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Abstract— The symmetric extension method is used in 

multirate filter-banks to maintain critical sampling, i.e. total 
number of sub-band samples is equal to the number of input 
samples, when processing finite-length signals. This approach is 
widely used for subband image coding with linear-phase filter-
banks. One of the important aspects in the study of symmetric 
extension schemes is an analysis of the effect of the subsampling 
(downsampling and upsampling) operations on the signal 
symmetry and periodicity. The filter-banks most commonly 
used are separable – so, essentially, a 1-D signal symmetry and 
periodicity analysis is done for the separable 2-D filter-banks. 
However, for non-separable sampling and filter-banks, a 
“true” 2-D analysis of the signal symmetry and periodicity is 
needed. 2-D signals can possess more variety of symmetries and 
periodicities than 1-D signals. Also, the non-separable 
subsampling operations change the “nature” of the periodicity 
and symmetry in the signal – i.e., for e.g., after downsampling a 
rectangularly periodic 2-D signal on a non-separable lattice, the 
downsampled signal does not in general remain rectangularly 
periodic, but its periodicity is along directions determined by 
the sampling matrix. For the separable case, the “nature” of 
the periodicity and symmetry remains the same. In this paper, 
we study the role played by the 2-D symmetry and periodicity 
in the development of signal extension schemes for 2-D 
nonseparable filter banks. We analyze the effect of non-
separable subsampling operations on the periodicity and 
symmetry of a 2-D signal. Using this, we study the symmetric 
extension method for the case of the two-channel Quincunx 
filter-banks, and for the four-channel hexagonally sub-sampled 
filter-banks. 
 

I. INTRODUCTION 
ECENTLY there has been a lot of interest in the use of 
non-separable systems for image processing and 

compression. The main motivation for this is the potential of 
non-separable systems to extract and represent directional 
information better than separable systems. Non-separable 
systems involve non-separable sampling and non-separable 
filters. In particular, the design of critically sampled non-
separable filter-banks has attracted a lot of attention [1-5]. 
One of the main applications of 2-D critically sampled filter-
banks is image compression.  
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The use of filter-banks on finite-extent images presents 
the problem of data-expansion. This is due to the implicit 
zero-padding of the input-signal that occurs with the 
convolution of finite extent sequences. The linear 
convolution of a finite extent input with a finite-extent filter 
impulse response (or, in other words, convolution of two 
finite extent signals), results in an output sequence which 
has, in general, more number of samples (i.e. a bigger region 
of support – ROS) than the input. This is highly undesirable 
in coding applications. A similar problem arises in the case 
of 1-D filter-banks, and one approach to address the 
problem in the 1-D case is by using various signal extension 
methods [6-8] to eliminate data-expansion. Note that when 
separable 2-D filter-banks are used for image coding, the 
signal extension is handled using the 1-D extension 
techniques, since separable 2-D processing operates on one 
dimension at a time. However, for the case of non-separable 
filter-banks, a “true” 2-D analysis of the signal symmetry 
and periodicity is needed. 2-D signals can possess more 
variety of symmetries and periodicities than 1-D signals. 
Also, the non-separable subsampling operations change the 
“nature” of the periodicity and symmetry in the signal – i.e., 
for e.g., after downsampling a rectangularly periodic 2-D 
signal on a non-separable lattice, the downsampled signal 
does not in general remain rectangularly periodic, but its 
periodicity is along directions determined by the sampling 
matrix. For the separable case, the “nature” of the 
periodicity and symmetry remains the same. In this paper, 
we study the role played by the 2-D symmetry and 
periodicity in the development of signal extension schemes 
for 2-D nonseparable filter banks. 

The paper is organized as follows: In section II we review 
the characterization of 2-D signal symmetry and periodicity. 
In section III we analyze the effect of the nonseparable sub-
sampling operations on the 2-D signal symmetry and 
periodicity. We apply the results of section III to analyze 
signal extension methods for the two-channel Quincunx 
filter-banks in section IV, and for the 4-channel hexagonally 
subsampled filter-banks in Section V. We conclude and 
point to some directions for further research in section VI. 

 

A. Notation and Background 
Notation: Boldfaced lower-case letters are used to 

represent vectors, and bold-faced upper case letters are used 

 R



for matrices.  denotes the determinant of the matrix 
. 

)det(A
A

Downsampling and upsampling operations on 2-D signals 
are defined using lattices [1-2]. The lattice generated by a 
sampling matrix D  is the set of integer vectors  such that 

, for some integer vector n . We denote the lattice 
by . The generating matrix D  should be a non-
singular integer matrix. The generating matrix for a given 
lattice is not unique. With this, downsampling a 2-D signal 
using a sampling matrix D  is defined as  and 
upsampling is defined as 

m
Dnm =

)LAT(D

][x][y Dnn =

][x][y 1nDn −= ,    if  )LAT(Dn∈
0][y =n       otherwise 

As an example, the quincunx lattice, generated by the 

matrix , is shown in Figure-1. And Figure-2 

shows a 2-D maximally decimated 2-channel filter-bank 
employing Quincunx subsampling. 
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Figure 1 Quincunx sampling lattice 
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Figure 2 Quincunx filter bank 

II. CHARACTERIZATION OF 2-D SIGNAL SYMMETRIES AND 
PERIODICITIES 

A. Characterization of 2-D symmetries 
We review the characterization of 2-D symmetries from 

[9] and [11]. A 2-D signal is said to be symmetric if 
 (identity-symmetry) or 

 (anti-symmetry). Here b  is a  
vector, and  is a non-singular matrix. The most commonly 
used T  matrices (and the ones we use in this paper) are : 
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56 TT =
T  is said to be an equiaffine transformation if 

1)det( =A . In this case, the corresponding regions in the 
transformed and original domains have the same area. T  is 
said to be a congruent transformation if the Euclidean 
distance between any two points in the original region is 
equal to that between the corresponding (image) points in 
the transformed region. This will be so if and only if  is 
orthogonal. We note that all the matrices  given 
above are equiaffine and congruent. We say that a symmetry 
is k-fold if there are k “identical regions”. In this paper we 
only consider 4-fold symmetries, i.e. quadrantal symmetry, 
diagonal symmetry, and  rotational symmetry. Below, 
we define these 4-fold symmetries, and discuss the various 
possibilities in each of these symmetry-types. For 
convenience of notation, we define constant matrices , 

i=1…6, as 

T

61 TT ...

090

iA

)
2
1

ii T(IA −= , for i=1,2, and , for 

i=3,4,5,6 , where  is the Identity matrix. 

ii TIA −=

I
1) Quadrantal Symmetry 

Quadrantal symmetry, with center of symmetry 

[ ]Tcc 21=c , can be defined as follows:  

][][][][ 2cnTTc2AnTc2AnTn 212211 +=+=+= xxxx
 There are four different types for the location of the center 

of symmetry, with  and  each independently taking the 
value of a “full integer (F)” i.e.  (where 

1c 2c
Ζ Ζ  denotes the set 

of integers) or a “half integer (H)” i.e. oddΖ2
1  (where  

denotes the set of odd integers). We abbreviate these four 
cases as FF (  and  are both F), FH (  is F,  is H), 

HF (  is H,  is F), and HH ( ,  are both H). Figure-3 
shows these four cases of quadrantal symmetry. 

oddΖ

1c 2c 1c 2c

1c 2c 1c 2c

The above symmetries use identity-symmetry. When 
considering anti-symmetry, we can have anti-symmetry 
independently for the  and  operations i.e. we can 
have 

1T 2T

][][][][ 2cnTTc2AnTc2AnTn 2121222111 +=+=+= xxxx γγγγ
  (1a) 

In z-domain, 
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−
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(1b) 
For notation, we have used the same subscript for γ  as its 

associated -operation.  and  can each independently 
be +1 (symmetry) or –1 (anti-symmetry), thus giving four 

T 1γ 2γ

possibilities : SS, SA, AS, and AA. So, there are a total of 



16 types of quadrantal symmetry 
 

 
Figure 3 Examples of quadrantally symmetric signals 

with types of center of symmetry (a) FF, (b) FH, (c) HF, 

 

(d) HH 

 
Figure 4 Illustration of characterization of (a) Diagonal 

 
 

2) Diagonal Symmetry 
 with center of symmetry 

c

[][ 2cnTn 434433 ++= xx
 Figure 4-a shows (which is diagonally symmetric), 

, a

[ 2cnTTn 4343444333 +xx γ
   (2a) 

In z-domain: 
43TT

 
 (2b) 

 and can each independently be +1 or –1, thus 
givin

3) 90˚ rotational  Symmetry 
 with center of symmetry  

symmetry, (b) 90˚ rotational symmetry 

 
Diagonal symmetry,

[ ]Tcc= , can be characterized as follows : 

[][] nTTcAnTcA =+= xx
21

]
][nx  

and ][ nT3x , [ nT4x nd ][ nTT 43x , to illustrate that the 
abov
symmetry, due to the nature of the symmetry, the center of 
symmetry can only be of type FF or HH. The center of 
symmetry in the signal in Figure 4-a is of type FF. And 
similar to the case of quadrantal symmetry, a symmetry or 
antisymmetry can be associated independently with 3T  and 

T  operations. This can be written as: 

][][] cAnTcAnT =+=+= xx γγγ

]
e characterization holds. In the case of diagonal 
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3γ 4γ  
g four possibilities of symmetry/antisymmetry (just like 

the quadrantal case). Combining this with the two types of 
the center of symmetry, there are 8 types of diagonal 

symmetries. 
 
 
90˚ rotational symmetry,

[ ]Tcc 21= , can be characterized as follows :  

[][] AnT2cnTcA 32 +=+=+ xx

c

][][ cnTn 65555= xx
 Figure 4-b shows  (which is 90˚ rotationally 

, 
haracte zation 

cAnTc 6
3
55 += xγ (3a) 

Or in z-domain: 

= γγ  (3b) 
 can be +1 or –1 thus giving two possibilities of 

sym

) Centro rotational  Symmetry 
f symmetry  can be 

][nx

symmetric), and [ nT5x ][ nT2
5 , and ][ nT3

5x , to illustrate 
that the above c ri holds. In the case of 90˚ 
rotational symmetry, the center of symmetry can only be of 
type FF or HH. The center of symmetry in the signal in 
Figure 4-b is of type HH. And we can have an identity-
symmetry or antisymmetry associated with the 5T -
operation. This can be written as: 
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5555 +=+= xxx γ

] x

][]

)()()((
3
5

2
5)

T
z

cAT
z2cz

T
z

cA
zz 655

55 XzXXX
−

=−=
−

5γ
metry. Combining this with the two types of the center 

of symmetry, there are 8 different types of 90˚ rotational 
symmetries. 
 
4
Centro-symmetry with center o c
characterized as : 

][x][x 2cn-n += Iγ  

In z-transforms: )(X(X I-z2czz −=γ)  
In the 2-D case e, centro symm try in the 2-D impulse 
response of a filter implies linear-phase filter. Also, the filter 
is “zero-phase” when the filter impulse response is centro-
symmetric with the center of symmetry at the origin i.e. 

0c =  

haracterization of 2-D periodicity B. C
different directions. 

where  and  are constant integer vectors 

and  with .  

The vectors  and represent the displacement from any 

2-D signals can have periodicities along 
A general 2-D periodic signal can be described as [10]: 

][x][x 0 npn =+ , and  ][x][x 1 npn =+  
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sample to the corresponding sample of two other periods. 
One period of the periodic signal is contained in the 
parallelogram-shaped region whose two adjacent sides are 
formed by the vectors 0p  and 1p . These vectors are called 
periodicity-vectors, and they can be arranged to form 
columns of a 2x2 nonsingular integer matrix P  called the 



periodicity matrix. The number of samples in one period is 
equal to |det(P )|. In the special case where P  is diagonal, 
the signal is said to be rectangularly-periodic. 

 

III. EFFECT OF SUBSAMPLING AND FILTERING OPERATIONS 

The quest n a non-

g on 

ch of a non-separable filter-bank (like 

ON SIGNAL PERIODICITY AND SYMMETRY 
ion that we now address is as follows: I

separable filter-bank, assuming the input signal has certain 
symmetry and periodicity, what symmetries or periodicities 
do the subband signals exhibit. This requires us to analyze 
the effect of the nonseparable filtering and downsampling 
operation on the signal periodicity and symmetry.  

A. Effect of nonseparable filtering and subsamplin
signal periodicity 
Consider one bran
Fig-1) with sampling matrix 1D . Let the input signal ]x[n  
be periodic with periodicity matrix P ,  

][x][x nPrn =+ , where 
i.e.

r  is any integer vector (see 
signal ]x[n  as input to the 

analysis filter H (a shift-invariant syste he output is also 
periodic with the same periodicity matrix as ]x[n  i.e. 

][x][x 00 nPrn =+ . Consider the sub-band signal 0v , 

ownsampling x using the sampl  

matrix 1D  i.e. ][x][v 00 nDn 1= . 

But  x P+

section II). With the periodic 
m), t

which is obtained by d 0 ing

][x][ 00 nrn =  
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city matrix  Note  g

a cascaded tree structure of 
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periodi that, in eneral, this is not 
rectangularly periodic. Also, since we are dealing with 
discrete-time signals, we need PD 1

1
−  to be an integer 

matrix. In the context of a subban age coding scheme, 
this usually implies a “proper” choice of the input image 
size. For e.g., for Quincunx filter-banks, if we assume that 
one period of the input signal is supported on a “square 
region” N x N , with even N , then IP N= , and PD 1

Q
−  is 

an integer ma x for even N
Since it is common to have 

PD 1
1
− .

d im

tri . 

filter-banks, the signal 0v  will be further downsampled (in 
general, the second st e of the filter-bank can be a ag

band2 −D  filter-bank, using a sampling matrix 2D - 

ot be the same as in Stage-1). Then, following 
an analysis similar to above, the sub-band signal of the 
second stage with sampling matrix 2D  is periodic with 

periodicity matrix PD 1
1
−  i.e. 
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be an integer matrix. We su ws: 
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mD  denoting the sampling matrix of stage-m. Let the input 
e (first-stage of) tree-structured filter-bank be a periodic 

signal with a periodicity matrix P  i.e. ][x][x nPrn
to th

=+ . 
Then, 
a) The sub-band signals of the first stage (m=1) are 

integer matrix 
b) signals of the second stage (m=2) are 

s
be an integer matrix 

c) and signals of the m’th stage are 

 
ote: It follows that if the same sampling matrix  is used 

integer matrix. 

separable filtering and subsampling on 

er signal symmetries. Again, consider one 
br
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periodic with periodicity matrix PD 1
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In general, the sub-b
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N D
is used for all the stages, then sub-band signals of the m’th 
stage are periodic with periodicity matrix PD-m  i.e. 

][v][v m PrDnn −+= . Again, we need PD-m e an 

B. Effect of non

 to b

signal symmetry 
We now consid
anch of a non-separable filter-bank with sampling matrix 

1D . Let the input signal ]x[n  be symmetric as follows: 
][[x][x] nSnSnS 321 x][x n ==  (for e.g., this could 

symmetries, as described in section II). If the filter impulse-
response has the same symmetry as the input, then the 
output of the filter will also have the same symmetry. 

Consider the sub-band signal 0v , which is obtain

be one of quadrantal, or diagonal, or 4-fold rotational 

ed by 

downsampling x using the sampl  matrix D  
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integer, orthogonal, and have determinant = 1± . This 
makes the transformations equiaffine and congruen

We can repeat this analysis for the next stages in th
t. 

e tree-
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c) In general, the symmetries in the sub-band signals of 

v m1...D

In all cases, we need the matrices describing the 
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ote: It follows that if the same sampling matrix D is 
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nDS m
2

m
 

Again, we need the matrices describing the 
tra

IV. ANALYSIS OF SYMMETRIC SIGNAL EXTENSION METHOD 

 
e now use the results from section III to analyze the 

sy

input 2-D signal has square Region Of 
Su
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.
 sampling matrix 

uctures filter-bank. We summarize this as : 
Proposition 2: Consider a tree-structured fil
m  denoting the sampling matrix of stage-m. Let the input 

the (first-stage of) tree-structured filter-bank be a 
symmetric signal, as ][x][x][x][x nSnSnSn 321 === . 
Then, 
a) Th

D
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nsformations to be integer, orthogonal, and having 
determinant = 1±  (thus making the transformations 
equiaffine and congruent). 

 
N
ed for all stages, then the symmetries in the sub-band 

signals of stage-m are as follows: 
][v][v nDSDn m

1
m−= [v D −= ]

][v nDSD m
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nsformations to be integer, orthogonal, and having 
determinant = 1± . 

 

FOR QUINCUNX FILTER BANKS 

W
mmetric extension method for Quincunx filter-banks 

shown in Fig-1. 
Assume that the 
pport (ROS) of )1N0,1N0( −− , where assume 

that N is even. Sym input gives us a 
quadrantally symmetric and rectangularly periodic signal. 
Consider a rectagularly-periodic input signal with 
periodicity matrix IM , where 2N2M −=  (obtained by 
mirroring the quadrantal-symmetrically ed signal). 

We now analyze how rectangular-periodicity a

metric extension of the 

adrantal-symmetry is affected by the Quincunx down-
sampling operation. From Proposition-1, with a 
rectangularly-symmetric signal with periodicity matrix IM  
as input, the sub-band signal 0v  of Stage-1 is periodic with 

periodicity matrix 1
QD−M , i.e ]M[v][v 00 rDnn 1

Q
−+=  

(Note that for th incunx
 

e Qu QD , 

T1 DD 1
=− . Thus 

QQ 2
T1 MM DD =− ). Since, for e 

pling matr e subband signal of 

stage-2 is periodic with per matrix 

QQ 2
th

Quincunx sam ix,  th

iodicity 

 ID 22
Q = ,

IM
 (i.e. it is 

rectangularly periodic). 
We now analyze the s

wh

2

ymmetries of the sub-band signals, 

D =− , it f
signal of stage-1 has 

en the input signal is quadrantally symmetric. From 
proposition-2, and since, for the Quincunx sampling matrix 

QD  we have 3Q1
1

Q TDTD =− , 4Q2
1

Q TDTD =− , and 

Q21
1 DTT −= oll -band 

the following symmetry: 
][v][v][v][v 0000 nTTnTnTn 4343 =

43Q TTI ows that the sub
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I ) it follows 

that the sub-band signal of stage-2 is quadrantal-symmetric. 
So, for Quincunx filter-banks, the sub-band signals of

od

diagonal symmetry. And, (again using D 22
Q =

 

 the filters in the 

V. ANALYSIS OF SYMMETRIC SIGNAL EXTENSION METHOD 
4-CHANNEL FILTER-BANKS WITH HEXAGONAL 

 
We now analyze the case of non-separable 4-channel 

l

d-stages have diagonal symmetries, and the sub-band 
signals of even-stages have quadrantal symmetries. 

A. Symmetry requirements on the filters 
For the symmetric extension method,

Quincunx filter-bank need to have the same symmetries as 
the input signal i.e. the filters need to be quadrantally-
symmetric for Stage-1 (all odd numbered stages), and 
diagonally-symmetric for Stage-2 (all even numbered 
stages) of the tree-structured filter-bank, so that the filtering 
operation maintains the symmetries. The method of 
transformations of variables as proposed in [12] can be used 
to design filters with the required symmetries. In fact, the 
transformation functions )(M z  used in [12] exhibit 
quadrantal as well as diagonal symmetry. Thus, the filters 
designed have quadrantal as well as diagonal symmetries. 
Thus these filter-banks can be used for all the stages (even-
numbered as well as odd-numbered stages) with the 
symmetric signal extension method for the Quincunx filter-
bank.  
 

FOR 
SUBSAMPLING 

fi ter-banks with hexagonal subsampling. Assume that the 
input signal has square ROS of )1N0,1N0( −− , 
where assume that N is a multiple o  
of the input gives us a quadrantally symmetric and 
rectangularly periodic signal. Consider a rectagularly-
periodic input signal with periodicity matrix IM , where 

N2M

f 4. Symmetric extension

=  (Note that we do not use “mirroring” in this case, 
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output of the second-stage 
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we see that the sub-band signals of the first stage have 
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the sub-band signals of the second stage have quadrantal 
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ry requirements on the filters 
 filters to have the 
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VI. CONCLUSION AND FUTURE WORK 
We anal bsampling 
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adrantally symmetric). Consider the sub-band signals of 
the first stage. Observing that  
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A. Symmet
For the above analysis, we also need the
me symmetries as the input signal. In the case of the above 

example, we require that the filters for stage-1 with 
sampling matrix H1D  should have quadrantal symmetry, 
and the filters for stage-2 with sampling matrix H2D  should 
have diagonal symmetry. A 4-channel filter-bank with filters 
having symmetries as above can be done using the approach 
described in [13]. 

 

yzed the effect of the non-separable su
eration on the periodicity and symmetry of a 2-D signal. 

We observed that the nature of signal symmetry and 
periodicity changes after non-separable subsampling 
operations – something that does not occur in the 1-D case 
(or in 2-D separable subsampling). We analyzed the 
symmetric extension method for the case of Quincunx filter-
banks, and for hexagonally subsampled 4-channel filter-
banks.  

A subject for further work is to address problem of signal 
extension methods for a general non-separable filter bank 
with a given sampling matrix M . Design of symmetric 
Quincunx filter banks with the filters having various 
symmetries has been addressed in the literature [11-12]. The 
design of symmetric M -channel filter banks, where the 
subsampling matrix M has a specific form, has been 
addressed in [13]. However, the design of non-separable 

filter banks with the filters having various symmetries is not 
addressed for the case of general M -channel filter banks. 
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