Thus: As $\#\text{iterations} \to \infty$, $\varepsilon_{\text{MAP}} \leq 0.4885 = \text{MAP threshold for (3,6)-code}$

To get the best bound, look for a fixed point:

$$x = f(\varepsilon, x), \text{ where } x_{t+1} = \varepsilon \left(1 - (1 - x_t)^{r-1}\right)^{\ell-1} = f(\varepsilon, x_t)$$

$$\varepsilon(x) = \frac{x}{(1 - (1 - x)^{r-1})^{\ell-1}}$$

So, we could study the limiting curve $(\varepsilon(x), x)$.

More appropriately, study $O(\varepsilon(x), (1 - (1 - x)^{r-1})^\ell)$

Another fact: the area also has area = rate of the code.
1 + l(r-1) variable nodes.
l constraints.
So 1 + l(r-2) free variables = #degrees of freedom.

Natural channel at root: \(\varepsilon(x) \)
Natural channel at previous level: \(x \)

Area A:

\[
A + Bl(r-1) = 1 + l(r-2).
\]
\[B = \frac{r-1}{r} \]

Solving, we get \[A = 1 - \frac{d}{r} \] - rate of the code.

These ideas generalize to irregular LDPC codes to spatially coupled codes.

\[y = \left(1 - (1-x)^{r-1} \right)^{\frac{1}{r}} \]

Want to argue that \(z_1 = z_2 \).

Spatially coupled codes analysis.

Take each edge and retain or switch with equal probability.

Then connect uniformly to equivalent node up to depth \(w \) to the right.
Protograph:

Before:
\[X_0 = \varepsilon \]
\[X_L = f(\varepsilon, X_{L-1}) = \varepsilon (1 - (1 - X_{L-1})^{r-1})^{l-1} \]

Now:
\[X_0^{(i)} = \varepsilon ; \quad i = -L \text{ to } L \]
\[X_t^{(i)} = f(\varepsilon, X_{t-1}^{(i)}, \ldots, X_{t-1}^{(i+w-1)}, X_{t-1}^{(i-1)}, X_{t-1}^{(i-w+1)}) \]