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In this paper we discuss the subtleties regarding stability of dynamical 

systems (mainly stochastic). For our analysis we will look at discrete time 

systems i.e. Discrete Time Markov Chain (DTMC) analysis. We will also 

investigate into some other famous results and techniques like 

martingales and their connection to Lyapunov Stability. We will 

throughout also discuss the proofs of some of these results. 
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I. INTRODUCTION 
 

Existence and uniqueness (also convergence) of a stationary solution to a stochastic 

dynamical system has been at the centre of study for many years. Although there 

exist many results for stability in specific cases we would like to present here a 

general result known as Lyapunov’s Theorem which will be a sufficient condition. 

For this we will also introduce the concept of drift. We will prove it using a method 

similar to martingales difference sequence. Because of large number of systems that 

may be stable finding a necessary condition maybe more difficult.  Even before we 

begin we must note that although we have a sufficient condition in our hands, 

concluding stability is still not an easy problem mainly because a sufficient 

condition still requires us to find appropriate Lyapunov function which barring a 

few basic cases is still quite difficult. 
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We will also visit some other famous results used in queueing theory including 

results for G/G/1 queue. We take a look at other stability techniques like Fluid 

models. At the end we discuss about martingales themselves. 

 

II. FORMALISM 
 

In here we will first look at the relevant definitions  

 

Preliminaries 
 

Whenever we talk of equations for stochastic processes we generally talk about both 

sides being equal along most sample paths or being equal in probability or 

distribution, in this regard we state the following definition, 

Almost Sure Convergence: 

   
   
→                                     ({         

   ( )   })    

Similarly we can also have convergence in probability or simply distribution. Note 

that such convergences are weaker than almost sure convergence. 

The concept of stationarity is one of the most helpful while analyzing stochastic 

processes because if the system is proved to converge towards a stationary system 

then analysis over large times can simply be performed on the stationary 

equivalent, which would be easier. Definition is as follows, 

A process *  +    is stationary iff joint distribution of any collection of Random 

Variables from the process is invariant of uniform shift in its argument, i.e.  

           
(        )             

(            )             

In our case a stationary solution would mean the existence of a stationary 

distribution π on S such that  

     ̅ 

where   is the state transition matrix. 
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Basic setup and some more definitions 
 

We would be studying a DTMC *  + with values in a general state space S (which is 

assumed to be a completely separable metric space), defined by  ̅, the state 

transition matrix. Also worth noting is that whenever the state space is finite we can 

represent the DTMC as a recurrence relation. 

Drift, is defined as the expected change in the state of the Markov chain as 

enumerated by an appropriate increasing function, let       be map numbering 

all possible states and let        be a function (the Lyapunov Function) on the 

state space, then the drift can be defined as  

  (   )     , (  ( ))   ( )- 

And for a simple function like  ( )   , we get an n-step drift which is  

  (   )    , (  )   (  )     - 

Positive recurrence, a measurable set     is said to be recurrent if expected time of 

return to the set is finite w.p. 1. 

       *         + is minimum time of return and for the set B to be positive 

recurrent we must have   

   
   
  (  )     

 

III. STATEMENT AND PROOF 

 

In this section we will state two versions (basic and generalized) of Lyapunov 

theorem for stability of DTMC. We will be using definitions from previous section. 

We will prove them and also discuss a few things about Lyapunov Theorem. The 

method of the proof will tell us a lot about the techniques one can use for proving 

stability. 
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BASIC LYAPUNOV THEOREM 

For        positive constants, if we have 

  (   )                           ( )     

and               (   )                           ( )      

then the set   *   ( )    + is positive recurrent. 

 

Now we discuss the assumptions and why they are necessary for generalized 

Lyapunov theorem. 

Assumptions  

A1. V is unbounded from above:         ( )    

A2. h is bounded from below:         ( )     

A3. h is eventually positive:      ( )   ( )    

A4. g is locally bounded from above:  ( )      ( )   ( )           

A5. g is eventually bounded by h:      ( )  
 ( )

 ( )⁄    

 

GENERALIZED LYAPUNOV THEOREM 

Let            *      (  )   +  

If      (   )    ( ) 

Then there exists    such that              and any     then the set 

   *      ( )   + is positive recurrent.   

 

Proof:  

 

We will do the proof for the generalized case and basic theorem will follow.  
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The assumptions can all be justified as we go along with the proof (except A5 which 

will be discussed later).  

As  (  ) will come out of the expectation in the drift condition we can see that 

 ( )   ( )            , thus we decide to choose    such that     ( )    ( )   . 

Then for all     , we can set 

     
 ( )  

  
 ( )

 ( )
                         

   
 ( )                            

 ( )  
 ( ) 

We will now define stopping times (increasing sequence), recursively,  

                  (     )        

Clearly the sequence        forms a Markov Chain (Strong Markov Property). 

From the definition of  , and the drift condition we easily prove by induction on n, 

   (    )     (  )   , hence we can see that      (  )             . We define 

another stopping time as follows 

      *     (  )   +     

Note that   is defined so that  (   )        (where      is the (   )   filtration 

generated by            ) i.e.  we can decide about its indicator function just by 

looking at the past of the process and there is no need for any information from the 

future.  

So now we have      (a.s) and hence proving that        is sufficient.  

Let’s define a cumulative energy, between           by 

   ∑ (  )

   

   

 ∑ (  )

 

   

 (   ) 

And estimate the change   (     ) as follows 

  (     )    ∑  ( (  )

 

   

 (   )       ) 

 

   ∑ (   )   ( (  )

 

   

       ) 
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   ∑ (   ) ( (    )

 

   

  (    )) 

   ∑ (     )  (    )

   

   

   ∑ (    )

 

   

 

                  (  )     ∑ (  )  (   )

   

   

 

Here we have used  ( )   ( )   , and also that the indicator function increases 

when we change         . Now we finally have from above 

  ∑ (  )  (   )

   

   

     ( ) 

For  ( )    we have  (  )            (definition of  ). So, 

  (  )                      

(this from definition of  ). So we obtain from above two equations that 

    ∑ (   )

 

   

     ( )      

So we have 

          ( )        

Now using the fact that  ( )     ( ) for  ( )    we can write 

∑ (  )

   

   

   ∑ (  )

   

   

      

Where      (   ) and so  

         
 ( )     

  
 

hence proved. 

For the other case also we can show by conditioning on   . PROOF IS COMPLETE. 
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Assumption: A5 

We can construct a case of forward transition with only backward transition 

possible to state 1 (with probability   ⁄  if you are in state  ) then expected time of 

return will still be  , but we can satisfy conditions in the Lyapunov Theorem by 

taking  ( )     (   )             ( )      we can see that  ( )     ( )     (for 

appropriate constants) will satisfy the drift condition and yet M.C. is not positive 

recurrent. 

 

Other words about Lyapunov theorem: 

Lyapunov drift for network stability is first used for multi-hop networks, and for 

opportunistic downlink scheduling. Related quadratic Lyapunov functions are used 

to make stability and delay claims for     packet switches and multi-hop mobile 

networks. Non-quadratic Lyapunov functions can sometimes be used to make 

modified or improved statements about delay. Alternative Lyapunov functions via 

queue groupings can often lead to improved complexity and/or delay bounds.  

 

IV. Special Cases 

 

(i) Pake’s Lemma    

 

Statement: If we have  ( )         and if       such that 

 

 , (    )    (  )       -           

 

for all x except on a finite set C, then *  +  is positive recurrent.  

 

To prove this we can take S as   and consider one step drift i.e.  ( )    and 

 ( )       * ( )   + in Generalized Lyapunov Theorem. 

 

 

(ii) Foster – Lyapunov Criteria   
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For this we will have S as general and  ( )    and  ( )       ( ( )    ), 

where the constants come from the proof. 

 

 

(iii) Meyn – Tweedie Criteria – Here we would take  

 

 ( )   ( )     * ( )   +  

 

 

(iv) Dai’s Criteria (Fluid Limits Criteria) – Here we would take  

 

 ( )          , ( )-  and    ( )     ( )     * ( )   + . 

 

V. EXAMPLES AND MORE TECHNIQUES 
 

 Martingales 

Martingales play a role in stochastic processes similar to that played by conserved 

quantities (sometimes called first integrals) in dynamical systems. Unlike a first 

integral of a dynamical system, which remains constant in time, a martingale’s value 

can change; however, its expectation remains constant in time. More important, the 

expectation of a martingale is unaffected by optional sampling. This can be used as a 

provisional definition: A discrete-time martingale is a sequence *  +    of real (or 

complex) random variables satisfies 

         

for every bounded stopping time  . 

 

Definition 
 

Let *  +    be an increasing sequence of            in a probability space 

(     ). They are called filtrations. For *  +    , a sequence of real-valued random 

variables with the property that for each   the random variable    is measurable 

relative to   . This would mean that each of the    are some function of            
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(some sequence whose cumulative           is   ). Then the sequence    is 

martingale if for every   we have, 

 (         )   (  ) 

 

The most common example of a martingale is the sequence of partial sums of zero 

mean independent random variables, where we can show that if    ∑   
 
  , then 

the sequence *  + will be martingale w.r.t              (filtrations generated by it), 

where we can see 

 (         )   (           ) 

  (      )   (        ) 

     (        ) 

    

 

St. Petersburg’s Game (Paradox) 

This is a famous problem (one may have encountered it in the book Gambler by 

Fyodor Dostoevsky) in which a gambler must maximize his/her profit by choosing 

to wager an amount    in the     instance, assume the outcome is binary  in each 

instance                              (with equal probability, i.e. fair game). 

Decisions about the wager each time,    ,can be made by looking at all previous 

results i.e.             but not    (or later). Then (assuming we bet on heads 

every time we bet because it’s a fair game) what we wish to maximize is 

   (   )  ∑    

 

   

 

the net winnings in   games where              .  

The result that we can prove from here is that Martingale transforms like this are 

martingales themselves because    are bounded and thus this transform is 

martingale relative to filtrations generated by   . We can see that 

 ((   )         )  (   )   (              )  

 (   )       (          ) 
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 (   )  

 

 Maximal Inequality for Super-Martingales 

We consider a simple example of a person A, starting with Rs. 100 and wanting to 

maximize his/her probability of winning a total of Rs. 200. A simple way is to wager 

all the money in the first bet and win a total of Rs. 200 with probability 0.5, what we 

are interested in is finding whether he/she can have a strategy which will give them 

more than 0.5 probability of winning Rs. 200. The answer turns out to be No and we 

can use maximal inequality for martingale transforms in the above setting to show 

this, 

       ∑     
 
    are the total winnings in   steps, since    is a martingale and 

each of      we can use the inequality  

 (   
   

    )  
   
 

 

Here we will      as Rs. 100 and if we set       then we can see the result 

straighaway. 

 

 Fluid – Queue Model & Fluid Limits 

 

The stochastic-process limits are also called fluid limits because the limit processes 

are deterministic functions of the form     for some constant  . 

For the fluid model we will consider queueing equation 

  ( )   ( )   ( )  ∑    ( ) 
    and write down corresponding fluid equation as  

  ( )    ( )     ∫    ( )

 

   

   

 

where each term represents the usual arrival process and scheduling and users in 

system. We have changed from discrete to continuous. 
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Fluid Stability Theorem: If                 
 ( )              then the system is 

stable. 

Example: Consider a 2 queue system with scheduling policy to serve the longer 

queue then we have 

  ( )    ( )    (   )   ∑ (  (   )    (   ))

 

   

 

  ( )    ( )    (   )   ∑ (  (   )    (   )   (   )   )

 

   

 

And now consider the scaled sytem by  , also take   
 ( )    

 ( )    so that 

system’s initial condition are scaled analogously. We will have 

  
 (  )

 
 
  
 ( )

 
 
  (    )

 
  
 

 
∑ (

  
 (   )

 
 
  
 (   )

 
)

  

   

 

  
 (  )

 
 
  
 ( )

 
 
  (    )

 

  
 

 
∑ (

  
 (   )

 
 
  
 (   )

 
 

  
 (   )

 
  )

  

   

 

For ergodic queues take     and from SLLN the limits should exist and we would 

have, 

  
 ( )    

 ( )      ∫  (  
 (  )    

 (  ))
 

 

   

  
 ( )    

 ( )      ∫  (  
 (  )    

 (  )   
 (  )    )

 

 

   

If         then              
 

       
 we will have   

 ( )    
 ( )   , for we 

can see 

   
   

(
  
 (   )    

 (   )

 
)

 

   

So we have                       

 (  
 (   )    

 (   ))  (   )                
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This implies 

 (  
 (   )    

 (   )   )           

This gives a Lyapunov Equation for   ( ). END OF PROOF. 

 

This technique can also be applied to many other types of networks like 1-station or 

2-station Jackson Networks, Kelly Network, Multiclass Queues to deduce basic 

conditions on stability.  

 

 G/G/1 Queue  

 

This is the Single-server queue with first-in-first out discipline and with a general 

distribution on the sequences of inter-arrival and service times. Customers are 

numbered            . We assume that customer   arrives to a system at time 

      and finds there an initial amount of work, so has to wait for    units of time 

for the start of its service. Let    be the time between     and       arrivals and let 

   be the service time of     customer and let    be the waiting time in the system 

(time between arrival and start of service) for     customer. Then the sequence 

*  + follows the Lindley’s Equations, 

     (            )
  

We can again use Lyapunov function which is or any other approach (like Spectral 

Analysis) to conclude stability of this recursion whenever expected service time is 

lesser that expected inter-arrival time. 

 

VI. RESULTS AND DISCUSSIONS 
 

From all of the above we have found out that Lyapunov Theorem is a generalized 

theorem and can be used to find conditions of stability in many different types of 

queues like Lindley’s Recursion, Jackson Network, Kelly Network and many more. We 

also went through fluid limits. Fluid limits can also handle the stability problem as 

we saw and they make use of Lyapunov functions for proving optimality as well. 

Martingales provide yet another method to handle series summations and provide 

bounds on their expectations.  
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