

same is dependant on servo motors.

Specifications of stepper motors:

We decided to use stepper motors to provide

accurate control for our vehicle. We tested a bipolar

stepper motor. Made a test circuit of the stepper

motor drivers using IC L293D.

The circuit worked, and motor runs at different

speeds, I-V characteristics were also measured.

Specifications of Servo Motor:

A servo motor, gives a particular angle of the shaft for

a certain time period (the duty cycle) of a square

wave. It gives very high torque and holds the angle till

it is enabled or is reset to original duty cycle. The

servo motor we are using has the following specifics:

4.8-6V 0.12/ 0.10s / 60o

The servo motor is connected to a shaft in the car, the

axle which turns the wheels.

Fig 8. The Image shows left and right turning

respectively of the shaft. The dark blue block

 is the servo motor.

5) The software

a. Coding for the glove

On the glove, we need to code the timing of the entire circuit to ensure synchronous

operations. Besides which we need to take in analog output of the accelerometer

and not only convert it digitally, but also send it though the transmitter.

Here the data is coded in the form of data packets. When the circuit is enabled, that

is a valid hand gesture is being given.

The data packet is of the form:

Start byte1

Start byte2

X-axis reading

Y –axis reading

Stop byte

This format also helps us ensure that we have proper data transmission and helps us

check for errors. Besides this is helps us save power by transmitting only zero in all

other cases.

b. Coding for the car

Coding for the car starts with synchronizing all the circuitry on the vehicle.

We receive data bytes from the receiver. These data packets which some in serially

byte at a time are decoded as x-axis reading, y-axis reading provided the start bytes

and stop byte are correct i.e. we are sure that the data bytes are being correctly

transmitted.

These x and y axis readings are then further used to calculations for speed and angle

changes.

The x axis here represents the forward backward motion i.e. the speed of the

vehicle.

It is neutral while the reading lies between 140 to 160.

Greater than 160, we increase the speed by 1 step and less than 140 we decrease it

by 1 step. We have 10 possible such speeds to be worked upon.

The y axis represents the turning.

While we get reading from the y-axis accelerometer, the servo will hold a fixed angle

(30 deg) for a time duration proportional to the duration of the signal coming in

from the accelerometer. Valid readings again lie in the range >160 and <140

6) Test Procedure:

A programmer board and application board has been made on a breadboard.

Various codes have been tested successfully on this microcontroller including:

 Testing of Timers

 Testing of ADC’s and they multiplexing

 Testing of USART protocol to transmit as well as receive.

It is being used to take in the input of the accelerometer and transmit it through USART

transmitter.

Programmer Board:

Initially we were programming our

Microcontrollers on the Universal

Programmer available in the lab. However to

make it convenient for us to test our codes,

we have built an USB programmer to

program our AVR microcontrollers. It is an

In-system Programmer, so it saves us the

hassle of constantly removing the

microcontroller each time we want to test a

code. We soldered the circuit of the

programmer on a general purpose PCB.

a. The motors:

The motors were individually tested

 Testing of codes to drive both Unipolar as well as Bipolar Stepper Motors.

 Code to receive data and accordingly modify speed of stepper motor.

 Testing the various angle of a servo motor

 Dynamically changing angles of the servo motor.

In the demo, the Microcontroller is being used to receive data from a USART receiver, process

the data and modify the speed of a stepper motor accordingly. The motor has been calibrated

to work at 10 speeds, and will increase or decrease in steps depending on the accelerometer

reading.

And the servo motor is set to turn at 2 angles besides neutral +/- 30deg

8) Conclusion and suggestions for further improvement.

The project gave us insight into the uses or sensor like the accelerometer

It has also taught us communication theory using RF modules. Giving us insight into programming of

AVR and mechanical skill when it comes to making an integrated aesthetically sound system

It at the end has turned out to be a very basic model where the hand gesture and corresponding

response from the car can be refined as well as we can add meaning to the third axis which we are not

currently using.

The applications of this kind of system are varied. They can be used to manipulate vehicles and objects,

detectors in places where fine control is required as well as manual handling is not possible.

Appendix

User manual

For the user:

In order to use the mechanism.

Reset car.

For the handglove. Press the button when you want to give a valid command.

While keeping the button pressed,

Moving hand forward and releasing button: increases speed

Moving hand backwards and releasing button: decreased speed

Moving hand to right: turns car to right

Moving hand to left: turns car left

(right and left turning depends on the duration of the hand gesture)

Codes for the hand glove

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#define F_CPU 4000000UL // 4 MHz

//#include <UART.c>

//Bit Function definitions

define tbi(x,y) ((x) ^= (1<<(y)))

define sbi(x,y) ((x) |= (1<<(y)))

define cbi(x,y) ((x) &= ~(1<<(y)))

define isHigh(x,y) (x & (1<<y))

#define LED_port PORTD

//USART definitions

#define BAUD 1200

#define MYUBRR F_CPU/16/BAUD-1

#define START_BYTE1 0x55

#define START_BYTE2 0xAA

#define STOP_BYTE 0x44

char readX(void)

{

 char a;

 ADMUX = (0<<REFS1) | _BV(REFS0) | _BV(ADLAR) | (0<<MUX3) | (0<<MUX3)

|(0<<MUX1) |(0<<MUX0);

 ADCSRA = _BV(ADEN) | _BV(ADSC) | (0<<ADFR) | _BV(ADIE) | (0<<ADPS2) | (0<<ADPS1)

| (0<<ADPS0);

 _delay_us(1);

 while(!(isHigh(ADCSRA,ADIF))); //Wait for conversion to complete

 a = ADCH;

 ADCSRA |= _BV(ADIF);

 return (a);

}

char readY(void)

{

 char a;

 ADMUX = (0<<REFS1) | _BV(REFS0) | _BV(ADLAR) | (0<<MUX3) | (0<<MUX3)

|(0<<MUX1) |_BV(MUX0);

 ADCSRA = _BV(ADEN) | _BV(ADSC) | (0<<ADFR) | _BV(ADIE) | (0<<ADPS2) | (0<<ADPS1)

| (0<<ADPS0);

 _delay_us(1);

 while(!(isHigh(ADCSRA,ADIF))); //Wait for conversion to complete

 a = ADCH;

 ADCSRA |= _BV(ADIF);

 return (a);

}

char readZ(void)

{

 char a;

 ADMUX = (0<<REFS1) | _BV(REFS0) | _BV(ADLAR) | (0<<MUX3) | (0<<MUX3) |

_BV(MUX1) | (0<<MUX0);

 ADCSRA = _BV(ADEN) | _BV(ADSC) | (0<<ADFR) | _BV(ADIE) | (0<<ADPS2) | (0<<ADPS1)

| (0<<ADPS0);

 _delay_us(1);

 while(!(isHigh(ADCSRA,ADIF))); //Wait for conversion to complete

 a = ADCH;

 ADCSRA |= _BV(ADIF);

 return (a);

}

char readREF(void)

{

 char a;

 ADMUX = (0<<REFS1) | _BV(REFS0) | _BV(ADLAR) | (0<<MUX3) | (0<<MUX3) |

_BV(MUX1) | _BV(MUX0);

 ADCSRA = _BV(ADEN) | _BV(ADSC) | (0<<ADFR) | _BV(ADIE) | (0<<ADPS2) | (0<<ADPS1)

| (0<<ADPS0);

 _delay_us(1);

 while(!(isHigh(ADCSRA,ADIF))); //Wait for conversion to complete

 a = ADCH;

 ADCSRA |= _BV(ADIF);

 return (a);

}

//===============USART FUNCTIONS=======================//

 void Init_UART_TX(unsigned int baudrate)

 {

 DDRD |= (_BV(PD1)); //setting output port (ATMEGA16)

 PORTD |= 0x02;

 UBRRH= (unsigned char) (baudrate>>8);

 UBRRL= (unsigned char) baudrate;

 //USART control and status register

 // rx int en data size

 UCSRB = _BV(TXEN) | (0<<UCSZ2);//| _BV(TXEN) ;_BV(RXCIE) |

 // write UCSRC asynch //even parity stop bits(rx

ignor) 8 bits of data

 UCSRC = _BV(URSEL) | (0<<UMSEL) | _BV(UPM1) | (0<<UPM0) | _BV(USBS) |

_BV(UCSZ1)| _BV(UCSZ0) | (0<<UCPOL);

 }

 void TransmitByte(unsigned char data)

 {

 while (!(UCSRA & (_BV(UDRE)))); // Wait for empty transmit buffer

 UDR = data; // Start transmition

 tbi(PORTD,PD7);

 }

int main(void)

{

 DDRD = 0xff; //Configure PortD for output

 PORTD = 0xff;

 _delay_ms(800);

 char read_data;

 char read_data_X,read_data_Y,read_data_Z,read_data_REF;

 //tbi(PORTD,PD3);

 Init_UART_TX(BAUD);

 //sei();

 //DDRB= 0b00011111;

 //PORTB=0b00011111;

 DDRC=0x00; //Port C- ADC as input

 PORTC=0x00;

 //int j;

 // AVCC selected(Aref = cap) Selects ADC0 as source

 //ADMUX = (0<<REFS1) | _BV(REFS0) | _BV(ADLAR) | (0<<MUX3) | (0<<MUX3)

|(0<<MUX1) |(0<<MUX0);

 // enable ADC Start conv no free run int enable

Prescalar = 2

 //ADCSRA = _BV(ADEN) | _BV(ADSC) | (0<<ADFR) | _BV(ADIE) | (0<<ADPS2) |

(0<<ADPS1) | (0<<ADPS0);

/*

 while(isHigh(ADCSRA,ADIF)); //Wait for conversion to complete

 ADCSRA |= _BV(ADSC);

*/

 PORTD = 0x0e;

 _delay_ms(800);

 _delay_ms(800);

 PORTD = 0x00;

 while(1)

 {

 //tbi(PORTD,PD6);

 //_delay_ms(800);

 //ADCSRA |= _BV(ADSC); //start conversion

 //_delay_us(10);

 //while(!(isHigh(ADCSRA,ADIF))); //Wait for conversion to complete

 read_data_X =readX();

 read_data_Y =readY();

 read_data_Z =readZ();

 read_data_REF =readREF();

 PORTD = (read_data&0xfe)|(PORTD&0x01);

 _delay_ms(100);

 TransmitByte(START_BYTE1);

 TransmitByte(START_BYTE2);

 TransmitByte(read_data_Z);

 TransmitByte(0x00); //Servo control

 TransmitByte(STOP_BYTE);

 //tbi(PORTD,PD5);

 _delay_ms(10);

 //PORTD=0xff;

 //ADCSRA |= _BV(ADIF); //Clear the interrupt flag

 //_delay_ms(100);

 //

 //_delay_ms(800);

 //read_data =readY();

 //PORTD = (read_data&0xfe)|(PORTD&0x01);

 //tbi(PORTD,PD4);

 //_delay_ms(800);

 //_delay_ms(800);

 //_delay_ms(400);

 //for(int i=0; i<4; i++)

 //{

 //int p=1;

 //for(j=0; j<=i;j++)

 // {p=p*2;}

 //ADMUX=0b00100000;

 //ADCSRA=(1<<ADEN)|(1<<ADSC)|(1<<ADFR)|(0<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<

ADPS0);

 //while((ADCSRA&(1<<ADIF))==(1<<ADIF));

 //int k = ADCH;

 //PORTB |= (k&(0b00001111));

 //tbi(PORTB,PB4);

 //tbi(PORTB,PB1);

 //tbi(PORTB,PB2);

 //tbi(PORTB,PB3);

 //ADCSRA=(0<<ADEN)|(0<<ADSC)|(0<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);

 //_delay_ms(400);

 //}

 }

}

Codes for the car

//Include files

#include <avr/io.h>

#include <avr/interrupt.h>

#include <util/delay.h>

//Bit Function definitions

define tbi(x,y) ((x) ^= (1<<(y)))

define sbi(x,y) ((x) |= (1<<(y)))

define cbi(x,y) ((x) &= ~(1<<(y)))

define isHigh(x,y) (x & (1<<y))

#define Motor_port PORTC

#define m_a1 PC0

#define m_a2 PC1

#define m_b1 PC2

#define m_b2 PC3

#define XTAL 4000000L // Crystal frequency in Hz

#define TIMER_PRE 1024 // Timer prescaler

//usart coding

#define BAUD 1200

#define MYUBRR F_CPU/16/BAUD-1

int max1=170, max2=190, min1=140, min2=120;

//usart initialization

 void Init_UART_RX(unsigned int baudrate)

 {

 DDRD &= ~(_BV(PD0)); //setting input port (ATMEGA16)

 PORTD |= 0x01;

 UBRRH= (unsigned char) (baudrate>>8);

 UBRRL= (unsigned char) baudrate;

 //USART control and status register

 // rx int en data size

 UCSRB = _BV(RXCIE) | _BV(RXEN) | (0<<UCSZ2);//| _BV(TXEN) ; ???????????

 // write UCSRC asynch //even parity stop bits(rx

ignor) 8 bits of data

 UCSRC = _BV(URSEL) | (0<<UMSEL) | _BV(UPM1) | (0<<UPM0) | _BV(USBS) |

_BV(UCSZ1)| _BV(UCSZ0) | (0<<UCPOL);

 }

 /*--

------------FUNCTIONS TO READ UART-------------------------------

 unsigned char ReceiveByte(void)

 {

 while (!(UCSRA & (_BV(RXC)))); / Wait for incomming data

 return UDR;// Return the data

 }

 */

int speed;

void configure_speed(int a)

{

 int increment=0;

//AT 3 VOLTS

//NOMINAL A = 0X96 150

//lOW A = 0X3C 60

//HIGH A = 0XD2 210

 if(a>160)

 increment=1;

 //if(a<175&&a>160)

 //increment=2;

 //if(a<1.5&&a>1.25)

 //increment=1;

 //if(a<1.2&&a>1)

 //increment=-1;

 if((a<140)&&(a>90))

 increment=-1;

 //if((a<90)&&(a>60))

 //increment=-3;

 speed=speed+increment;

 if(speed>10)

 speed=10;

 if(speed<0)

 speed=0;

}

int max;

void update(unsigned char b, int f)

{

 int a;

 a=(int)b;

 if(f==0)

 {

 a=max;

 configure_speed(a);

 max=0;

 }

 if(f==1)

 {

 if(a>max)

 max=a;

 }

}

// Interrupt Routine for receiving data

ISR(USART_RXC_vect)

{

 tbi(PORTA,PA7);

 unsigned char a,status;

 status = UCSRA;

 a = UDR; //Reads the UART data reg

 //1st bit indicates which accelerometer

 if (!(status&(_BV(FE)|_BV(DOR)|_BV(PE)))) //If ther is no error

 {

 int f=0;

 if((a&0x80)==0x80)

 f=1;

 //PORTA = a;

 update(a,f);

 }

}

//Using Interrupts

void Timer_Init(void)

{

 //Timer/Counter Control Register – TCCR0

 cli();

 OCR0 = 0x60;

 // force o/p comp bit need to set CTC mode

 toggle OC0 on compare match clock is now fclk/1024

 TCCR0 |= _BV(WGM01) | _BV(COM00) | _BV(CS01) | _BV(CS00);//|

_BV(CS02);//(FOC0<<0) | (WGM00<<0) | (COM01<<0) |

 //TCCR1A = (COM1A1<<0);//; | _BV(COM1A0); //| (WGM11<<0)| (WGM10<<0);//|

_BV(FOC1A)

 //TCCR1B |= _BV(WGM12) ;// | (CS11<<0) | _BV(CS10);//| _BV(CS12) |(WGM13<<0)|

 //Timer/Counter Interrupt Mask Register

 //Note: This reg contains controls for all timers so be careful

 // int enable what ???????

 //Interrupt enabled

 TIMSK |= _BV(OCIE0) | (TOIE0<<0)| _BV(OCIE1A);

 //sei();

}

#define servo_pin PD4

void servo_enable(void)

{

 DDRD |= _BV(servo_pin);

 sbi(PORTD,servo_pin);

}

void servo_disable(void)

{

 DDRD |= _BV(servo_pin);

 cbi(PORTD,servo_pin);

 cbi(PORTD,PD5);

}

void PWM_Timer_Init(void)

{

 sbi(DDRD,PD5); //set OCR1a pin for output

 sbi(DDRD,PD7);

 //time = 0.1 ms = 10-4s

 //freq = 10kHz=10000

 ICR1=12000;

 if(speed%3==0)

 OCR1A =350;

 else if(speed%3==1)

 OCR1A =500;

 else

 OCR1A =1000;

 //650 angle=0

 //==

==

 //T ode....

 //TImer1 control reg

 // clear OC1A on comp OC1B:ignore

 not needed in non PWM mode fast PWM ICR1 as OP

 TCCR1A = (0<<COM1A0) |_BV(COM1A1) | (0<<COM1B0) |(0<<COM1B1) |

(0<<FOC1A) | (0<<FOC1B) | _BV(WGM11)|(0<<WGM10);

 // do not use mode setting

 clock=1/256

 TCCR1B =

(0<<ICNC1)|(0<<ICES1)|(1<<WGM13)|(1<<WGM12)|(0<<CS12)|(1<<CS11)|(0<<CS10);

 TIMSK |= (0<<TICIE1) | _BV(OCIE1A);

 //Calculations

 //cs00=== 010

 //prescalar =8

 //fer = 8 Mhz.

 //scaled Freq = 0.5 MHz

 //time wanted = 20 ms

 //freq wanted = 1/ 20 /10-3= 1000/20= 50Hz

 //ICR= 500000/50= 10000 in dec

 //for 1 ms control signal

 //freq wanted = 1/10-3= 1000

 //OCR= 500000/1000= 500

}

void PWM_timer_stop(void)

{

 //select no clock source..

 //stops timer

 TCCR1B =

(0<<ICNC1)|(0<<ICES1)|(1<<WGM13)|(1<<WGM12)|(0<<CS12)|(0<<CS11)|(0<<CS10);

}

int motor_state = 0; //This is the state of which coil is on.

 //This goes from 0 to 3

ISR(TIMER1_COMPA_vect)

{

 tbi(PORTA,PA7);

 //tbi(PORTD,PD5);

}

ISR(TIMER0_COMP_vect)

{

 //tbi(PORTA,PA1);

//tbi(PORTD,PD5);

 //sbi(PORTC,PC5);

 if(motor_state==0)

 { Motor_port = 0b00000001;

 motor_state=1;

 sbi(PORTC,PC5);

 }

 else if(motor_state==1)

 { Motor_port = 0b00000010;

 motor_state=2;

 sbi(PORTC,PC6);

 }

 else if(motor_state==2)

 { Motor_port = 0b00000100;

 motor_state=3;

 sbi(PORTC,PC7);

 }

 else if(motor_state>=3)

 { Motor_port = 0b00001000;

 motor_state=0;

 //sbi(PORTD,PD5);

 }

};

void update_speed(void)

{

 if(speed==1)

 { OCR0 = 0xD0; }//((XTAL/2/TIMER_PRE/50) - 1); }//20 ms delay

 if(speed==2)

 { OCR0 = 0xC0; }

 if(speed==3)

 { OCR0 = 0xB0; }

 if(speed==4)

 { OCR0 = 0xA0; }

 if(speed==5)

 { OCR0 = 0x90; }

 if(speed==6)

 { OCR0 = 0x80; }

 if(speed==7)

 { OCR0 = 0x70; }

 if(speed==8)

 { OCR0 = 0x60; }

 if(speed==9)

 { OCR0 = 0x50; }

 if(speed==10)

 { OCR0 = 0x40; }//=64

 if(speed==11)

 { OCR0 = 0x35; }

}

int main(void)

{

 //Seeting prot D to output to run motors

 DDRC = 0xff;

 motor_state = 0;

 DDRA = 0xff;

 PORTA=0x00;

 _delay_ms(800);

 //tbi(PORTA,PA4);

 //int speedy=500;

 //int a = 1000/speedy;

 //Init_UART_RX(BAUD);

 Timer_Init();

 PWM_Timer_Init();

 //int i;

 sei();

 //DDRD = 0xff;

 int i;

 speed=0;

 while(1)

 {

 //tbi(PORTA,PA5);

 for(i=1;i<=10;i++)

 {

 speed=i;

 //update_speed();

 PORTA=(((char)speed)|((PORTA)&0b11100000));

 PWM_Timer_Init();

 servo_enable();

 _delay_ms(500);

 _delay_ms(500);

 _delay_ms(500);

 _delay_ms(500);

 //servo_disable();

 //PWM_timer_stop();

 servo_disable();

 _delay_ms(500);

 _delay_ms(500);

 _delay_ms(500);

 _delay_ms(500);

 _delay_ms(500);

 }

 }

 return 0;

}

/*

20ms = 20 *10-3 s

4 Mhz => 1/ 4 / 106= 2.5 * 10-7ses

OCR 0 = 8000 in decimal = 1f40

There is a factor of 2

so

OCR0 = 4000 = 0x0FA0

ftoggle=1000/20=50

1/18

*/

