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Polyphase Conditions and Structures for 2-D
Quincunx FIR Filter Banks Having Quadrantal

or Diagonal Symmetries
Pushkar G. Patwardhan, Bhushan Patil, and Vikram M. Gadre

Abstract—In this brief, we derive conditions on the polyphase
matrix of 2-D finite-impulse response (FIR) quincunx filter banks,
for the filters in the filter bank to have quadrantal or diagonal
symmetry. These conditions provide a framework for synthesizing
polyphase structures which structurally enforce the symmetry.
This is demonstrated by constructing examples of small param-
eterized matrix structures which satisfy the above conditions,
thus giving perfect reconstruction FIR quincunx filter banks with
quadrantal or diagonally symmetric short-kernel (i.e., short-sup-
port) filters. It is also shown that cascades of the above constructed
small structures can be used to construct filters of higher order.

Index Terms—2-D symmetry, quincunx filter banks.

I. INTRODUCTION

L INEAR-PHASE filter banks are desirable for image-pro-
cessing and coding applications. In the case of 2-D non-

separable filter banks, linear-phase corresponds to centro-sym-
metry of the 2-D filter impulse response. However, for the 2-D
case, other filter symmetries are possible, like quadrantal sym-
metry and diagonal symmetry. Fig. 1 shows examples of sig-
nals with these symmetries. For the case of 2-D quincunx filter
banks, filters having these symmetries are required to “preserve”
signal symmetries in 2-D signal extension schemes [9], [10].
One of the requirements for preserving signal symmetries, as
discussed in the above references, is to design quincunx filter
banks with the filters having quadrantal or diagonal symmetries.

Various methods for designing linear-phase quincunx filter
banks have been discussed in the literature [3]–[5], [8],
[12]–[15]. Design methods using cascade structures are dis-
cussed in [4], [5]. [13]–[15] discuss design methods using
the lifting factorization, and [7] uses generalized McClellan
transformations to design quincunx filter banks from 1-D
filter banks. All the above references consider the design of
linear-phase (i.e., centro-symmetric) quincunx filter banks,
but none of the references explicitly considers the case of
quadrantal or diagonal symmetric filter banks. It is interesting
to note that the design examples presented in [7] and [15] do
have quadrantal and diagonal symmetries, though this was not
explicitly intended in the development of the design methods.
The presence of these symmetries has also not been explicitly
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Fig. 1. Examples of sequences with (a) quadrantal symmetry, (b) diagonal sym-
metry, and (c) centro symmetry.

mentioned in these references. In this brief, we derive condi-
tions on the polyphase matrix of the quincunx filter bank, so
that the filters have quadrantal or diagonal symmetries. These
conditions provide a framework for synthesizing polyphase
matrices which structurally enforce the filter symmetries.

This brief is organized as follows. The rest of this sec-
tion presents a brief review of the polyphase representation
for the quincunx filter bank, and the characterization of
quadrantal and diagonal symmetry. Polyphase conditions
for the case of quadrantally symmetric filter bank are de-
rived in Section II-A, and for diagonally symmetric filters in
Section II-B. In Sections III-A and III-B, we construct small
structures satisfying the above derived conditions, which gives
perfect-reconstruction quincunx filter banks with short-kernel
filters having symmetries. It is also shown that cascades of
these structures can be used to design symmetric quincunx
filter banks with filters having higher orders.

Notation: Boldfaced lower-case letters are used to represent
vectors, and bold-faced upper case letters are used for matrices.

denotes the transpose of , denotes the inverse of ,
and denotes the determinant of . Following the no-
tation of [2], a vector raised to a matrix power

is defined as follows: is a vector whose

th entry is , where , 1.

A. Quincunx Filter Bank

A 2-D quincunx filter bank is shown in Fig. 2. Throughout this
brief, we will use to refer to the particular quincunx matrix

. Using the 2-D polyphase decomposition [1],

[2], we can represent each analysis and synthesis filter of the
quincunx filter bank in the form

(1a)

(1b)
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Fig. 2. Quincunx filter bank.

where .
We will use the above polyphase representation in this brief.

B. Characterization of Quadrantal and Diagonal Symmetry

A quadrantally symmetric 2-D sequence, with center of sym-
metry , can be characterized as [10], [11]

(2a)

where , , ,

for (2b)

A diagonally symmetric 2-D signal, with center of symmetry
, can be characterized as follows [10], [11]:

(3a)

where , , ,

and

for (3b)

II. POLYPHASE CONDITIONS FOR FILTER SYMMETRY

Considering the case of each symmetry separately, we first
derive a condition on the polyphase matrix for the analysis filters
to have the symmetry. Further constraints are then imposed so
that the determinant of the analysis polyphase matrix is a 2-D
monomial, which is necessary for the filters to be finite-impulse
response (FIR).

A. Polyphase Conditions for Quadrantally Symmetric Filters

We require the analysis filters to be quadrantally symmetric
as in (2a), i.e.,

(4)

Writing (1a) in matrix form we have

(5)

Using (5) in (4), we get

Noting that and , and comparing
terms

(6a)

(6b)

Using the relations , ,
, and , (6a) can be simplified as

With , and , we can write the above as

(7a)

Using similar simplifications as above, and also noting that
, (6b) can be written as

With and , and noting that
and , we can

write the above as

(7b)

Thus, (7a) and (7b) give conditions on the polyphase com-
ponents of the analysis filters, for the analysis filters to have
quadrantal symmetry. And, in fact, (7) says that and

should have diagonal symmetry with centers of sym-
metry and respectively. This can be summa-
rized as follows.

Proposition 1: For the analysis filters to have quad-
rantal symmetry with center of symmetry , a sufficient con-
dition is that each of the polyphase components has diagonal
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symmetry as in (7a) and (7b) with , and

We now impose additional constraints using the requirement
that the determinant of the analysis polyphase matrix be a mono-
mial. From the first equality relation of (7a) and (7b), we get the
following:

Taking determinants of both sides of above equation

(8a)

where
Similarly, from the other equality relations in (7a) and (7b),

(8b)

(8c)

We require , where is an arbitrary integer
vector. Thus, we have , ,
and

Using this in (8a), (b), (c), and also using the relation between
and from (2b), we get the following conditions:

(9a)

and (9b)

For (9b), we ignore the possibility or
since in that case both the analysis filters have a zero

at the same location, therefore perfect-reconstruction would not
be possible. Thus, from (9b), we have and

.
Thus, to summarize these results, the problem to construct

quadrantally symmetric analysis filters can be formulated as:

Construct the polyphase matrix ,

such that , , , have diagonal sym-
metry with symmetry parameters (i.e., with symmetry,
and not anti-symmetry), and with centers of symmetry as ,

, , and respectively, and
satisfying the following constraints.

a) , where is an arbitrary integer vector.
b) .
Let us now discuss the properties of the synthesis filters. Here

is the analysis polyphase matrix, and is the synthesis
polyphase matrix. With , we have

Thus, from (1b), we have

Thus, it can be seen that the synthesis filters also have the
same symmetry as the analysis filters.

B. Polyphase Condition for Diagonally Symmetric Filters

We now require the analysis filters to be diagonally
symmetric as in (3a). Following a derivation along same lines
as Section II-A, we arrive the following conditions on the
polyphase components of .

(10a)

and

(10b)

where and
Thus, (10a) and (10b) gives conditions on the polyphase

components of the analysis filters, for the analysis filters to have
diagonal symmetry. And, (10) says that and
should have quadrantal symmetry with centers of symmetry

and respectively. This can be summarized as
follows.

Proposition 2: For the analysis filters to have diag-
onal symmetry with center of symmetry , a sufficient con-
dition is that each of the polyphase components have quad-
rantal symmetry as in (10a) and (10b), with and

We now require that the determinant of the analysis polyphase
matrix be a monomial, i.e., , where is an ar-
bitrary integer vector, and following a similar derivation as in
Section II-A, we arrive at the following constraints (which are
similar to those obtained in (9a) and (9b).

For with the elements of as in proposi-
tion 2, we require that

(11a)

(11b)

Again, as earlier, ignoring the possibility
or . Thus, we require and

.
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Thus, the problem to construct diagonally symmetric analysis
filters can be formulated as follows:

Construct the polyphase matrix

, such that , ,

, have quadrantal symmetry with symmetry
parameters (i.e., with symmetry, and not anti-sym-
metry), and with centers of symmetry as ,

respectively, and satisfying the following
constraints.

a) , where is an arbitrary integer vector.
b) .

III. STRUCTURES FOR CONSTRUCTING SYMMETRIC FILTERS

Using the above conditions, we now construct two examples
of matrix structures which can be used to construct quincunx
filter banks with symmetric filters. The structure in Section III-A
satisfies the conditions in Section II-A, and thus yields filters
with quadrantal symmetry. The structure in Section III-B satis-
fies both the conditions in Sections II-A and II-B, and thus yields
filters having both quadrantal and diagonal symmetry. We note
that this is also referred to as octagonal symmetry.

A. A Polyphase Matrix Structure for Quadrantally Symmetric
Quincunx Filter Banks

Consider the polyphase matrix ,

with the elements , , , as follows:

(12a)

(12b)

(12c)

(12d)

Here , , , , , , , are scalar parameters. It can be
verified that with , , and , we have

i.e., . We also require
that .

From the above constraints on the parameters, the dependent
parameters can be expressed in terms of the others as

and

and

Thus, the set of functions in (12a–(d) satisfy all the constraints
of Proposition-1 and (9a) and (b). This leads to a quincunx filter
bank with the analysis and synthesis filters having quadrantal
symmetry.

Fig. 3. Quadrantally symmetric analysis filters with two stages as in (12).

Fig. 4. Quadrantally and diagonally symmetric analysis filters with polyphase
components as in (14).

Cascades of the Above Structure: In order to get filters of
higher order, we now consider cascades of the matrix con-
structed in (12). Consider two matrices and , with
elements of the form of (12) with a different set of parameters.
Now consider the cascade , which can be written as
in (13) at the bottom of the page.

We now state the following facts.
a) The product of two diagonal symmetric transfer functions

is also diagonally symmetric, with the center of symmetry
equal to the sum of the centers of symmetry of its factors.

b) The sum of two diagonal symmetric transfer functions
having the same center of symmetry is also diagonally
symmetric with the same center of symmetry

Using the above facts, and analyzing the centers of sym-
metry of the elements of in (13), it can be seen that

also satisfies all the conditions of proposition 1 and
(9). Thus, filters of higher order can be constructed using such
cascades.

Fig. 3 shows the supports of the analysis filters for a two-stage
cascade, with each stage as in (12). The coefficients of the filters
in Fig. 3 can be expressed in terms of the independent set of
parameters of stage-1 and stage-2 of the cascade.

(13)
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Fig. 5. Frequency plots of analysis filters for two-stage cascade, with each stage as in equation (14).

B. Polyphase Matrix Structure for Quadrantally and
Diagonally Symmetric Quincunx Filter Banks

Consider the following set of symmetric 2-D functions:

(14a)

(14b)

(14c)

(14d)

Here, , , , , , are scalar parameters. It can be verified
that with , and , we have ,
i.e., . We also require that .

From the above constraints, we can express e and as:
, and , with , and .

Thus, the set of functions in (14) satisfy all the constraints of
Proposition-1 and (9) as well as the constraints of Proposition-2
and (11), and thus leads to quincunx filter banks with the anal-
ysis and synthesis filters having both quadrantal and diagonal
symmetry. The analysis filters obtained from (14) are shown in
Fig. 4.

Again, as in Section III-A, we can verify that cascades of the
above structure also satisfies the constraints of Proposition-1
and (9) as well as the constraints of Proposition-2 and (11).
Thus, we can generate filters of higher order using such cas-
cades.

This brief only intends to present polyphase conditions and
example cascade structures for synthesizing symmetric quin-
cunx filter banks. However, to illustrate the frequency response
of the filters, we used the matlab optimization toolbox to choose
the parameters of a two-stage cascade structure with each stage
as in (14). For the objective function to be minimized, we
used the stopband errors of the analysis filters, with a diamond
shaped passband of the low-pass analysis filter. The frequency
responses of the analysis filters we obtained are shown in
Fig. 5. We would like to note that a detailed formulation of
optimization methods for the cascade structures is outside the
scope of this brief, and is a subject for future work.

IV. CONCLUSION

In this brief, we derived conditions on the polyphase com-
ponents for the filters in quincunx filter bank to have quad-
rantal or diagonal symmetry. In particular, we showed that: 1)
for quadrantally symmetric filters, the polyphase components
should be diagonally symmetric; 2) for diagonally symmetric
filters, the polyphase components should be quadrantally sym-

metric. Using the requirement that the determinant of the anal-
ysis polyphase matrix be a monomial, we derived further con-
straints on the polyphase matrix. With this, the synthesis filters
are also FIR, and have the same symmetry as the analysis filters.
We constructed example of small polyphase matrices satisfying
the above derived constraints, and it was also shown that cas-
cades of the constructed matrix can be used to construct filters of
higher order. Further issues to be addressed for future work are
the issues of minimal structures, and design procedures for op-
timization of the parameters to obtain good frequency response
characteristics.
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