
EE318 Electronic Design Lab
Spring 2011
Project Report

Group 3

Sarjan R. Satra - 08d07004
Lee Zhi Long - 10v051003
Lu Youkang - 10v071003

1. Project Aims

This project aims to design a device that
can drive a video wall system using FPGA.
A video wall is a system that consists of
multiple computer monitors, video
projectors, or television sets tiled together
contiguously or overlapped in order to form
one large screen.

For this project, we will be working on developing a video wall driver
for a 4 monitor video wall tiled in a 2*2 manner. We will draw the
video source (essentially images or frames) from the memory card
of the FPGA, split the images, zoom them appropriately and output
them to the respective monitor at the same time.

2. Design Approach

2.1 Hardware

The hardware involved in this project:
1. Virtex-5 FPGA kit (Xilinx ML505 Board)
2. Respective connectivity cables for the board (USB to JTAG for

programming, USB to RS232 for serial communication)
3. Multi-card reader (For the Compact Flash drive)
4. Video output cables (VGA and DVI)
5. Monitors

Xilinx ML505 kit –

The kit has a Xilinx Virtex-5 FPGA. It also has 1 DVI output port and
1 VGA input port. Also the FPGA has a Microblaze soft processor
which we have used in our design. A soft processor is a processor
which has been completely implemented in the FPGA itself using
logic synthesis.

Video Wall

In order to interface the VGA port to the FPGA, there is a very fast
ADC AD9980 which operates at data rates as fast as 95 MSPS (Mega
Samples Per Second). To interface the VGA port we essentially have
to use this ADC which converts the analog VGA signals to digital
format suitable for processing in the FPGA.
Similarly to interface the DVI port we have a Chrontel CH7301C DVI
transmitter which is a display controller device which accepts
 a digital graphics input signal, and encodes and transmits
 data through a DVI or DFP (Digital flat panel).
 It has a pixel rate of upto 165 MHz. Hence to interface the DVI port
we must use the Chrontel DVI controller.
The FPGA can be programmed using JTAG. There is a RS232 port
which can be used to establish serial communication with a PC for
debugging purposes.

2.2 Flow of Project

Since we haven't implemented a structure for a live video data
stream, we use static images from the flash disk of the ML505 kit.
These images can be thought of as a single frame of a video.
The static images are first read from the flash drive, split into
multiple parts (4 here) as required and the then zoomed to match
the screen size. Since the kit does not have multiple DVI output
ports, we display only one of the parts (One quarter here) of the
original image on the monitor.

2.3 Programming
The main part of this project is focused on the programming of the
FPGA kit to output the video as intended. We have used some IP
cores from the Xilinx website which help us interface the DVI port to
the FPGA. The FPGA also has a Microblaze soft processor which is
also used in the project for reading the file from the flash.

Hence the programming was done in C for the Microblaze processor
and Verilog for the FPGA. We used Xilinx ISE and Xilinx EDK
softwares (Version 11) for programming the FPGA kit.

2.4 Flow of Programming

3. Project Management

3.1 Goals

We have decided to break up our project into smaller and more
manageable goals to aid in project management.
Also we changed our main goal after the Midsem evaluation. Our
original goal was to take a live stream of video and then implement
a 2*2 video wall driver for that. That proved to be very difficult
given the less time.

Our new goal is to implement a video wall driver for input which is a
stream of static images taken from the Compact Flash drive of the
kit. Each of these images can be treated as a frame for the video
and when run fast enough looks like a video.

3.2 Stage 1:
Our first task is to program the FPGA kit such that it can read a still
image from the inbuilt memory card and display on the screen. This
is to make sure that the output drivers are working and that a
communication link has been established between the board and
the memory card.

3.2 Stage 2:
Next, we aim to isolate a portion of the picture (1/4 in this case) and
display it on the monitor. Additional programming needs to be done
to expand the image by writing duplicates on different addresses to
ensure that the still image is blown up and fills the screen.

3.3 Stage 3:
Finally, we will have to adjust the output frame rate such that it is
capable of outputting a video onto the monitor. The frames must
also be divided appropriately to display on all the screens
simultaneously.

4. Design Implementation

4.1 Research
A lot of research was done while selecting the FPGA kit, as none of
the FPGA kits in the department matched our requirements. Finally
we settled for the ML505 kit through with which we could atleast
test our concept.
The bulk of our time was spent researching on the capabilities of the
ML505 board and the various protocols and mechanism it uses to
output images using its DVI port.
The first thing that we learnt was programming the FPGA for a
simple LED ON-OFF function. Later we focused our efforts on
programming the VGA interface part. We left that part as it proved
to be a mammoth task. This led us to altering our goals and taking
still images from flash disk as input rather than live data stream
from the VGA port.
We studied about DVI port interfacing and came across some IP
cores for the same on the Xilinx website. This helped us to interface
the DVI port rather easily.
Further research was also done on how to access the memory card
via the board. In addition, research on the addressing system
employed in the IP core was also done to ensure that we have the
necessary knowledge to code the desired output.

4.2 IP Cores
The IP cores are a set of protocols that are needed to be loaded for
the FPGA and the board to output an image to a screen via its DVI
port. However, since the IP cores are generic, we will have to modify
it and program it to receive our picture stills from the memory card
and to crop the images and expand it fully on the screen.
We have used the XUPV5-LX110T std IP cores which contains cores
for DVI interfacing.

4.3 Programming the FPGA
Main steps for programming an FPGA :

 Write Verilog/VHDL code
 Check Syntax
 Synthesize
 Write a constraints file for mapping the FPGA pins to the

appropriate peripherals (.ucf for pin constraints)
 Execute Place and Route
 Implement Design
 Generate a Programming File
 Configure the Target Device and program

For more details on this refer to Xilinx ISE 11 Indepth Tutorial on the
Xilinx website.

4.4 Compile Design (Microblaze)

The basic operational steps for programming Microblaze are:
 Build All the user applications.
 Generate Bitstream
 Update the Bitstream
 Download the Bitstream into the FPGA
 Launch XMD Bash Shell
 Download ELF file
 Connect and Run

For more information on the specifics of the above please have a
look at the XUPV5-LX110T std IP core's manual on the Xilinx
website.

5.Test Procedure
No specific test procedure. Compile the design, execute the design
on the FPGA kit and watch the output on the monitor.

6. The Journey/ Problems faced

The first two weeks were spent finding the best FPGA kit to match
our requirements/specifications. At the same time we learnt the
basics of programming an FPGA. We worked on Spartan-3 kit
available in the WEL lab and tried to light an LED using a switch.
Thereafter we moved on to the ML505 kit and run the basic LED on-
off program in it. It has slightly different method of programing via
JTAG and hence it took us a while to find out.

We started to develop an algorithm for interfacing the VGA port of
the kit using the AD9980 ADC. We drew the timing diagrams
according to the VESA specifications (Video Electronics Standards
Association) and designed an algorithm. But implementing the same
turned out to be a mammoth task and so we left that part.

We faced a lot of problems finding the correct licensed version of
the Xilinx ISE and EDK softwares required for our project. This
greatly hampered our progress in the first half of the semester.

Instead we focused our attention on the DVI interfacing. We
modified our goals after the Midterm evaluation and instead of
taking live video data stream from VGA, decided to use a stream of
images from flash disk as our input. This enabled us to test our DVI
interfacing part.

While trying to interface the DVI port, we came across some DVI IP
cores on the Xilinx website. We implemented the same and this
made our DVI interfacing job quite simple.
Finally we implemented our image splitting and zooming algorithms
into the IP core to complete the modified goal.
Understanding the addressing used in the program and
implementation of our image splitting and zooming algorithm also
proved to be quite challenging as the program behaved in weird
ways and we did not have any specific method for debugging except
from trying out different things, executing them and drawing
conclusions.
Many times the image used to be distorted, partial images were
displayed, two frames would overlap, the one quarter of the image
would turn to one-half or one-eight. Sometimes we even got images
with only one/two of the RGB colours.

7. Future work and improvements

• The inherent ability of the development board to buffer data
from the compact flash is restrained to about 96MB (which
turns out to be 48 images of 2MB each), and if this can be
improved, it is possible to output a slideshow or video of a
longer period

• Instead of taking input (images and videos) from the compact
flash, input can be taken from a DVI source (eg. a CPU with
DVI port); appropriate hardware for the same is needed. It is
then passed through the FPGA and output accordingly.

• Also right now we are showing the output (one quarter of a
screen) on a single monitor due to hardware constraints. This
can be improved and multiple monitors can be employed
using a FPGA kit with multiple DVI output ports.

• Currently zooming is done just by duplicating pixels i.e.
replicating the same pixel in 4 adjacent pixels (vertically and
horizontally). This can be improved and interpolation can be
used to improve the output picture quality.

• The controller algorithm can be made more general so as to
accommodate for a NxM sized video wall while keeping the
resolutions of all the monitors different. This is quite a
challenging task.

8. Conclusion

Though we could not implement the data input part of our original
goal due to various reasons (hardware constraints, software
licensing problems and lack of time), we successfully completed the
data output part and hence the modified goal.
We have also shown how a stream of images can act as a video
while testing for the output (DVI interfacing part).

The data input part can be integrated with our project to implement
a 2*2 video wall driver. Also additional improvements will improve
the quality of the output data as well as generalize the idea to a
NxM video wall.

Our project was quite challenging and none of us/faculty had worked
on such a thing before. Hence we were on our own and we had to
find our way out whenever we were stuck somewhere.
It was a very nice experience working on something challenging and
we had a great time.

9. References

Datasheets : AD9980 ADC, Chrontel 7301C DVI Transmitter, Virtex-5 FPGA.

Guides : Xilinx 11 Tutorial, ML505 kit guide_ug347.

Books : Design Recipe for FPGA (Peter Wilson), FPGA Prototyping by
Verilog Examples (Pong P. Chu).

Standards : VESA VGA standards, DDWG's DVI standards.

IP cores :

XUPV5-LX110T User Manual
http://www.xilinx.com/univ/xupv5-lx110T-manual.htm

XUPV5-LX110T Standard IP Design Adding PCores
http://www.xilinx.com/products/boards/xupv5/design_files_122/BSB_
STD_IP_PCORES/xupv5-lx110t_std_ip_pcores.pdf

xupv5-lx110t_bsb_std_ip_overlay (ZIP)
http://www.xilinx.com/products/boards/xupv5/base-system-
builder.htm

10. Program codes

/***************************** Include Files
*********************************/
#include "xio.h"
#include "sleep.h"
#include <sysace_stdio.h>
#include "xuartns550_l.h"
#include "xparameters.h"
#include "lcd.h"
#include "memory_map.h"
#ifdef PPC440CACHE
#include "xcache_l.h"
#endif

// Demo Parameters
#define IMAGE_BASEADDR (DDR_BASEADDR + 0x0A000000)
#define IMAGE_MAXADDR (IMAGE_BASEADDR + 0x06000000)
//Defines the Max no of images that can be stored... 48 in our case
/* structs for bitmaps */
typedef struct {
 unsigned short int type; /* Magic identifier */
 unsigned int size; /* File size in bytes */
 unsigned short int reserved1, reserved2;

http://www.xilinx.com/products/boards/xupv5/base-system-builder.htm
http://www.xilinx.com/products/boards/xupv5/base-system-builder.htm
http://www.xilinx.com/univ/xupv5-lx110T-manual.htm
http://www.xilinx.com/products/boards/xupv5/design_files_122/BSB_STD_IP_PCORES/xupv5-lx110t_std_ip_pcores.pdf
http://www.xilinx.com/products/boards/xupv5/design_files_122/BSB_STD_IP_PCORES/xupv5-lx110t_std_ip_pcores.pdf

 unsigned int offset; /* Offset to image data, bytes */
} HEADER;

typedef struct {
 unsigned int size; /* Header size in bytes */
 int width,height; /* Width and height of image */
 unsigned short int planes; /* Number of color planes */
 unsigned short int bits; /* Bits per pixel */
 unsigned int compression; /* Compression type */
 unsigned int imagesize; /* Image size in bytes */
 int xresolution,yresolution; /* Pixels per meter */
 unsigned int ncolors; /* Number of colors */
 unsigned int importantcolors; /* Important colors */
} INFOHEADER;

/* reads two bytes from file */
static unsigned short ReadUShort(SYSACE_FILE *fptr)

{
 unsigned char b0, b1;
 int numread;
 char readBuffer[2];
 numread = sysace_fread(readBuffer, 1, 2, fptr);
 b0 = readBuffer[0];
 b1 = readBuffer[1];
 return ((b1 << 8) | b0);
}

/* reads four bytes from file in little endian order */
static unsigned int ReadUIntLil(SYSACE_FILE *fptr)

{
 unsigned char b0, b1, b2, b3;
 int numread;
 char readBuffer[4];
 numread = sysace_fread(readBuffer, 1, 4, fptr);
 b0 = readBuffer[0];
 b1 = readBuffer[1];
 b2 = readBuffer[2];
 b3 = readBuffer[3];
 return ((((((b3 << 8) | b2) << 8) | b1) << 8) | b0);
}

/* opens and reads from CF a 640x480 bitmap file, placing it in
memory at baseaddr in a format for the tft */

int read_image(char FileName[], int baseaddr)
{

 unsigned char readBuffer[1920];
 SYSACE_FILE *infile;
 int i, j, numread, temp, writeaddr;
 HEADER header;
 INFOHEADER infoheader;
 infile = sysace_fopen(FileName, "r");
 if(infile) {
 xil_printf("Reading file : %s\n\r", FileName);
 LCDPrintString ("Loading Slide: ", &FileName[3]);
 /* Read and check the header */
 header.type = ReadUShort(infile);
 header.size = ReadUIntLil(infile);
 header.reserved1 = ReadUShort(infile);
 header.reserved2 = ReadUShort(infile);
 header.offset = ReadUIntLil(infile);
 infoheader.size = ReadUIntLil(infile);
 infoheader.width = ReadUIntLil(infile);
 infoheader.height = ReadUIntLil(infile);
 infoheader.planes = ReadUShort(infile);
 infoheader.bits = ReadUShort(infile);
 infoheader.compression = ReadUIntLil(infile);
 infoheader.imagesize = ReadUIntLil(infile);
 infoheader.xresolution = ReadUIntLil(infile);
 infoheader.yresolution = ReadUIntLil(infile);
 infoheader.ncolors = ReadUIntLil(infile);
 infoheader.importantcolors = ReadUIntLil(infile);

 /* Process the data */

 //---
 //LEFT BOTTOM CORNER

 /*for (j=(((infoheader.height)/2)-1);j>=0;j--) {
 numread = sysace_fread(readBuffer, 1, 1920, infile);
 for (i=0;i<((infoheader.width)/2);i++) {

 temp = ((((readBuffer[(i*3)+2] << 8) | readBuffer[(i*3)+1]) <<
8) | readBuffer[(i*3)]);

 writeaddr = baseaddr+(j*1024+i)*8;
 XIo_Out32(writeaddr, temp);
 XIo_Out32(writeaddr+4, temp);
 XIo_Out32(writeaddr+512*8, temp);
 XIo_Out32(writeaddr+512*8+4, temp);
 }
 }*/

 //--
 //LEFT TOP CORNER
 /*for (j=((infoheader.height)-1);j>=0;j--) {
 numread = sysace_fread(readBuffer, 1, 1920, infile);
 for (i=0;i<((infoheader.width)/2);i++) {

 temp = ((((readBuffer[(i*3)+2] << 8) | readBuffer[(i*3)+1]) <<
8) | readBuffer[(i*3)]);

 writeaddr = baseaddr+(j*1024+i)*8 - (((infoheader.height)/2)-
1)*1024*8 ;

 XIo_Out32(writeaddr, temp);
 XIo_Out32(writeaddr+4, temp);
 XIo_Out32(writeaddr+512*8, temp);
 XIo_Out32(writeaddr+512*8+4, temp);
 }
 } */

 //--

 //RIGHT BOTTOM CORNER
 /*for (j=(((infoheader.height)/2)-1);j>=0;j--) {
 numread = sysace_fread(readBuffer, 1, 1920, infile);
 for (i=((infoheader.width)/2);i<(infoheader.width);i++) {

 temp = ((((readBuffer[(i*3)+2] << 8) | readBuffer[(i*3)+1]) <<
8) | readBuffer[(i*3)]);

 writeaddr = baseaddr+(j*1024+i)*8 -((infoheader.width)/2)*8;

 XIo_Out32(writeaddr, temp);
 XIo_Out32(writeaddr+4, temp);
 XIo_Out32(writeaddr+512*8, temp);
 XIo_Out32(writeaddr+512*8+4, temp);
 }
 } */

 //--
 //RIGHT TOP CORNER

 for (j=((infoheader.height)-1);j>=0;j--) {
 numread = sysace_fread(readBuffer, 1, 1920, infile);
 for (i=((infoheader.width)/2);i<(infoheader.width);i++) {

 temp = ((((readBuffer[(i*3)+2] << 8) | readBuffer[(i*3)+1]) <<
8) | readBuffer[(i*3)]);

 writeaddr = baseaddr+(j*1024+i)*8 -((infoheader.width)/2)*8;

 XIo_Out32(writeaddr, temp);
 XIo_Out32(writeaddr+4, temp);
 XIo_Out32(writeaddr+512*8, temp);
 XIo_Out32(writeaddr+512*8+4, temp);
 }
 }

 //--

 //ORIGINAL
 /*for (j=(((infoheader.height)-1));j>=0;j--) {
 numread = sysace_fread(readBuffer, 1, 1920, infile);

 for (i=0;i<((infoheader.width));i++) {

 temp = ((((readBuffer[(i*3)+2] << 8) | readBuffer[(i*3)+1]) <<
8) | readBuffer[(i*3)]);

 writeaddr = baseaddr+(j*1024+i)*4;
 XIo_Out32(writeaddr, temp);
 }
 }*/

 sysace_fclose(infile);
 return 1;
 } else {
 return 0;
 }
}

/* reads a series of images from CF: "image01.bmp",
"image02.bmp", "image03.bmp", ... */
/* stores each in memory on consecutive 2MB boundaries starting at
IMAGE_BASEADDR up to IMAGE_MAXADDR */
int get_images()
{
 char file[] = "a:\\image01.bmp";
 int baseaddr = IMAGE_BASEADDR;
 int count = 0;
 while(baseaddr < IMAGE_MAXADDR && read_image(file,
baseaddr)) {
 if (file[9] == '9') {
 file[8]++;
 file[9] -= 9;
 } else {

 file[9]++;
 }
 baseaddr += 0x200000;
 count++;
 }
 return count;
}

/* infinite loop that fills fifos and handles button pushing */

void play_video(Xuint32 count) {
 unsigned int j;
 unsigned int temp;
 unsigned int tftptr;
 Xboolean button_n, button_e, button_s, button_w, button_c;
 Xboolean past_button_n, past_button_e, past_button_s,
past_button_w, past_button_c;
 Xboolean paused = 0;
 tftptr = IMAGE_BASEADDR;
 past_button_n = 0;
 past_button_e = 0;
 past_button_s = 0;
 past_button_w = 0;
 past_button_c = 0;
 j = 0;
 while (1) {
 //timing for slideshow change
 j += 1024;
 // auto advance tft
 if ((j % 0x20000000 == 0) && (!paused)) {
 if (tftptr == IMAGE_BASEADDR+0x200000*(count-1))
 tftptr = IMAGE_BASEADDR;
 else tftptr += 0x200000;
 XIo_Out32(TFT_BASEADDR, tftptr);
 //XIo_Out32(TFT_BASEADDR, tftptr+4);
 }

 // check for button pushes
 if (j % 0x10000 == 0) {
 temp = XIo_In32(PUSHB_CWSEN_BASEADDR);
 button_n = (temp >> 0) & (0x00000001);
 button_e = (temp >> 1) & (0x00000001);
 button_s = (temp >> 2) & (0x00000001);
 button_w = (temp >> 3) & (0x00000001);
 button_c = (temp >> 4) & (0x00000001);
 if (button_e && !past_button_e) {

 if (tftptr == IMAGE_BASEADDR+0x200000*(count-1))
tftptr = IMAGE_BASEADDR;
 else tftptr += 0x200000;
 XIo_Out32(TFT_BASEADDR, tftptr);
 }
 if (button_w && !past_button_w) {
 if (tftptr == IMAGE_BASEADDR) tftptr =
IMAGE_BASEADDR+0x200000*(count-1);
 else tftptr -= 0x200000;
 XIo_Out32(TFT_BASEADDR, tftptr);
 }
 if (button_c && !past_button_c) {
 paused = !paused;
 if (paused) LCDPrintString ("Slideshow Paused", "Resume=
Button C");
 else LCDPrintString ("Slideshow Ready ", "VGA Active ");
 }
 past_button_n = button_n;
 past_button_e = button_e;
 past_button_s = button_s;
 past_button_w = button_w;
 past_button_c = button_c;
 }
 }
}

int main()
{
int count;
 #ifdef PPC440CACHE
 XCache_EnableICache(PPC440_ICACHE);
 XCache_EnableDCache(PPC440_DCACHE);
 #endif
 XUartNs550_SetBaud(UART_BASEADDR, UART_CLOCK,
UART_BAUDRATE);
 XUartNs550_mSetLineControlReg(UART_BASEADDR,
XUN_LCR_8_DATA_BITS);

 /* initialize GPIO */
 //XIo_Out32(PUSHB_CWSEN_BASEADDR, 0x00000000);
 //XIo_Out32(GPIO_CONTROL, 0xFFFFFE00);

 /* print directions to LCD screen */
 LCDOn();
 LCDInit();

 /* get images */
 print("\nProgram running.\n\r");

 count = get_images();
 print("\n\rReads done\n\r");
 LCDPrintString ("Slideshow Ready ", "VGA Active ");

 /* set TFT pointer */
 XIo_Out32(TFT_BASEADDR, IMAGE_BASEADDR);

 /* initialize and play video */
 play_video(count); // infinite loop
 #ifdef PPC440CACHE
 XCache_DisableDCache();
 XCache_DisableICache();
 #endif
 return 0;
}

Thank You

