
Project: Head Tracking system

Final Report by:
Uttam Sikaria (08D07042)
Kumar Akarsh (08D07043)
Palash Jhabak (08D07044)

Midsemester report at a glance

Block diagram

Digital Integration and Axis Transformation

We had to integrate the 3-axis acceleration data (gyroscope transformed) to get the 3-axis

velocity values and again do that to get the 3-axis displacement values for tracking the head of

the person, Its current state being defined by the above 6 state variables.

We had a lot of algorithms available for this problem and we studied all of them to reach the

conclusion that we are going to employ the Runge-Kutta integration method. Here is a brief

history of what we methods we considered and thus comparatively studied about their

advantages and problems to reach to our final decision.

 Euler Integration Scheme:

The first algorithm that naturally comes to mind and we try to implement was Euler Integration

method. Here we planned to get integrated values as follows

 ….. Where f(x) is the function to be

integrated

 Or, xn – xn-1 = (xn-1) t ….. Where t is sufficiently small

But there’s a big disadvantage involved in this method is that even a slight error (such as

truncation error) gets accumulated by a exponent of 2 .i.e. error α h2. Thus even very small

truncation errors become unbounded really fast. Thus we discarded this method and decided to

go on with some different one.

 Verlet Integration Scheme:

Here our calculations will be as according

xn = xn-1 + vn-1 t + an-1 t2

vn = vn-1 + 0.5(an + an-1). t

But here also the integrated error is quite high and thus we have to implement some sort of

powerful enough low pass filter to remove the noise. Then we decided to go for the Runge-Kutta

method which turned out to be the most efficient of all of those we tried.

 Runge Kutta method:

The governing equations for the discrete application of Runge-Kutta method are are

 In = In-1 + Xn + 2xn-1 + 2xn-2 + xn-3

The advantage with this method is the error here is an order proportional to h5. Therefore the

total accumulated error is an order of h4. Moreover, It smoothens the curve considerably which

in other methods is quite ‘edgy’ due to discrete samples. Thus we decided to go on with this

scheme of integration as it was sufficiently efficient as far as our specifications were

concerned.

For axis transformation, standard matrix equations for Cartesian coordinate axis

rotation are used

 X Cosα -sinα 0 cosβ 0 sinβ 1 0 0 X”

 Y = Sinα Cosα 0 0 1 0 0 cosγ -sinγ Y”

 Z 0 0 1 -sinβ 0 cosβ 0 Sinγ cosγ Z”

ADC conversion

We chose the microcontroller ATMEGA 16 for our application because it had 10 bit resolution

.i.e. a precision of an order of 2-10 i.e. 0.00097656 which was more than enough for our case.

Moreover the processing speed of atmega 16 is decent enough for our application.

The steps involved for A/D conversion are as follows –

- Initialising the ADC registers ADMUX with the value 0b00000000 and the register ADSCRA

with 0b10000111

- Put the channel value in ADMUX.

- Start conversion by setting ADSC bit for conversion.

- Monitor the ADIF bit for checking if the conversion is complete.

- Clear the ADIF bit by writing 1 to it.

- A/D converted result is now available in ADCH and ADCL registers with alignment as

decided during the initialization

Hardware:

 ATMEGA16 Microcontroller alongwith MMA7341LC accelerometers and ITG-3200
gyroscope

 Data communication with serial port

Accelerometers and Gyroscope

 Turned out to be the rate determining part of the progress of the project

 Noise and sensitivity of the accelerometer was being characterized but it broke
down and could not be used further

 Halted the project a crucial step

 Pin diagram of MMA7341LC accelerometers
Range of acceleration in each of the three
directions = 3g

Sensitivity: 440mv/g

Output capacitors of 3.3nF at each output for
low pass characteristic so as to filter the noise.
This corresponds to output bandwidth of
1507Hz and is minimum requirement to filter
out clock noise

0.1uF capacitor between Vss and Vdd

g-select low refers to 3g range – desired range
(high refers to 11g)

 What we learnt:
o Accelerometers of cheap range are noisy and need to mounted in specific

format to reduce jitters. One of the requirements is to provide a ground
plane at the base of the accelerometer

o Accelerometers and Gyroscope pose two major problems:
 Offset in output: This is easy to handle as mean offset at each

value can be experimentally determined and subtracted from the
output during the use

 Ramp in offset: The above solution would be ideal if the offset
remained constant but as it happens, the devices suffer from a
ramp offset which is difficult to easy to characterize through
experiments but robustness in eliminating the same is a little
difficult

o Solution to both the above problems lie in initial calibration of the devices
at the start of every run. The following tests were devised for the
accelerometer:

 Rest: The device was kept at rest and the outputs were observed.
This helps is finding out the ramping offset

 Motion: The device is moved one by one along each axis, steadily in
the front and backward direction. From the data obtained, ramp in
first test is subtracted. Owing to steady movement, a constant
acceleration should result and output should so be more or less
constant

 Rest test was completed succesfully:
X and Y: ~1.6V offset, ramp ~1mv/sec

Z: ~1.6V offset with ramp ~1mv/sec
 For the purpose of the test, a setup of Arduino UNO board for ADC

and serial communication and MATLAB for monitoring the data was
used. This way, live observation of the digital data could be done.

Experimental values (Testing done using ADXL 335)

• To get the feel of the for of the output we get from the accelerometer.
• Noise characterstics and hence implement noise reduction filter.

Testing done using ADXL 335

Typical Frequency response.

Xout, Yout – 1600Hz
Zout – 550Hz

Cutoff

Z-1000Hz - .0047 uF = 4.7pF
X,Y – 2000Hz - .0027uF = 2.7pF

Vss = 3V

maximise rating from -0.3V to 3.6V

ST pin

Self-test – if given Vs, to internal electrostatic force.

Xout - -3.25mV (-1.088)
Yout - +325mV (+1.088)
Zout - +550mV (1.838)

If not to be self-tested , leave it open or connect it to GND.

Test

ST pin high

Xout – 1.2V
Yout – 1.8V
Zout – 2.2V

ST low (0g)

Xout – 1.5V
Yout -1.5V
Zout-1.8V

Now, we plan to implement

-subtractor circuit
-integrator twice to set point
-after moving again to same place , it should come put to be close to zero.

Codes Used

#include <avr/io.h>

#include <inttypes.h>

#include <math.h>

typedef unsigned int type; // we can change from unsigned int to float

or whatever

type h = 0.01; // h = t(n)-t(n-1) i.e the time difference between

two consecutive samples

type fun(type t, type y);

type runge_kutta(type yn, type tn);

void ADC_init(void);

type ADC_read(unsigned char ch);

void USARTInit(uint16_t ubrr_value);

type USARTReadInt();

void USARTWriteChar(type data);

float transform (type alpha, type beta, type gamma);

void matrix_multiply (float *matrix1, float *matrix2, float

*matrix, int m, int n, int p) ;

void main()

{

 type I_current[9]={0,0,0,0,0,0,0,0,0};

 type I_previous[9]={0,0,0,0,0,0,0,0,0};

 type buffer[9][4]={0,0,0,0,

 ` 0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0};

 float * temp1 ;//[3][3] for holding the transformation matrix

 type * temp2 ;//[3][1] for holding the pre-transformed values

 type * temp3 ;//[3][1] for holding the post-transformed values

 unsigned char i=0;

 unsigned char j=0;

 int k=0;

 ADC_init();

 while (1)

 {

 for (j=0;j<=5;j++)

 {

 for (i=3;i<=1;i--)

 {

 buffer[j][i]=buffer[j][i-1];

 }

 buffer[j][0]=ADC_read(j);

 if (j<3)

 {

 temp2[j]=buffer[j][0];

 }

 }

 for (m=3;m<=5;m++)

 {

 I_current[m]=runge_kutta(I_previous, buffer,m);

 I_previous[m]=I_current[m];

 }

 temp1 = transform(I_current[3], I_current[4],

I_current[5]);

 matrix_multiply (temp1, temp2, temp3, 3, 3, 1); // type

conversion to be taken care of

 // now the temp3 array contains the gyro transformed

acceleration data

 for (m=0; m<3; m++)

 {

 buffer[m][0]= temp3[m];

 }

 for (k=0;k<=2;k++)

 {

 I_current[k] = runge_kutta(I_previous, buffer,k);

 I_previous[k]=I_current[k];

 for (i=3;i<=1;i--)

 {

 buffer[k+6][i]=buffer[k+6][i-1];

 }

 buffer[k+6][0]=I_current[k];

 }

 for (m=6; m<=8; m++)

 {

 I_current[m]=runge_kutta(I_previous, buffer,m);

 I_previous[m]=I_current[m];

 }

 // send x,y,z,vx,vy,vz to output port one by one

 USARTInit(103);

 for(m=0; m<9; m++)

 {

 if(m==3||m==4||m==5) continue;

 USARTWriteChar(I_current[m]);

 USARTWriteChar(0x00);

 }

 }

}

type runge_kutta(type *I_previous, type *signal, int j)

{

 type next;

 next= I_previous[j] +

(signal[j][0]+2*signal[j][1]+2*signal[j][2]+signal[j][3])/6.0;

 return next;

}

void ADC_init(void) // Initialization of ADC

{

 //ADMUX=(1<<REFS0); // AVcc with external capacitor at AREF

 // no change in ADMUX for external Vref

 ADCSRA=(1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);

 // Enable ADC and set Prescaler division factor as 128

}

type ADC_read(unsigned char ch)

{

 ch= ch & 0b00000111; // channel must be b/w 0 to 7

 ADMUX |= ch; // selecting channel

 ADCSRA|=(1<<ADSC); // start conversion

 while(!(ADCSRA & (1<<ADIF))); // waiting for ADIF, conversion

complete

 ADCSRA|=(1<<ADIF); // clearing of ADIF, it is done by writing

1 to it

 return (ADC);

}

float* transform (type alpha, type beta, type gamma)

{

 float result [3][3], result_updated[3][3];

 float matrix_alpha[3][3]={ cos(alpha), -sin(aplha), 0,

 sin(alpha), cos(aplha), 0,

 0 , 0 , 1 };

 float matrix_beta[3][3]={ cos(beta), 0 , sin(beta),

 0 , 1 , 0 ,

 -sin(beta), 0 , cos(beta) };

 float matrix_gamma[3][3]={ 1 , 0 , 0

 0 , cos(gamma) , -sin(gamma),

 0 , sin(gamma) , cos(gamma)};

 matrix_multiply(matrix_alpha,matrix_beta,result,3,3,3);

 matrix_multiply(result,matrix_gamma,result_updated,3,3,3);

 return(result_updated);

}

void matrix_multiply (float *matrix1, float *matrix2, float

*matrix, int m,int n, int p)

{

 for (int i=0;i<m;i++)

 {

 for (int j=0;j<p;j++)

 {

 matrix[i][j] = 0;

 }

 }

 for (int i=0;i<m;i++)

 {

 for (int j=o;j<p;j++)

 {

 for (int k=0;k<n;k++)

 {

 matrix[i][j]=matrix[i][j]+matrix1[i][k]*matrix2[k][j];

 }

 }

 }

}

void USARTInit(uint16_t ubrr_value)

{

 //Set Baud rate

 //UBRR|= ubrr_value;

 UBRRL = ubrr_value;

 UBRRH = (ubrr_value>>8);

 /*Set Frame Format

 >> Asynchronous mode

 >> No Parity

 >> 1 StopBit

 >> char size 8

 */

 UCSRC=(1<<URSEL)|(3<<UCSZ0);

 //Enable The receiver and transmitter

 UCSRB=(1<<RXEN)|(1<<TXEN);

}

type USARTReadInt()

{

 //Wait untill a data is available

 while(!(UCSRA & (1<<RXC)))

 {

 ;//Do nothing

 }

 //Now USART has got data from host

 //and is available in buffer

 return UDR;

}

//This fuction writes the given "data" to

//the USART which then transmit it via TX line

void USARTWriteChar(type data)

{

 //Wait untill the transmitter is ready

 while(!(UCSRA & (1<<UDRE)))

 {

 //Do nothing

 }

 //Now write the data to USART buffer

 UDR=data;

}

