
Project Report

EE318

Pressure Sensing Based Keypad

07007027 SHAMIT MONGA shamitmonga@iitb.ac.in

07D07019 JAY PARIKH jayparikh@iitb.ac.in

07D07021 AAKASH PATIL aakashpatil@iitb.ac.in

07007037 NAGA VAMSI KRISHNA TALUPULA tnvkrishna@iitb.ac.in

 Faculty Advisor – Professor Dipankar

Instructor in charge- Professor Jayanta Mukherjee(I)

 Professor M.Shojaei Baghini(A)

Electrical Engineering Department

IIT Bombay

Spring 2010

mailto:shamitmonga@iitb.ac.in
mailto:jayparikh@iitb.ac.in
mailto:shamitmonga@iitb.ac.in
mailto:tnvkrishna@iitb.ac.in

Motivation
The technology that we use in our day to day lives – be it mobiles, laptops, ipods etc—all of these

have shrunk to really small handheld devices. But the human hand that operates these gadgets has

stayed where it was. The keypads used to input data to these devices are really small. Our initial

thoughts were –Why don’t we create an alternative keyboard that is portable, not as bulky as the

desktop ones and is able to solve this problem? Then following some projects over the internet we

started thinking of a virtual keyboard- where there are no keys and you touch with your hand over a

piece of paper and image processing is used to detect where you touched. But that idea turned out

to be rather flashy and impractical considering the original ideas from where it sprung up. Then we

started doing some research about the existing technologies in touch applications looking at various

parameters like sensitivity, the science behind it, robustness etc. Following these ideas up with our

professors we landed up on pressure sensing using a strain gauge. The existing touch technologies

use capacitive sensing – wherein the conductivity properties of the human hand are used to detect

the point of touch. Our professors motivated us to explore the potential of pressure based sensing in

touch based applications. And from there on after several rounds of discussions, searching and some

trial and error was this idea of working with strain gauges was taken up.

Our project aims to explore the utility of pressure based sensing. Pressure based technology offers a

high degree of robustness and can find utility on ATMs, ticket vending machines etc. For pressure

technology to really take on the other available technologies we need to integrate the membrane

used for such application with micro-cantilevers as opposed to the macro-cantilevers that we are

currently using. So in essence our project is more of a prototype displaying the potential of using

such a technology.

1. Introduction
The product is designed to work as a key pad that uses strain gauge based cantilevers to detect

the key press position. The aim is to implement a num pad (total 16 keys). The key board

implementation is based on the proportional change in resistance of strain gauges with applied

deflection strain.

 The sensors (two in number) sense the strain on the membrane and generate an analog voltage

that is proportional to the strain caused by deflection. The microcontroller (Atmega 16) has

ADC’s that samples the values of these voltages. Characterization of the keypad is then used to

define a lookup table with key value regions. Based on these regions the position of key press is

detected. The key press value is then displayed in the board LCD and a serial communication

option is also available for computer interfacing.

2. System Block Diagram

 Touch Input

Major System Blocks

1) Membrane –In our case a laminated piece of cardboard

2) Sensors-Strain Gauge based Cantilevers

3) Opamp’s for Strain Gauge output amplification.

4) Microcontroller(ATMEGA16) which does the processing and ADC conversion

5) LCD Display(Hitachi Hd44780)

6) Serial Communication Link

Sensors ADC

Processing

(Microcontroller)
LCD Display

Membrane

Amplifier

 Computer

Serial Communication

3.Main circuit components used:
1) Strain Gauge.

A strain gauge is a device used to convert strain a mechanical quantity to electrical voltage

for measurement and processing. The gauge is basically a resistor attached to a support foil.

This arrangement is attached to the deformed object by a suitable adhesive (we used

Araldite). As the object is deformed the foil bends, causing the wire’s length to change which

changes its electrical resistance. This resistance change, which can be measured using a

wheatstone bridge configuration, is almost proportionally related to the strain by the

quantity known as the gauge factor.

(Gauge factor is defined as the ratio of fractional change in electrical resistance to the

fractional change in length (strain)):

 𝐺 =
 𝛥𝑅 ∗𝑙

(𝑅∗(𝛥𝑙))

The specifications of the strain gauges used are-

a. Resistance = 330 Ω (in the absence of strain)

b. Gauge factor = 2

The full bridge configuration, in which 4 strain gauges are needed per cantilever, has been

employed because of its greater sensitivity over the other configurations, cancellation of the

non-linear parts of the strain gauge response, compensation for temperature. The strain

gauges are used in wheat stone bridge configuration.

In the above diagram the top two strain gauges and the bottom two strain gauges are

mounted on opposite sides of the metallic strip.

2) Microcontroller:

The microcontroller, Atmega 16, has been used for ADC conversions of the output voltages

of the wheatstone bridge and the soft decisions that are needed to be taken to implement

the logic associated with the input device. The microcontroller was chosen keeping in mind

the memory required for this code, the cost, availability of LCD header files and ready

availability in the lab. Atmega 16 is high performance, low power AVR 8-bit microcontroller.

Its important features used by us are:

a. Advanced RISC architecture for faster performance

b. 8-channel 10 bit ADC

 8 single-ended channels

 2 differential channel with a programmable gain at 1x,10x,200x

c. Four 8-pin ports

d. Internal clock of 1 MHz

e. Byte oriented two wire serial interface

f. 16k bytes of flash memory

g. 512 bytes of EEPROM

h. 1k bytes of internal SRAM

 Fig. Atmega 16 Pin Configuration

In our circuit ADC fabricated on the Microcontroller chip to convert the voltage values from

the wheatstone bridge circuit into digital values and a programmable logic to determine the

position of the “press” from those values.

3) LM 7805 voltage regulator:

The LM78XX series of three terminal regulators are available with several fixed output

voltages making them useful in a wide range of applications. These regulators are used in a

variety of applications which include logic systems, instrumentation and other solid state

electronic equipment. Although designed primarily as fixed voltage regulators, these devices

can be used to obtain adjustable voltages and currents using external components.

In our circuit, we use this (LM 7805) as a power source to the microcontroller.

Voltage Range

LM7805C - Input-7 to 12 V

 Output-5V

Features : -

a. Output current in excess of 1A

b. Internal thermal overload protection

c. No external components required

d. Output transistor safe area protection

e. Internal short circuit current limit

f. Available in the aluminum TO-3 package

4) Keypad (input device):

The keypad (input device) is made of lamination material. The most important parameters

that decided the choice of the material for the membrane were performance under strain,

weight and fabrication ease. We tried several materials like tin sheet, flex, cellophane and

various configurations to connect them in (see Images), before we finally decided to work

with a laminate material in the final configuration. The kind of material that we wanted was

one that was light and that didn’t create a permanent local depression when touched. The

lamination material based membrane has the advantage of being transparent, and is

suitable to be used as a touch screen. For the purpose of our project the membrane has

been divided into multiple areas which represent different keys on a keyboard.

5) Amplifier circuit:

The voltage signals obtained from the wheatstone bridge configuration were in milivolts

range and need to be amplified before feeding them to the ADC of the microcontroller. A

op-amp based amplification has been employed. An opamp by Philips (LM324N) has been

used primarily because of its low, and predictable offset output voltage.

6) Serial communication:

Serial communication protocol has been chosen to send the key press data to the computer.

Max232 chip and the associated circuit was used to convert the TTL logic levels to RS232

logic levels. A DB9 connector is used to connect the MAX232 with computer.

4.Circuit description and working:

1) Microcontroller Circuit:

A microcontroller (Atmega16) is used to convert the analog voltage values from the

wheatstone bridge, into digital values using the inbuilt ADCs and to implement the necessary

logic required

Pin description :

a. PD0(RXD) and PD1(TXD) are used for serial communication.

b. The pins of PORTA has been used as for taking input for ADC conversion

c. Pins 11 and 31 were grounded and pin 30 and 10 were connected to Vcc(5V) as per the

requirement

d. PORTC and PORTD have been used for interfacing with LCD

e. PORTB has been used for taking the input from switches, which are used for calibration

of the device

Given below is the diagram of the circuit associated with the microcontroller

2) LCD Display (HD44780):

The 16 pin LCD Display has been used to assist the user in calibration of the keypad, and to

also to display the switch pressed (which was used during the debugging of the circuit, and

later replaced by serial communication to the computer).

a. It is a 16x2 character LCD, organised as 2 rows and 16 columns.

b. Pin 1,3 need to be grounded

c. Pin 4,5,6 are the control pins. (Since we are only using the write to LCD functionality pin

number 5 i.e. R/W has been grounded)

d. Pin 7 to pin 14 are the data pins.

e. The voltage level difference between pin 15 and pin 16 determines the LCD screen

brightness (the voltage level difference used in our case is 5V)

Given below is the circuit diagram associated with LCD Display (the pins are numbered from

1 to 16 bottom-up).

3) Amplifier circuit:

Given below is the schematic diagram of the opamp based amplifier used in the circuit.

4) Serial communication:

A typical circuit suggested in the MAX232’s data sheet has been used to convert the TTL

logic voltage levels to RS232 voltage levels. And DB9 connector is used to connect the serial

port of computer with the serial output pins of MAX232.

DB9 connections:

a. Pin number 3 connected to pin 14 of max232(T1OUT)

b. Pin number 4 connected to pin 13 of max232(R1IN)

c. Pin number 5 connected to ground

Given below is the circuit diagram to use the MAX232:

Material and Design Stages of the Project
1) We started off by testing on an already fabricated strain gauge based cantilever. We used

the ADC that comes in built with the microcontroller ATMEGA 16. This testing cleared the

use of cantilevers for position detection. The sensitivity was found to be adequate.

2) A rigid membrane based solution was also initially considered, and the required mechanical

equations, which calculate the location of press based upon the voltage level readings from

cantilevers, were solved. The tilt of the keypad, in such a place, plays a crucial role in

determining the point of press. Since, we wanted the keypad to be used in situations like

touch screen to laptop (vertically mounted) as well as in railway counters (fairly horizontal

configuration), we needed to think of a different idea. Moreover, at least 3 cantilevers are

needed in such a situation.

3) Then flexible membrane was used as the input device and various configurations, materials

were tested for design appropriateness. To start with a full soft membrane based approach

was developed in the following four cantilever design.

 Fig. Four Cantilever Configuration

The problem in this configuration was an appropriate material. We tried to work with Cellophane

and flex plastic. These were put in tension on the cantilever using skrews . In both these cases

localised stretch at the membrane cantilever joints caused the material to deform permanently.

 Img1.Testing of Linear Keypad in the 4 cantilever configuration material cellophane

 Cantilever

Soft Membrane

Junction- Problem

areas

4) Upon the failure of a soft membrane based approach we decided to try out with tougher but

depressible materials. We started again with an aluminium sheet of appropriate thickness in

a two cantilever configuration.

 Img2. Aluminium Sheet Based Two Cantilever Approach

 This material was suited for this application, with appropriate flexibility for a key press and a

constant non deformed value. The problem was with its different equilibrium states which kept on

changing the readings for the same key.

5) After the aluminium based approach a laminated sheet was used instead of the key pad. The

advantages were that laminate was flexible, returned to its undeformed position and caused

less vibrations.

 Img3. Thin Paper based Lamination

The initial thin paper based approach was not appropriate because of the highly flexible nature of

the lamination. It was then decided to use a thicker material like cardboard during lamination. This

arrangement fulfilled all the requirements and was used in the final product.

Img4. Cardboard based Lamination approach graph paper on top for characterization purpose

Characterization Procedure
For determining the soft decisions for the individual keys we used graph papers for defining keys on

the pad (as seen in Img4). Each key was defined for the area of 2cmx2cm. Based on the LCD display

values we determined the maximum and minimum values for each of the strain gauges for individual

keys. These were then used to determine the decision regions by plotting on a graph paper.

Tolerances were added to reduce the chances of error.

Key arrangement on Keypad

A B C E D

F G H I

J K

P

L M N

O Back
space

Range of ADC values obtained by mapping of ADC values for each 2x2 cm key area and taking into

consideration suitable tolerance. We see each key on Keypad each mapped one-to-one onto ADC

value area graph

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Le
ft

 (
A

D
C

0
)

Right (ADC1)

A B C

D

E

F

G

H

J

K

L

M

N

0

P



--

-

I

Prototype Cost

IC/Euipment/Material Quantity Cost

Strain Gage 2 sets of wheatstone bridge 2x150=Rs.300

Microcontroller Atmega16 1 Rs.165

LCD Display (HD44780) 1 Rs.160

LM324 1 Rs.10

Max232 1 Rs.20

DB9 Male connector 1 Rs.10

7805 voltage regulator 1 Rs.10

LEDs, Resistors, Capacitors,

switches, buttons

many Rs.25

PCB (including various 4 and 8

pin connectors)

2 2x100=Rs.200

Mechanical assembly/

chemicals

Various Rs.100

 Total Rs.1000

AVR Code Descriptions
For coding have used two readymade routines

lcdroutines.h : Contains predefined functions for LCD

uart0_at16_routines.h : Contains predefined functions for serial communication

Code

We have predefined values for minimum value of ADC and arrays of predefined values for centre

and tolerance of 17 keys

Main function

We at first disable JTAG by instruction MCUCSR|=_BV(JTD)

Then we initialised ADC, LCD, UART by corresponding initialisation commands adc_init(), lcd_init(),

uart0_init()

We clear the LCD by lcd_clear() and bring LCD cursor to start by lcd_home()

Then depending on state of input at PB3

If PB3=HI, we go into setting mode where

 We display word “set” in upper line of LCD indicating user that he is in setting mode

We move LCD cursor to start of 2nd line by move_to(0,1) and display the key presently being

set by display_char(key[i])

While PB0 is LO user can change values for corresponding key and once he makes PB0 HI

again ADC values get locked

If PB3=LO, we go into operational mode where

We continuously take ADC readings and once atleast one of the ADC values increases above

minimum values (indicating user has started to press) set for them it enters infinite while

loop while(1)

In infinite while loop we try to find the maximum of ADC readings (readings corresponding

to maximum press to upto bottom of surface). We store old ADC values in variable ‘adc’ and

new ADC values in variable ‘var’. When key is being pressed we expect new(‘var’) to be

greater than old(‘adc’) and when released we expect old(‘adc’) to be greater than new(‘var’).

So when ‘var’ is less than ‘adc’ we break out of infinite while loop

With above values of ADC we compare them and observe if they are within tolerance range

of any of the keys. If yes we display that key by function LCD(i)

Future Work
There are many improvements in this project that could not be done because of the shortage of

time. We could have experimented with more implementations using different sensors (like

pressure sensors) other than strain gauges to measure pressure/strain to see what works best.

Another thing could be to make software so that the user can modify/customise the current

interpretation pattern for keys (as in what stands for what and also modify dimensions). We could

also add USB functionality (instead of the serial communication currently provided) to this device so

that this can become a plug and play device.

Further, in a major overhaul, we could have gone for integrating the membrane with

microcantilevers that would raise the sensitivity of this device by several orders of magnitude and

give a precision close to microns. Then this device will really be able to take on the current capacitive

sensing technology. However such a step also increases the complexity and time required for this

project by orders of magnitude.

Conclusion
Through this project we have explored various membrane materials and designs for there suitability

of use to make a flexible keypad. We found that the properties like flexibility, stiffness, capacity to

return to original position after deformation, and fabrication ease are detrimental while deciding the

membrane material. For design considerations fabrication facilities available, cost and key pad

requirements were important. Overall we feel that strain gauge based systems with there resolution

can be efficiently used to make accurate sturdy and easily serviceable keypads. Also micro-strain

gauge based micro-cantilevers can be used for their high sensitivity to extend the application to

touch screens.

Word of Thanks
Needless to say, this project would not have been complete without the guidance and support of

several people. We would especially like to thank our guide Prof Dipankar who provided us with the

initial idea of using strain gauges. We would also like to thank professors- Prof P.C. Pandey, Prof

Jayanta Mukherjee and Prof M.Shojaei Baghini for their invaluable help in giving ideas and general

guidance during the project.

We would also like to thank the lab staff at WEL 4 & Mrs Madhumita Date, Mr V.K.Tandon

for their cooperation. Here we would especially like to mention Naresh Sir for enthusiastically

helping us with our with the soldering of delicate strain gauges and IC’s which helped us solve a lot

of our problems.

Appendix

User Guide

1) Connect 2-pin female relimate connector to male connector-1 on PCB-1 for main external power

source.

2) Press reset button to toggle between ON-OFF state. On status is also indicated by red LEDs

glowing.

3)To display the key pressed on the LCD, connect LCD in 16-pin connector on PCB-2.

4)To display the key pressed on the computer using hyperterminal, connect female DB9 connector

to male DB9 connector in computer and other end of it to 4-pin male connector-2 on PCB-2 using 4-

pin female relimate connector. In hyperterminal set Baud Rate=2400, Data Length=8, Parity Bits=

None, Stop Bits=2

5) Make DIP Switch-4 OFF to go into setting mode and DIP Switch-4 ON to go into working mode

6) We have predefined set of values for each key obtained through characterization so user can

directly go into working mode

7) In setting mode line 2 of LCD displays key which is currently being set. Toggle DIP switch-1 ON and

OFF to set next key. If want to skip particular key make DIP switch-2 ON. Set ADC values of key by

keeping DIP Switch-1 ON and pressing to maximum (to bottom of surface) and lock ADC values by

making DIP Switch-1 OFF again. Having set all keys make DIP Switch-4 ON to go into working mode

8) In working mode press keys such that key is pressed to maximum(to bottom of surface) and

maintain in that state for atleast 1 ms and release it. Maximum value of ADC are noted on releasing

key. Depending on this maximum ADC reading key pressed is detected and displayed on LCD and/or

hyperterminal

9) If wrong key is detected or otherwise need be use backspace key provided to clear last key

displayed

Program Code
// **

// *** LCD_ROUTINES HEADER FILE ********

// **

//Connections between uC and LCD

#define DATA_DDR DDRC

#define DATA_PORT PORTC

#define CONTROL_DDR DDRD

#define CONTROL_PORT PORTD

#define RS PD6

#define E PD7

//Functions for interfacing to a 16x2 LCD

void lcd_clear(void);

void lcd_home(void);

void lcd_command(unsigned char command);

void lcd_init(void);

void display_char(unsigned char data);

void display_byte(unsigned char num);

void display_int(unsigned int num);

void move_to(unsigned char x,unsigned char y);

// **

// *** UART_ROUTINES HEADER FILE ********

// **

#define TX_NEWLINE {transmitByte(0x0d); transmitByte(0x0a);}

#define CHAR 0

#define INT 1

#define LONG 2

void uart0_init(unsigned int);

unsigned char receiveByte(void);

void transmitByte(unsigned char);

void transmitString_F(char*);

void transmitString(char*);

void transmitHex(unsigned char dataType, unsigned long data);

// **

// *** MAIN FUNCTION********

// **

#include <avr/io.h>

#include "lcdroutines.h"

#include "UART_routines_at16.h"

#include <util/delay.h>

unsigned char key[] = {"ABCDEFGHIJKLMNOxP"};

unsigned int setL[17]=

{185,185,185,159,65,

168,184,122,64,

130,141,136,96,60,

106,103,58};

unsigned int setR[17]=

{73,145,185,186,159,

66,108,150,128,

60,86,111,112,100,

70,85,74};

unsigned int tolL[17]=

{3,5,3,15,15,

 12,7,10,10,

 10,8,8,10,8,

 6,8,6};

unsigned int tolR[17]=

{10,12,3,7,15,

 8,7,10,10,

 8,8,10,8,7,

 5,8,6};

unsigned int minL=60,minR=65,adcL,adcR,varL,varR,thL,thR;

unsigned char setting[] = {"set "};

unsigned char err[]={" err "};

unsigned char pre[]={"pre "};

unsigned char nxt[]={" nxt"};

unsigned int adc_read(unsigned char channel)

{

 ADMUX = (ADMUX&0xe0) + channel;

 ADCSRA |= _BV(ADSC); // Start conversion

 while((ADCSRA & _BV(ADSC)) != 0) {}; // Do nothing until conversion

is done

 return(ADCH); // Return upper 8 bits

}

void adc_init(void)

{

 DDRA = 0x00;

 PORTA = 0x00;

 ACSR = _BV(ACD);

 ADCSRA = _BV(ADEN) |_BV(ADPS2)|_BV(ADPS1);// Enable ADC with

prescaler = 64

 ADMUX = _BV(REFS0) |_BV(ADLAR); //left adjust,internal 5V Voltage

Reference with external capacitor at AREF pin

}

/* Main function */

int main(void)

{

 MCUCSR|=_BV(JTD);

 MCUCSR|=_BV(JTD);

 MCUCSR|=_BV(JTD);

 MCUCSR|=_BV(JTD);

 DDRB = 0xf0;

 PORTB = 0xff;

 uart0_init(25); //baud rate 2400bps for freq = 1MHz

 lcd_init();

 adc_init();

 unsigned int i,j;

 while(1)

 {

 while((PINB&0x08)==0x08) // make PB3 low for settings

 {

 lcd_clear();

 lcd_home();

 for(i=0;i<sizeof(setting)-1;i++)

display_char(setting[i]);

 for(i=0;i<17;i++)

 {

 move_to(0,1);

 while((PINB&0x01)==0x01); //make PB0 HI-LOW to

set next key

 display_char(key[i]);

 while((PINB&0x03)==0x00) //make PB1 HI to skip

 {

 setL[i]= adc_read(0);

 setR[i]= adc_read(1);

 move_to(0,0);

 display_int(setL[i]);

 move_to(8,0);

 display_int(setR[i]);

 _delay_ms(25);

 }

 if(setL[i]<minL) minL=setL[i];

 if(setR[i]<minR) minR=setR[i];

 }

 }

 if(minL>8) minL=minL-8;

 if(minR>8) minR=minR-8;

 while((PINB&0x08)==0x00) //keep PB3 high for operation

 {

 move_to(0,1);

 for(j=0;j<sizeof(nxt)-1;j++) display_char(nxt[j]);

 while(1)

 {

 adcL= adc_read(0);

 adcR= adc_read(1);

 if ((adcL>minL)&&(adcR>minR))

 {

 while(1)

 {

 varL= adc_read(0);

 varR= adc_read(1);

 if ((varL<adcL)&&(varR<adcR)) break;

 adcL=varL;

 adcR=varR;

 }

 break;

 }

 }

 for(i=0;i<17;i++)

 {

 if(adcL>setL[i]) thL=adcL-setL[i];

 else thL=setL[i]-adcL;

 if(adcR>setR[i]) thR=adcR-setR[i];

 else thR=setR[i]-adcR;

 if((thL<tolL[i]) && (thR<tolL[i]))

 {

 move_to(0,0);

 display_int(adcL);

 display_char(key[i]);

 display_int(adcR);

 if((PINB&0x04)==0x00) transmitByte(key[i]);

 else transmitByte('Z');

 }

 }

 move_to(0,1);

 if(i==17)

 {

 for(j=0;j<sizeof(err)-1;j++) display_char(err[j]);

 _delay_ms(200);

 }

 _delay_ms(100);

 for(j=0;j<sizeof(pre)-1;j++) display_char(pre[j]);

 _delay_ms(100);

 }

 }

 return 0;

}

