Design and Development of Smart-Multi-Port Fault-Tolerant High Efficiency Converter System

Prof. Anshuman Shukla

ashukla@ee.iitb.ac.in

https://www.ee.iitb.ac.in/wiki/faculty/ashukla

Department of Electrical Engineering
IIT Bombay
Intermittent nature of renewable sources: PV, Wind, etc.

Significant developments in battery technology

Power density and efficiency: Need of the hour

A typical high-frequency interface provides high efficiency, high power density and enhanced control for the integration of source and load

In case of more than one source, a multi-port system offers all-in-one type solution

Project Motivations

In the process of switching to renewable sources, multi-port configuration offers an effective way to achieve enhanced performance with required sustainability.
Multi-port systems:

- Compact and highly efficient systems
- Offers higher controllability, improved integration and increased reliability of supply
- These can be categorized based on the type of main bus as:
 - DC coupled configurations
 - AC coupled configurations

Project Motivations
Objectives:

- Design and development of a smart-multi-port high frequency interface
- Design and implementations of high frequency converters
- Design of multi-port transformer to integrate:
 - PV inverter
 - Battery interfacing bidirectional converter
 - Grid interfacing converter
 - Additional dc-ports for local loads
- Performance evaluation of multi-port configuration with existing as well as newly developed converter prototypes
- Implementation of complete system with respective source and load characteristics
- On-site implementation of the developed multi-port system
Multi-port High Performance Systems

- Multi-port systems are the emerging solutions for various applications such as solid state transformer, electrical vehicles, grid integration systems, micro-grid solutions, Aviation systems, etc.

Enabling technology

Multi-port configuration leads to more compact and highly efficient system.
Preliminary work at IITB

Multi-level high frequency DAB converter prototype

Transformer

Leg-1

Leg-2

Leg-3

Primary

Secondary

Designed for 10 kHz, 2.5 kW

ML-DAB converter test results with five-levels for reduced dv/dt

Indigenously developed highly efficient SiC-based converter prototypes

E-HANPC converter

Other DAB setups

TWT-ADAB

MT-ADB

S-HANPC converter

SiC MOSFETs

Si IGBTs

Isolated gate drivers

Film capacitors

clamp space for current measurements

S1

S5

S2

S3

S6

S4

clamp space for current measurements

SiC MOSFETs

Isolated gate drivers

Film capacitors

S1

S5

S2

S3

S6

S4

SiC MOSFETs

Si IGBTs

Isolated gate drivers

Film capacitors

S1

S5

S2

S3

S6

S4

SiC MOSFETs

Si IGBTs

Isolated gate drivers

Film capacitors

S1

S5

S2

S3

S6

S4

SiC MOSFETs

Si IGBTs

Isolated gate drivers

Film capacitors

E-HANPC converter

Designed for 10 kHz, 2.5 kW
Learning outcomes and achievements

- **Learning outcomes:**
 - Control aspects for various converter configurations
 - System design and integration
 - Converter topology and analysis
 - Reliability issues
 - Performance evaluation methods
 - Hardware implementations

- **Expected achievements:**
 - Development of new converter topologies
 - Proposal of novel control schemes
 - System understanding
 - Industry collaboration
 - Design methodologies and system understanding
 - Publications and patents
Thank you