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Abstract— The symmetric extension method is used in
multirate filter-banks to maintain critical sampling, i.e. total
number of sub-band samples is equal to the number of input
samples, when processing finite-length signals. This approach is
widely used for subband image coding with linear-phase filter-
banks. One of the important aspects in the study of symmetric
extension schemes is an analysis of the effect of the subsampling
(downsampling and upsampling) operations on the signal
symmetry and periodicity. The filter-banks most commonly
used are separable — so, essentially, a 1-D signal symmetry and
periodicity analysis is done for the separable 2-D filter-banks.
However, for non-separable sampling and filter-banks, a
“true” 2-D analysis of the signal symmetry and periodicity is
needed. 2-D signals can possess more variety of symmetries and
periodicities than 1-D signals. Also, the non-separable
subsampling operations change the “nature” of the periodicity
and symmetry in the signal - i.e., for e.g., after downsampling a
rectangularly periodic 2-D signal on a non-separable lattice, the
downsampled signal does not in general remain rectangularly
periodic, but its periodicity is along directions determined by
the sampling matrix. For the separable case, the “nature” of
the periodicity and symmetry remains the same. In this paper,
we study the role played by the 2-D symmetry and periodicity
in the development of signal extension schemes for 2-D
nonseparable filter banks. We analyze the effect of non-
separable subsampling operations on the periodicity and
symmetry of a 2-D signal. Using this, we study the symmetric
extension method for the case of the two-channel Quincunx
filter-banks, and for the four-channel hexagonally sub-sampled
filter-banks.

I. INTRODUCTION

RECENTLY there has been a lot of interest in the use of
non-separable systems for image processing and
compression. The main motivation for this is the potential of
non-separable systems to extract and represent directional
information better than separable systems. Non-separable
systems involve non-separable sampling and non-separable
filters. In particular, the design of critically sampled non-
separable filter-banks has attracted a lot of attention [1-5].
One of the main applications of 2-D critically sampled filter-
banks is image compression.
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The use of filter-banks on finite-extent images presents
the problem of data-expansion. This is due to the implicit
zero-padding of the input-signal that occurs with the
convolution of finite extent sequences. The linear
convolution of a finite extent input with a finite-extent filter
impulse response (or, in other words, convolution of two
finite extent signals), results in an output sequence which
has, in general, more number of samples (i.e. a bigger region
of support — ROS) than the input. This is highly undesirable
in coding applications. A similar problem arises in the case
of 1-D filter-banks, and one approach to address the
problem in the 1-D case is by using various signal extension
methods [6-8] to eliminate data-expansion. Note that when
separable 2-D filter-banks are used for image coding, the
signal extension is handled using the 1-D extension
techniques, since separable 2-D processing operates on one
dimension at a time. However, for the case of non-separable
filter-banks, a “true” 2-D analysis of the signal symmetry
and periodicity is needed. 2-D signals can possess more
variety of symmetries and periodicities than 1-D signals.
Also, the non-separable subsampling operations change the
“nature” of the periodicity and symmetry in the signal —i.e.,
for e.g., after downsampling a rectangularly periodic 2-D
signal on a non-separable lattice, the downsampled signal
does not in general remain rectangularly periodic, but its
periodicity is along directions determined by the sampling
matrix. For the separable case, the “nature” of the
periodicity and symmetry remains the same. In this paper,
we study the role played by the 2-D symmetry and
periodicity in the development of signal extension schemes
for 2-D nonseparable filter banks.

The paper is organized as follows: In section Il we review
the characterization of 2-D signal symmetry and periodicity.
In section 111 we analyze the effect of the nonseparable sub-
sampling operations on the 2-D signal symmetry and
periodicity. We apply the results of section Ill to analyze
signal extension methods for the two-channel Quincunx
filter-banks in section 1V, and for the 4-channel hexagonally
subsampled filter-banks in Section V. We conclude and
point to some directions for further research in section V1.

A. Notation and Background

Notation: Boldfaced lower-case letters are used to
represent vectors, and bold-faced upper case letters are used



for matrices. det(A) denotes the determinant of the matrix

A.

Downsampling and upsampling operations on 2-D signals
are defined using lattices [1-2]. The lattice generated by a
sampling matrix D is the set of integer vectors m such that
m =Dn , for some integer vector n. We denote the lattice
by LAT(D). The generating matrix D should be a non-
singular integer matrix. The generating matrix for a given
lattice is not unique. With this, downsampling a 2-D signal
using a sampling matrix D is defined as y[n] = x[Dn] and
upsampling is defined as

y[n]=x[D 'n], if n e LAT(D)

y[n]=0 otherwise

As an example, the quincunx lattice, generated by the

1 1
matrix D, :{ } is shown in Figure-1. And Figure-2
1

shows a 2-D maximally decimated 2-channel filter-bank
employing Quincunx subsampling.
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Figure 2 Quincunx filter bank

Il. CHARACTERIZATION OF 2-D SIGNAL SYMMETRIES AND
PERIODICITIES

A. Characterization of 2-D symmetries

We review the characterization of 2-D symmetries from
[9] and [11]. A 2-D signal is said to be symmetric if
X[Tn +b] = x[n] (identity-symmetry) or
X[Tn +b] = —x[n] (anti-symmetry). Here b is a 2x1
vector, and T is a non-singular matrix. The most commonly
used T matrices (and the ones we use in this paper) are :

T_1 0 T_—10_r_01
o 1" 2 o 1["® |1 0]
T_0—1T_ 0 1 T_0—1
Al 0 % -1 0" % |1 o0
3

Note that T,T, = T,T, =T; =T, =—l,and T, = T¢.
Tis said to be an equiaffine transformation if

|det(A)| =1. In this case, the corresponding regions in the

transformed and original domains have the same area. T is
said to be a congruent transformation if the Euclidean
distance between any two points in the original region is
equal to that between the corresponding (image) points in
the transformed region. This will be so if and only if T is

orthogonal. We note that all the matrices T,...T; given

above are equiaffine and congruent. We say that a symmetry
is k-fold if there are k “identical regions”. In this paper we
only consider 4-fold symmetries, i.e. quadrantal symmetry,

diagonal symmetry, and 90° rotational symmetry. Below,
we define these 4-fold symmetries, and discuss the various
possibilities in each of these symmetry-types. For

convenience of notation, we define constant matrices A,

. 1 )

i=1...6,as A, ==(I-T,), for i=1,2, and A, =1-T,, for
2

i=3,4,5,6 , where | is the Identity matrix.
1) Quadrantal Symmetry
Quadrantal symmetry, with center of symmetry

C= [cl CZ]T , can  be defined as follows:
X[n] = x[Tyn + 2A ;] = x[T,n + 2A ,¢c] = x[T, T,n + 2c]

There are four different types for the location of the center
of symmetry, with C, and C, each independently taking the
value of a “full integer (F)” i.e. Z (where Z denotes the set
of integers) or a “half integer (H)” i.e. 2Z,4q (Where Z 4
denotes the set of odd integers). We abbreviate these four
cases as FF (c; and c, are both F), FH (c, is F, ¢, is H),
HF (c, isH, ¢, isF), and HH (c,, c, are both H). Figure-3
shows these four cases of quadrantal symmetry.

The above symmetries use identity-symmetry. When
considering anti-symmetry, we can have anti-symmetry

independently for the T, and T, operations i.e. we can

have
X[n] =y, X[Tn+2A.c] = 7, X[T,n+2A,c] = y,7,X[ T, T,n +2c]

(1a)
In z-domain,
2Ac. T, 2Ac. T, 26, T
X@ =1z 2 Ex@ ) =,2 EX@ ) =yt X2 12)
(1b)

For notation, we have used the same subscript for y as its

associated T -operation. y, and y, can each independently

be +1 (symmetry) or -1 (anti-symmetry), thus giving four
possibilities : SS, SA, AS, and AA. So, there are a total of



16 types of quadrantal symmetry
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Figure 3 Examples of quadrantally symmetric signals
with types of center of symmetry (a) FF, (b) FH, (c) HF,

(d) HH
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Figure 4 lllustration of characterization of (a) Diagonal
symmetry, (b) 90° rotational symmetry

2) Diagonal Symmetry
Diagonal symmetry, with center of symmetry

c= [cl c, ]T , can be characterized as follows :

X[n] = x[Tgn+ Azc] = x[T,n+A,c] = x[T3T,n +2c]
Figure 4-a shows x[n] (which is diagonally symmetric),
and x[Tyn], x[T,n], and x[T;T,n], to illustrate that the

above characterization holds. In the case of diagonal
symmetry, due to the nature of the symmetry, the center of
symmetry can only be of type FF or HH. The center of
symmetry in the signal in Figure 4-a is of type FF. And
similar to the case of quadrantal symmetry, a symmetry or

antisymmetry can be associated independently with T, and
T, operations. This can be written as:

XN] = 75 X[Ton+Aqcl =y, TN+ A Cl =y, T, Tn+2c]
(22)
In z-domain:
X@ =1z ExX@®) =12 X ) = ez 2oX( 3
(2b)
75 and y, can each independently be +1 or -1, thus

giving four possibilities of symmetry/antisymmetry (just like
the quadrantal case). Combining this with the two types of
the center of symmetry, there are 8 types of diagonal

symmetries.

3) 90° rotational Symmetry
90° rotational symmetry, with center of symmetry

C= [cl CZ]T , can be characterized as follows :

x[n] = X[Ten + Agc] = X[TZn +2¢] = X[Ton + Agc]
Figure 4-b shows x[n] (which is 90° rotationally
symmetric), and x[T.n], x[T52n], and x[T53n] , to illustrate

that the above characterization holds. In the case of 90°
rotational symmetry, the center of symmetry can only be of
type FF or HH. The center of symmetry in the signal in
Figure 4-b is of type HH. And we can have an identity-
symmetry or antisymmetry associated with the T; -
operation. This can be written as:
X[n] = 76 X[Tsn + AsCl = X[ToNn +2¢] = 7o X[Ton + AgC] (3a)
Or in z-domain:
T2 T3

A T, _ -A
X@=rsz P X(@ ) =27X@ )=z O X@ ®) (gp)
ys can be +1 or -1 thus giving two possibilities of
symmetry. Combining this with the two types of the center
of symmetry, there are 8 different types of 90° rotational
symmetries.

4) Centro rotational Symmetry

Centro-symmetry with center of symmetry C can be
characterized as :

X[n] = »[-In+2c]

In z-transforms: X(z)= ;/z_ZCX(z'I)

In the 2-D case, centro symmetry in the 2-D impulse
response of a filter implies linear-phase filter. Also, the filter
is “zero-phase” when the filter impulse response is centro-
symmetric with the center of symmetry at the origin i.e.
c=0

B. Characterization of 2-D periodicity

2-D signals can have periodicities along different directions.
A general 2-D periodic signal can be described as [10]:

X[N+py]=x[n],and x[n+p,]=x[n]

. _ | Poo
where p, and p, are constant integer vectors p, =
P10

p .
and p, = [pm} with (PggP1; — Po1P1o) # 0.
11

The vectors p, and p, represent the displacement from any

sample to the corresponding sample of two other periods.
One period of the periodic signal is contained in the
parallelogram-shaped region whose two adjacent sides are

formed by the vectors p, and p,. These vectors are called

periodicity-vectors, and they can be arranged to form
columns of a 2x2 nonsingular integer matrix P called the



periodicity matrix. The number of samples in one period is
equal to |det(P)|. In the special case where P is diagonal,
the signal is said to be rectangularly-periodic.

I1l.  EFFECT OF SUBSAMPLING AND FILTERING OPERATIONS
ON SIGNAL PERIODICITY AND SYMMETRY

The question that we now address is as follows: In a non-
separable filter-bank, assuming the input signal has certain
symmetry and periodicity, what symmetries or periodicities
do the subband signals exhibit. This requires us to analyze
the effect of the nonseparable filtering and downsampling
operation on the signal periodicity and symmetry.

A. Effect of nonseparable filtering and subsampling on
signal periodicity
Consider one branch of a non-separable filter-bank (like
Fig-1) with sampling matrix D, . Let the input signal X[n]
be periodic with periodicity matrix P, i.e.
X[n +Pr]=x[n], where r is any integer vector (see
section I1). With the periodic signal x[n] as input to the
analysis filter H (a shift-invariant system), the output is also
periodic with the same periodicity matrix as x[n] i.e.
Xo[n +Pr]=x,[n]. Consider the sub-band signal V,,
which is obtained by downsampling X, using the sampling
matrix D, i.e. vV [n] = X,[D,n].
But X,[n+Pr]=x,[n]
= X,[D,n] = X,[D,n +Pr]=x,[D,(n+D;*Pr)]
=V,[n+D;'Pr]
Thus, v,[n]=V,[n+D;'Pr], ie. V, is periodic with
periodicity matrix DfP . Note that, in general, this is not
rectangularly periodic. Also, since we are dealing with
discrete-time signals, we need DfP to be an integer

matrix. In the context of a subband image coding scheme,
this usually implies a “proper” choice of the input image
size. For e.g., for Quincunx filter-banks, if we assume that
one period of the input signal is supported on a “square

region” N x N, with even N, then P = NI, and DJP is
an integer matrix for even N.

Since it is common to have a cascaded tree structure of
filter-banks, the signal v, will be further downsampled (in
general, the second stage of the filter-bank can be a
\Dz\—band filter-bank, using a sampling matrix D, -

which need not be the same as in Stage-1). Then, following
an analysis similar to above, the sub-band signal of the
second stage with sampling matrix D, is periodic with

D,'D;'P i.e.
v[n] = v[n +D,'D;'Pr]. Again, we need D,'D;'P to
be an integer matrix. We summarize this as follows:

periodicity matrix

Proposition 1: Consider a tree-structured filter-bank, with

D, denoting the sampling matrix of stage-m. Let the input

to the (first-stage of) tree-structured filter-bank be a periodic

signal with a periodicity matrix P i.e. x[n + Pr]= x[n].

Then,

a) The sub-band signals of the first stage (m=1) are
periodic ~ with  periodicity matrix D;'P e
v[n] = v[n + D;*Pr]. Here, D;'P should be an
integer matrix

b) The sub-band signals of the second stage (m=2) are

periodic with periodicity matrix D,'D;'P i.e.
v[n]=v[n+D,'D;'Pr]. Here, D;'D;'P should
be an integer matrix

c) In general, the sub-band signals of the m’th stage are
periodic with periodicity matrix D .*..D ,'D;'P i.e.
v[n]=v[n+D,"...D,'D;'Pr]. Here,

D, ...D,'D;'P should be an integer matrix

m

Note: It follows that if the same sampling matrix D is used
is used for all the stages, then sub-band signals of the m’th

stage are periodic with periodicity matrix D™P ..
v[n]=v[n +D "Pr]. Again, we need D™P to be an
integer matrix.

B. Effect of nonseparable filtering and subsampling on

signal symmetry

We now consider signal symmetries. Again, consider one
branch of a non-separable filter-bank with sampling matrix

D, . Let the input signal X[n] be symmetric as follows:
X[n] = x[S,n] = x[S,n] = x[S,n] (for e.g., this could
be one of quadrantal, or diagonal, or 4-fold rotational
symmetries, as described in section II). If the filter impulse-

response has the same symmetry as the input, then the
output of the filter will also have the same symmetry.

Consider the sub-band signal V,, which is obtained by
downsampling X, using the sampling matrix D,

Vo[n] = XO[Dln]

= V,[D;'S,D,n]=x,[D,n]=v,[n] (due to
symmetry in x[n])

Similarly, we can show that v,[D;'S,D,n]=v,[n],
and v,[D;*S,D,n] = v,[n]

Thus Vv, has  the

following symmetry:

Vo[n] = Vo[Dllleln] = Vo[DIlslen] = Vo[DIlsaDln]

. Here, for the symmetry to be meaningful, we need that the
matrices D;'S,D,, D;'S,D,, and D;'S,D, are
integer, orthogonal, and have determinant = +1. This

makes the transformations equiaffine and congruent.
We can repeat this analysis for the next stages in the tree-



structures filter-bank. We summarize this as :

Proposition 2: Consider a tree-structured filter-bank, with
D, denoting the sampling matrix of stage-m. Let the input
to the (first-stage of) tree-structured filter-bank be a
symmetric signal, as Xx[n] = x[S;n] =x[S,n] = x[S;n].
Then,

a) The symmetries in the sub-band signals of stage-1
(m=1) are as follows:

v[n] = v[D;'S,D,n] = v[D;'S,D,n] = v[D;'S.,D,n]

b) The symmetries in the sub-band signals of stage-2
(m=2) are as follows:

v[n] = v[D,'D,'S,D,D,n] = v[D,'D;*S,D,D,n]

=v[D,'D;'S,D,D,n]

c) In general, the symmetries in the sub-band signals of
stage-m are as follows:

v[n]=v[D...D;'S,D,...D n]

=v[D,"..D ;'S,D,..D ,n]
=v[D;'.D;'S,D,..D n]

In all cases, we need the matrices describing the
transformations to be integer, orthogonal, and having
determinant = 1 (thus making the transformations
equiaffine and congruent).

Note: It follows that if the same sampling matrix D is
used for all stages, then the symmetries in the sub-band
signals of stage-m are as follows:
v[n]=v[D™"S,D"n] =v[D"S,D"n]

=v[D"S,D"n]

Again, we need the matrices describing the
transformations to be integer, orthogonal, and having
determinant= +1.

IV. ANALYSIS OF SYMMETRIC SIGNAL EXTENSION METHOD
FOR QUINCUNX FILTER BANKS

We now use the results from section Ill to analyze the
symmetric extension method for Quincunx filter-banks
shown in Fig-1.

Assume that the input 2-D signal has square Region Of
Support (ROS) of (0---N—21,0---N—1), where assume

that N is even. Symmetric extension of the input gives us a
quadrantally symmetric and rectangularly periodic signal.
Consider a rectagularly-periodic input signal with
periodicity matrix MI, where M =2N —2 (obtained by
mirroring the quadrantal-symmetrically extended signal).
We now analyze how rectangular-periodicity and
quadrantal-symmetry is affected by the Quincunx down-
sampling operation. From Proposition-1, with a
rectangularly-symmetric signal with periodicity matrix Ml

as input, the sub-band signal V, of Stage-1 is periodic with

periodicity matrix MDyg', i.e. vo[n]=vy[n+MDgr]
(Note that for the Quincunx sampling matrix Dy

_ 1 4 M+ ;
D :EDS. Thus MD, :7DQ). Since, for the

Quincunx sampling matrix, Dé = 2|, the subband signal of

M
stage-2 is periodic with periodicity matrix ?I (ie. itis

rectangularly periodic).

We now analyze the symmetries of the sub-band signals,
when the input signal is quadrantally symmetric. From
proposition-2, and since, for the Quincunx sampling matrix

D, we have DT D, =T,, D;T,D, =T,, and
DT, T,Dy =—1=T,T,, it follows that the sub-band
signal of stage-1 has the following symmetry:
Vo[n]=v,[T,n]=v,[T,n]=v,[T,T,n]. This s
diagonal symmetry. And, (again using Dé = 21) it follows

that the sub-band signal of stage-2 is quadrantal-symmetric.

So, for Quincunx filter-banks, the sub-band signals of
odd-stages have diagonal symmetries, and the sub-band
signals of even-stages have quadrantal symmetries.

A. Symmetry requirements on the filters

For the symmetric extension method, the filters in the
Quincunx filter-bank need to have the same symmetries as
the input signal i.e. the filters need to be quadrantally-
symmetric for Stage-1 (all odd numbered stages), and
diagonally-symmetric for Stage-2 (all even numbered
stages) of the tree-structured filter-bank, so that the filtering
operation maintains the symmetries. The method of
transformations of variables as proposed in [12] can be used
to design filters with the required symmetries. In fact, the

transformation functions M(zZ) used in [12] exhibit

quadrantal as well as diagonal symmetry. Thus, the filters
designed have quadrantal as well as diagonal symmetries.
Thus these filter-banks can be used for all the stages (even-
numbered as well as odd-numbered stages) with the
symmetric signal extension method for the Quincunx filter-
bank.

V. ANALYSIS OF SYMMETRIC SIGNAL EXTENSION METHOD
FOR 4-CHANNEL FILTER-BANKS WITH HEXAGONAL
SUBSAMPLING

We now analyze the case of non-separable 4-channel
filter-banks with hexagonal subsampling. Assume that the
input signal has square ROS of (0---N—-21,0---N-1),
where assume that N is a multiple of 4. Symmetric extension
of the input gives us a quadrantally symmetric and
rectangularly periodic signal. Consider a rectagularly-
periodic input signal with periodicity matrix MI, where
M = 2N (Note that we do not use “mirroring” in this case,



since we need M to be a multiple of 4). For the filter-bank,
we let the first-stage have the sampling matrix

1 1
D, = ) o | and the second-stage have the sampling
- 2 1 -
matrix Dy, = ) 1l Here, since

D,D,, =D,,D,, = 4l, the sub-band signal at the
output of the second-stage is again rectangularly periodic as

M
with periodicity matrix TI :

We now see what happens to the symmetry (the input is
quadrantally symmetric). Consider the sub-band signals of
the first stage. Observing that

D,;'T,D,=T,, andD,'T,D,=T,,and
D,;'T,T,D, =-I= T,T,
we see that the sub-band signals of the first stage have

diagonal symmetry. And, for the second stage, again
observing that

D,'T.D,=T,, andD,'T,D,=T,, and

D,'T,T,D, =-1=T,T,

the sub-band signals of the second stage have quadrantal
symmetry.

A. Symmetry requirements on the filters

For the above analysis, we also need the filters to have the
same symmetries as the input signal. In the case of the above
example, we require that the filters for stage-1 with
sampling matrix D, should have quadrantal symmetry,

and the filters for stage-2 with sampling matrix D ,, should

have diagonal symmetry. A 4-channel filter-bank with filters
having symmetries as above can be done using the approach
described in [13].

V1. CONCLUSION AND FUTURE WORK

We analyzed the effect of the non-separable subsampling
operation on the periodicity and symmetry of a 2-D signal.
We observed that the nature of signal symmetry and
periodicity changes after non-separable subsampling
operations — something that does not occur in the 1-D case
(or in 2-D separable subsampling). We analyzed the
symmetric extension method for the case of Quincunx filter-
banks, and for hexagonally subsampled 4-channel filter-
banks.

A subject for further work is to address problem of signal
extension methods for a general non-separable filter bank
with a given sampling matrix M. Design of symmetric
Quincunx filter banks with the filters having various
symmetries has been addressed in the literature [11-12]. The
design of symmetric M -channel filter banks, where the
subsampling matrix M has a specific form, has been
addressed in [13]. However, the design of non-separable

filter banks with the filters having various symmetries is not
addressed for the case of general M -channel filter banks.
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