
FPGA based PCI Accelerator Card

Group 1
Pooja Nagle (07d04003), Nikhil Kumar (07007022)

Supervisor : Prof. Jayanta Mukherjee

Abstract

The goal is to make a PCI plug-in card with in-system programmable FPGA along

with supporting drivers and sample application software. This device can be used

to accelerate scientific computing problems by implementing a suitable

parallelized programme on FPGA.

In future, we also wish to incorporate an external RAM memory chip which may be

used to further enhance performance for memory intensive computing problems.

Motivation behind the Project

Our project can is aimed at gaining experience with the PCI and FPGA based

design. The benefits can be seen in 2 fold

1. The product can be used as a low cost generic FPGA board with external

memory able to communicate using pci protocol. This PCI card can be used for

education/protoyping purpose.

2. A custom build specialized accelerator card with multiple FPGAs and desired

memory bank can be built cultivating on our experience with the project.

PCI bus and its successor has always been known for its high throughput and

minimum latency as compared to any other external interfacing protocol. The

successor PCIe v2.0 has a capacity as much as 8 GB/s. On the other hand FPGAs

over the last decade have matured enough that its performace are being

compared to that of ASICs. Supplementing the computational power of FPGA with

communication capability of PCI variants protocol and storage capacity of fast

RAMs can result in one of the best hardware accelerator, if properly synched.

At University of Tokyo, the GRAPE (GRAvity PipE)[1] project achieved a processing

speed of 1TeraFLOPS and fetched Gorden Bell award for proving best price-

performance of their custom designed supercomputer at a stagrring

$7/MegaFLOPS way back in 1999[2]. Their machine was built of several pluggable

board with scores of ASIC specifically designed for simulating N body problem with

gravity. Currently a similar project for molecular dynamic known as MDGRAPE[3], is

under development.

Our project can be seen as a preliminary step towards making such high

performance machine for accelerating different scientific computing problem by

mapping their kernel on FPGA/ASIC.

Product Design Process
Our design process is split up into two stages that will proceed in sequential order.

The first stage aims at building the basic blocks of final product and hence has a

lot of redundant work which won't be utilized in final product but is present simply

to supplement the understanding and workability of different blocks. The second

stage aims at putting all these block together to make the final product. The final

application development will be done at the end.

Stage I: It has following sub-blocks

1)JTAG board

2)Atmega128 application board

3)FPGA board

4)PCI board with microcontroller

Stage II:

1)PCI Accelerator Card

2)CFD Kernel Demo Software

Stage I
1.JTAG board
JTAG board is a standalone pcb board which connects to PC through USB at one

end and has JTAG interface at the other. JTAG is the industry standard protocol for

test, debug and programming of programmable devices. We will be using it for

programming FPGAs.

1.1 Hardware Design

The pcb for JTAG dominantly contains a usb-pci bridge IC FT2232H and pheripheral

active and passive components. An external EEPROM AT93B46 is used to store the

configuration of usb end-controller like the device name and critical information

regarding the JTAG interface. The board is USB power driven. Adjustable linear

voltage regulator LM317 is used to generate 3.3V from 5V USB bus potential.

Figure 2 shows the schematic diagram of circuit.

Figure 1:Schematic of JTAG board

1.2 Software Design

The manufacturer of bridge IC, i.e, FTDI Inc provides a user friendly driver which

handles the usb device and can virtually map the usb port of PC to JTAG port of our

device. This virtual port can then be utilised by different softwares to talk with end

device, i.e, device under test/program. Some of the free and open source software

that support programming using FTDI 2232H bridge IC are openOCD and urjtag.

Currently, we are using urjtag as it has better device support and more user

friendly.

Figure 2: Prototype of JTAG board

2. Atmega128 application board
We needed a target processor which is simple to use, programmable by JTAG

interface, does not have practical issues like availability, solderable package, etc.,

and above all, should be supported by target application, which in our case is

urjtag. Atmega series is widely available and very simple to program using other

interfaces as well. Currently it is most widely used processor by electronics

enthusiasts and we too have some prior experience with series. Importantly urjtag

supports just Atmega128 and openOCD none in the series. So we finally bet on

Atmega128 for JTAG testing purpose.

2.1 Hardware Design

The board has least number of components and simplest of all. Power to drive

circuit will be extracted from JTAG interface through its Vcc-Gnd pins which

ultimately will bank on power supplied by USB. All the required Vcc-Gnd pins are

connected to corresponding JTAG Port's pin. The JTAG interface has 4 control and

data signals,viz, TMS, TCK, TDI, TDO which are connected to respective pins on

microcontroller directly. A LED has also been included on pin6 of PORTB for testing

and debugging process.

Figure 3: Schematic of Atmega128 application board

Figure 4: Prototype of Atmega128 Application Board

2.2 Software Design

Urjtag will be used for programming the microcontroller via JTAG. Urjtag has the

device support buildup for Atmega128 and hence not much is required from the

user side. The programme to be flashed in microcontroller will be generated using

Atmel AVR compiler and supporting package avrdude.

3. FPGA Board

As FPGA device is a new concept, not only for our EDL group but most likely for the

entire university, we decided upon building a seprate FPGA board with the simple

purpose of programming it at the first hand and porting some very simple

application to it. This board can be looked back whenever we get struck with the

main accelerator card to be build up in next stage.

Choosing a specific FPGA was not a difficult task as there are just 2 major player in

the market, Xilinx and Altera. We preferred to go for Altera beacause of its more

openess nature, good forum support and excellent academic alliance support. In

HPC lab, IIT Bombay, there is a gradual shift happening from Xilinx based designs

to Altera based design and we have a new development board arriving any time

soon. A mediocre level Cyclone II series device was finally chosen as the series has

quite matured and help over the net can reasily be expected. Besides the

upcoming development board is also based on Cyclone II series which might act as

a good benchmark platform and the applications developed for one can be tested

on other. Now given the budget constraint, we went on with a low end device of

same series, i.e, EP2C8. It has 8k logic elements, 36 4Kbits RAM blocks, 18

multipliers and 2PLL. The multipliers are 18*18 bits multiplier which can be used

as 2 9*9 multiplier. The PLLs with the help of 8 clock signals pins can be used to

generate different clock frequencies often required for different part of the

application. The device also has 182 I/O pins which can be used for interfacing

external RAMs to enhance performance for memory intensive applications. Other

pratical considerations were availabilty of chip in non BGA package, per unit cost

within INR 1-2K, device support for urjtag and availability in local market or trusted

global vendors.

The FPGA board also has an external 32MB SDRAM chip from Micron Technologies

having 16 bit wide data or word line. The RAM can be accessed synchronously with

an access time of 5.4ns and can be clocked upto 133 Mhz. This memory chip is

added just to enhance the performance for memory critical application.

3.1 Hardware Design

The design of PCB is centered around FPGA chip EP2C8. Most of the I/O connection

are with external SDRAM. The clock is generated using an external 12MHz crystal

and CDCS502,a crystal oscillator based clock generator from TI. This clock signal is

fed to both the on-board PLLs. The device is powered from the Vcc-Gnd lines of

JTAG port. EP2C8's low voltage differential signal buffer needs 1.2V and hence a

low dropout regulator TLV70012-DC from TI is used to get 1.2V from the input 3.3V.

A PCB Schematic and Layout was drawn using Eagle cadsoft PCB making CAD

software. Though we wanted to do manual routing for entire chip, but due to lower

chip count, complexity and tight time constraints, we utlized the auto routing

feature in Eagle which often does not give a good result. It was optimized with

different DRCs and component placement.

Figure 5: Schematic of FPGA board

Figure 6: Prototype for FPGA Board

Specification of Layout parameters which is given by PCB manufacturer (Yashna

Circuits, Andheri in our case) were

•Minimum width of conducting track – 6mil

•Minimum distance between any conducting track/via/pad – 6mil

•Minimum drill size - 12mil

•Minimum diameter of via/pad - 28mil

3.2 Software Design

A small application will be used to test the workability of programming interface.

This application can be written in VHDL or Verilog and then compilation and

synthesis can be done using the free web edition of Quartus, Altera's design suite

software. A library will also have to be developed for using the external RAM which

will follow the required SDRAM protocol.

4. PCI board with microcontroller
The purpose of this board is to get familiarize and establish the PCI communication

between the PC and an end device. For testing and debugging purposes, a

microcontroller is being chosen as an end device which would be replaced by the

FPGA in the later stage.

4.1 I ntroduction to PCI (Peripheral Component Interconnect)

It is a computer bus with 32-bit width for attaching hardware devices in a

computer. Due to its fast speed of data transfer, 33MHz, PCI remains a – protocol

in the high performance field to communicate with the external peripherals like

FPGA programmed computing devices.

PCI provides separate memory and I/O port address spaces for the x86 processor

family, 64 and 32 bits, respectively. Addresses in these address spaces are

assigned by software, which is the PCI driver. A third address space, called the PCI

Configuration Space, which uses a fixed addressing scheme, allows software to

determine the amount of memory and I/O address space needed by each device.

The PCI-configuration space is of 256-bytes.

Its signalling can be in either 5V or 3.3V. In a typical system, the firmware (or

operating system) queries the PCI buses at startup time (via PCI Configuration

Space) to find out what devices are present and what system resources (memory

space, I/O space, interrupt lines, etc.) are required by each. It then allocates the

resources and tells each device what its allocation is.

We have chosen 32-bit memory address space and 5-V signalling. In the PCI

communication we have the PC as initiator and the microcontroller NXP LPC2212

as the target.

4.2 Hardware Design

The PCI control signals and Data lines are connected to the uC from the 2 busses

as shown in the schematic in Fig. 5. Components on the board :-

1) NXP LPC2212 :- This is the 32-bit microcontroller chosen as the end device

for PCI communication. The device was selected on for following reasons :-

a) PCI works at 33MHz. Hence any controller working at 33MHz or above

would qualify as controller for our PCI board. The maximum clock

frequency at which LPC2212 works from the external clock source or

crystal using on-chip PLL is 60MHz.

b) The chosen controller device should be easily programmable with a

programmer that can be built in-house and the programming tools

should preferably be available for free. Most of the NXP’s controller

can be programmed using very simple UART protocol using freely

available FlashMagic software from NXP. Although we plan to program

the controller using JTAG once the JTAG board is tested successfully.

c) One of the teammate had successful past experience using this

device.

d) Other features like on-chip cache, flash memory, number of i/o pins

were sufficeintly available on this device.

Figure 7. Schematic showing connections around microcontroller, LPC2212

2) FT232 :- We have provided the feature of programming the uC on-board
from the RS232 protocol. FT232 is being used for this purpose.

3) LM1117 :- The uC works requires supply of 3.3V as well as 1.8V. Hence this
voltage regulator is being used. This was selected due to its stable output
as compared to other regulators like LM317.

4) JTAG interfacing :- This is an extension feature on the board to program the
uC from JTAG, as shown in Fig. 3.

Figure 8. Schematic showing signals aroung voltage regulator, LM1117

5) SN74HC125 :- This buffer is connects the FRAME# signal from the PCI slot to
the uC. We have provided an option to either clock the uC through a 12MHz
crystal, or through the PC.

Following are the reasons to use this buffer :-

a) Non inverting logic was required.

b) Its rise time and fall time were 9.5ns which is in accordance with the
requirement of 15nsec

c) Supply voltage requirement is within range. (2V-5.5V)

Figure 9. SN74HC125 providing clock to uC from FRAME# signal of PCI

Figure 10: Prototype of PCI board (Not completely populated)

Software Design :-

1) LPC2212 programming: Keil will be used to program the LPC2212 from the
Atmega128 programmer. The code is in C and its function would be to
behave as a PCI target and assert the necessary signals as and when
required. After receiving the R/W command from the initiator, it will also do
the operations accordingly.

2) PCI Driver (Plug & Play): This is written in the kernel of the operating
system, which is ubuntu 9.10, in our case. It is a platform dependent driver.
The function of this driver would be to find if a PCI device is being connected
to the PC, and then enable it. After this, it will allocate the configuration
space of the PCI device in the PC memory when the device is inserted in PCI
slot. Later, it sees the PCI end device as memory or I/O mapped registers to
be written or read from. Kernel version used :- 2.6

Stage II

1.PCI Accelerator Card
Our final hardware product would be this PCI Accelerator Card containing FPGA and

external SDRAM(if time permits). This will involve logically combining all the blocks

discussed in stage I. The card will also have an USB device port for configuring the

FPGA through JTAG. To avoid configuration on every power booting of board, we

plan to include external flash/EEPROM from where the configuration data can be

loaded on every power boot of device.

All the softwares, be it driver, library, application software or CAD tool are either

open sourced or freely available for non-commercial use or have been build by us.

2.CFD Kernel Demo Software
Though any potentially parallelizable application could be ported to FPGA and

speedup can be demostrated, we chose a simple 2D Euler CDF Kernel to be

implemented on FPGA. A supplementary reason is Nikhil's seminar topic being

“Hardware parallelization of CFD Kernel” under guidance of Prof. S. Patkar.

The CFD software can be separated into parts, the control part and inner loops.

The control part comprises of everything else the inner loops including variable

declaration, header initialization, loop control, conditional statements, etc. This

part of code is good for cpu as instructions are required to operate sequentially.

The contents inside inner loop generally deals with solving the N-S or 2D Euler

equation at a node given the values for neighbouring nodes are known. These

codes often run for a few thousand to million times for a single programme

execution depending upon grid structure and is the most time consuming step of

programme. Speedup can be obtained by implenting the N-S or 2D Euler euation

on hardware which can operate within a very low number of cycle. More greedly

these hardware programs can be multiplied many times and executed concurrently

till we run out of resource on FPGA/ASIC. The result of each step can be locally

stored on RAM blocks within FPGA locally and data with cpu can be exchanged on

demand using the PCI interface. If external memory is present, the need for

frequent communication with cpu can further be brought down.

Status of the project:
JTAG Board:

Design , manufacturing, testing and debugging was done.

The board is working successfully.

ATMEGA128 Board

Design , manufacturing, testing and debugging was done.

We established successful communication wth the JTAG Board.

FPGA Board:

Completed the design and manufacturing of the board.

We were not able to debug the system correctly.

PCI Card:

1.Completion of design, manufacturing and component population of the pci end

controller was done

2. The driver development for PCI on pc's side was done

3. Program for lower level interface signals generation from end controller

Future Works:

1.Hardware program of a CFD kernel to be ported on FPGA and supporting serial

programme for cpu.

2. Integration of PCI, FPGA and JTAG on a single board could not be done.

We shall provide the interface between FPGA and an external SRAM.

References

1.http://en.wikipedia.org/wiki/Gravity_Pipe

2.http://www.sc2000.org/bell/pastawrd.htm

3.http://www.research.ibm.com/grape/grape_mdgrape2.htm

4.Datasheets for following chips:

•FT2232H

•Atmega128

•Altera's EP2C8

•Micron Tech's MT48LC16M16A2

•TI's CDCS502

•TI's TLV70012-DC

•NXP's LPC2212

•FT232BL

•TI's TLV1117-18

5.Web sources :

•http://en.wikipedia.org/wiki/Conventional_PCI

•http://www.fpga4fun.com/PCI.html

•http://electrofriends.com/articles/computer-

science/protocol/introduction-to-pci-protocol/

6.Reference Projects

•Abhishek Kamath's Aletra's Max CPLD Board, RA, WEL1-2, IIT Bombay

•Darrel Harmon's Single Board Computer (http://dlharmon.com/sbc.html

)

•Darrel Harmon's FPGA Board (http://dlharmon.com/fpgacard)

7.Reference Books

•“Linux Device Drivers” by Alessandro Rubini

http://en.wikipedia.org/wiki/Gravity_Pipe
http://dlharmon.com/sbc.html
http://dlharmon.com/fpgacard
http://electrofriends.com/articles/computer-science/protocol/introduction-to-pci-protocol/
http://electrofriends.com/articles/computer-science/protocol/introduction-to-pci-protocol/
http://www.fpga4fun.com/PCI5.html
http://www.wikipedia.org/
http://www.research.ibm.com/grape/grape_mdgrape2.htm
http://www.sc2000.org/bell/pastawrd.htm

