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Abstract
In this paper we present a general approach for the design
of LeGall’s 5/3 linear phase perfect reconstruction filter-
bank. Using our generalized approach, we can design
the 5/3 filters with the coefficients having different finite
wordlengths (precision) - thus this can be seen as a gener-
alization of the LeGall 5/3 filters. We construct design ex-
amples with the filters having different wordlengths, and
also analyze the frequency characteristics of the designed
filters.

1. Introduction
Filter-banks with the filters having finite precision (or
wordlength) coefficients are desirable for reducing the
cost of implementation and/or the speed of computations
[4]-[7]. With finite precision coefficients, the issue of co-
efficient quantization is totally eliminated, and thus per-
fect reconstruction can be achieved in practical imple-
mentations (something which is impossible or difficult
when the filters have infinite precision coefficients).

In [2], short kernel biorthogonal perfect-
reconstruction filter-banks are constructed with the
filters having finite precision coefficients. The 5/3
filter-bank constructed in [2] (with the analysis lowpass
and highpass filters having length of 5 and 3 taps
respectively) has been used in the JPEG2000 image
compression standard (particularly for the lossless
compression mode), The 5/3 analysis filters as designed
in [2] are as follows
H0(z) = 1

8
(−1 + 2z−1 + 6z−2 + 2z−3

− z−4)
H1(z) = 1

2
(1 + 2z−1 + z−2)

As can be seen, the coefficients of the LeGall 5/3 filters
can be expressed in 5 bit precision. It is not easy to mod-
ify the polynomial factorization design approach of [2] if
we wish to design 5/3 filters with a different precision.
In this paper we present a generalized approach for the
design of 5/3 filter-banks, so that we can design the 5/3
filters with different precision. The paper is organized
as follows: In Section II, we briefly review the perfect-
reconstruction conditions for bi-orthogonal filter-banks,
and also review the design approach of [2]. In section
III, we present our generalized approach for designing
5/3 filters. In section IV we present design examples,

and also analyze the frequency responses of the designed
finite-precision filters. Section V summarizes the results
of the paper.

2. Perfect reconstruction short kernel filter
banks

Perfect reconstruction filter banks have been extensively
studied [1], [3]. A polynomial factorization approach to
the design of perfect reconstruction filter-banks was pro-
posed in [2]. where the filters are derived by a factoriza-
tion of a symmetric product polynomial. In this section
we review the approach of [2].

Figure 1: Block diagram of two band filter bank

Fig. 1 shows the two channel filter bank. The output
of the filter bank as shown in Fig. 1 can be expressed as

Y (z) = 1/2[G0(z)H0(z) + G1(z)H1(z)]X(z)

+1/2[G0(z)H0(−z) + G1(z)H1(−z)]X(−z)

where X(z) is the input signal and Y(z) is the recon-
structed output signal. Necessary and sufficient condi-
tions for perfect reconstruction are

H0(z)G0(z) + H1(z)G1(z) = Cz−D (1)

H0(−z)G0(z) + H1(−z)G1(z) = 0 (2)

We shall choose C = 2 to generalize from [2]. Equation
(1) gives the constraint for perfect signal reconstruction
and equation (2) gives the constraint for alias cancela-
tion. The constraint in (2) can be satisfied by the follow-
ing choice of the synthesis filters

G0(z) = H1(−z), G1(z) = −H0(−z) (3)



Le Gall’s approach [2] consists of designing a poly-
nomial P(z) that satisfies the condition ∆z = P (z) −

P (−z) = 2z−m , where P (z) = H0(z)H1(−z) . Then
the polynomial P(z) can be factorized to obtain the anal-
ysis filters. The finite precision 5/3 filters are obtained
in [2] by factorization of a particular choice of P(z). Our
aim in this paper is to construct different sets of 5/3 filters
using a different approach.

3. Generalized approach to design of 5/3
filters

Our approach for designing 5/3 filters consists of start-
ing with a parametrised set of symmetric (linear phase)
functions, and then deriving constraints on the parame-
ters which are imposed by the PR equations. Thus, we
finally arrive at an independent set of parameters, which
can be independently varied to construct different cases
of 5/3 filters.

By replacing z by -z in equation(1) and (2), we get
the following set of equations, which can be viewed as
the constraints required for perfect-reconstruction.

H0(z)G0(z) + H1(z)G1(z) = 2z−D (4)

H0(−z)G0(z) + H1(−z)G1(z) = 0 (5)

H0(z)G0(−z) + H1(z)G1(−z) = 0 (6)

Assuming symmetry/linear phase, we can express the fil-
ters as follows:

H0(z) = a0 + a1z
−1 + a2z

−2 + a1z
−3 + a0z

−4 (7)

H1(z) = b0 + b1z
−1 + b0z

−2 (8)

G0(z) = c0 + c1z
−1 + c0z

−2 (9)

G1(z) = d0 + d1z
−1 + d2z

−2 + d1z
−3 + d0z

−4. (10)

We note that we do not assume the relation of
equation-3.

Now eliminating G1(z) from equation (4) and (5), we
get

H0(z)G0(z) −
H1(z)H0(−z)G0(z)

H1(−z)
= 2z−D

or

G0(z) × [od(H0(z)H1(−z))] = z−DH1(−z) (11)

where od() denotes only the odd power terms of the given
polynomial.

Substituting equations (7)-(10) in the above equation,
we obtain

(c0 + c1z
−1 + c0z

−2)[od(a0 + a1z
−1 + a2z

−2 + a1z
−3 +

a0z
−4)(b0 − b1z

−1 + b0z
−2)]

= z
−n(b0 + b1z

−1 + b2z
−2)

or,

(c0 + c1z
−1 + c0z

−2)[z−1(a1b0 − a0b1) + z
−3(2a1b0 −

a2b1) + z
−5(a!b0 − a0b1)]

= z
−n(b0 − b1z

−1 + b2z
−2)

Simplification and comparison of coefficients results
in the following possibility:
D = 3
a1b0 = a0b1

and, (2a1b0 − a2b1)c0 = b0

also, (2a1b0 − a2b1)c1 = −b1.
These equations further results

b1

b0

=
−c1

c0

=
a1

a0

= k(say) (12)

and, a2 = 2a1b0

b1
−

b0

b1c0
which results in

a2 = 2a0 −

1

kc0

. (13)

To obtain the relation between coefficients of G1(z),
eliminate H0(z) from equation (4) and (6) to obtain

G1(z)H1(z) −
G1(−z)H1(z)G0(z)

G0(−z)
= 2z−3

or,

(G1(z)G0(−z) − G0(z)G1(−z))H1(z)

= 2z−3(G0(−z))

or,

H1(z)od[G1(z)G0(−z)] = z−3G0(−z) (14)

Now putting the values of polynomials from equation (7)-
(10) in the above equations we get

(b0 + b1z
−1 + b0z

−2)[od(d0 + d1z
−1 + d2z

−2 + d1z
−3 +

d0z
−4)(c0 − c1z

−1 + c0z
−2)]

= z
−3(c0 − c1z

−1 + c0z
−2)

or,

(b0 + b1z
−1 + b0z

−2)[z−1(d1c0 − d0c1) + z
−3(2d1c0 −

d2c1) + z
−5(d1c0 − d0c1)]

= z
−3(c0 − c1z

−1 + c0z
−2).

Comparing the coefficients of the above identity we
get the following d1c0 − d0c1 = 0
b0(2d1c0 − d2c1) = c0

b1(2d1c0 − d2c1) = −c1

which further results in

−d1

d0

=
−c1

c0

= k (15)

and, d2 = 2d1c0

c1
−

c0

c1b0
or,

d2 = 2d0 +
1

kb0

. (16)



Using the relation between the coefficients found from
equations (12)-(15),we express every filter in terms of it’s
z0 coefficient.
Finally the filter bank is given as

H0(z) = a0+a0kz
−1+

(

2a0 −

1

kc0

)

z
−2+a0kz

−3+a0z
−4

(17)
H1(z) = b0 + b0kz

−1 + b0z
−2 (18)

G0(z) = c0 − c0kz
−1 + c0z

−2 (19)

G1(z) = d0−d0kz
−1+

(

2d0 +
1

kd0

)

z
−2

−d0kz
−3+d0z

−4
.

(20)
The above filter bank is derived from equations (11) and

(14) which are derived from the necessary and sufficient
conditions for perfect reconstruction. If all the conditions
obtained from equation (17) to equation (20) are put back
in equation (1), then it produces another restriction for
filterbank design

d0 = −

a0c0

b0

. (21)

The above restriction leaves 4 degrees of freedom in the
design.The system determined by equation(17) to equa-
tion (20), alongwith the restriction as given in equa-
tion(21), gives a general four variable(a0,a1,b0andc0)
system for the 5/3 filter bank.

4. Design Examples of finite-precision 5/3
filters

As shown in section III, we can derive different sets of
5/3 filters by choosing different values for the parameters
in equation(17) to (20). In this section, we construct de-
sign examples of 5/3 filters by choosing the parameters in
(17)-(20) such that the filter coefficients have finite preci-
sion (with different wordlengths, based on the choice of
the independent parameters).

The following table shows the design examples of fi-
nite wordlength filters. Also shown is the choice of the
parameters in (17)-(20) which has been used to construct
the filters.

Sr. Bits Parameters Filter Coefficient
1 2-bit a0 = −0.5 H0 = [−.5 .5 1 .5 − .5]

a1 = 0.5 H1 = [−.5 .5 − .5]
b0 = −0.5 G0 = [.5 .5 .5]
c0 = 0.5 G1 = [−.5 − .5 1 − .5 − .5]

2 3-bit a0 = −0.25 H0 = [−.25 .5 .5 .5 − .25]
a1 = 0.5 H1 = [−.5 1 − .5]
b0 = −0.5 G0 = [.5 1 .5]
c0 = 0.5 G1 = [−.25 − .5 .5 − .5 − .25]

3 4-bit a0 = 0.25 H0 = [.25 − .5 − .5 − .5 .25]
a1 = −0.5 H1 = [−.5 1 − .5]
b0 = −0.5 G0 = [−.5 − 1 − .5]
c0 = −0.5 G1 = [−.25 − .5 .5 − .5 .25]

4 LeGall a0 = −0.125 H0 = [−1/8 2/8 6/8 2/8 − 1/8]
5-bit a1 = 0.25 H1 = [1/2 − 1 1/2]

b0 = 0.5 G0 = [1/2 1 1/2]
c0 = 0.5 G1 = [−1/8 − 2/8 6/8 − 2/8 − 1/8]

We now plot the normalised frequency responses of
the filters in the above Table. The goal is to compare the
frequency responses when the wordlength of the filter-
coefficients is varied. Figure 2, 3, 4 and 5 shows the
comparison of the frequency responses of the various
wordlength filters (H0, H1, G0, G1 respectively)with
standard Le Gall’s filters.
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Figure 2: frequency responses of H0 filters at various
wordlengths
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Figure 3: frequency responses of H1 filters at various
wordlengths
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Figure 4: frequency responses of G0 filters at various
wordlengths
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Figure 5: frequency responses of G1 filters at various
wordlengths

5. Summary and conclusion
In this paper, we have presented a generalized approach
for designing 5/3 filters with finite precision coefficients.
We used this approach to design 5/3 filters with different
coefficient wordlengths. We compared the frequency re-
sponses of the filters, with the goal of studying the effect
of the coefficient wordlength on the frequency response.
Figures 2,3,4 and 5 shows the evolution of the frequency
response as we move from 2-bit representation to 5-bit
representation. This constitute a preliminary study of the
dependence of frequency response and wordlength in a
perfect reconstruction system.
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[6] Duŝan Kodek ,“ An algorithm for the design of opti-
mal finite word-length FIR digital filters“,Acoustics,
Speech, and Signal Processing, IEEE International
Conference on ICASSP ’80,pp 73-76,1980.
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