
Audio Source Separation for Improved Tabla
and Vocal Transcription in Vocal Mixtures

Dissertation

submitted in partial fulfillment of the requirements

for the degree of

Bachelor & Master of Technology

by

Aniruddha Deshpande

Roll No: 150010005

under the guidance of

Prof. Preeti Rao

Department of Electrical Engineering

Indian Institute of Technology Bombay

2020

Dissertation Approval Sheet

This is to certify that the dissertation titled

Audio Source Separation for Improved Tabla and Vocal Transcription in

Vocal Mixtures

By

Aniruddha Deshpande

(150010005)

is approved for the degree of Bachelor & Master of Technology.

Prof. Preeti Rao

(Guide)

Internal Examiner

External Examiner

Chairperson

Date :

ii

Declaration of Authorship

I, Aniruddha Deshpande declare that this written submission represents my ideas

in my own words and where others ideas or words have been included, I have adequately

cited and referenced the original sources. I also declare that I have adhered to all

principles of academic honesty and integrity and have not misrepresented or fabricated

or falsified any idea/data/fact/source in my submission. I understand that any violation

of the above will be cause for disciplinary action by the Institute and can also evoke

penal action from the sources which have thus not been properly cited or from whom

proper permission has not been taken when needed.

Signature

Roll Number

Date:

Abstract

This thesis deals with performing tabla and vocal source separation on Hindustani vo-

cal mixtures with the aim of obtaining separated tracks that yield well to the existing

tabla and vocal transcription algorithms. This is motivated by the unsatisfactory per-

formance of existing transcription algorithms on such mixtures and the lack of available

source separation models specific to this genre. We build a dataset of Hindustani vocal

mixtures composed of vocals, tanpura and tabla. We consider a state-of-the-art source

separation method, trained on these vocal mixtures with the corresponding tabla-only

target, to find that we get a significantly improved performance for onset detection and

stroke classification over that achieved on the mixture. In an attempt to improve the

accuracies further with reference to those obtained with the original unmixed tabla,

we investigate influencing the deep learning representation for source separation by an

additional task-specific loss, namely, the onset detection function cross-entropy, via a

suitably designed multitask learning network. We perform vocal separation by removing

the tabla estimate from the mixture using Wiener filtering, and then suppressing the

tanpura using an available noise reduction tool. Vocal source separation was evaluated

on the basis of pitch detection performance of two well known pitch tracking algorithms

on the separated vocals, as compared to the corresponding clean vocals.

Keywords: Audio source separation, machine learning, audio transcription, dataset

iv

Acknowledgments

First and foremost I would like to thank my guide Prof. Preeti Rao for her constant

guidance and support throughout the last year. She would ensure to regularly meet,

discuss and provide critical feedback on the progress of the work, which played a central

role in shaping the course of the project.

I would also like to thank Rohit, for his help in performing the onset detection and

stroke classification evaluations, debugging code and brainstorming ideas.

A special thanks to all the musicians who took the time out to provide us with their

recordings, without which our work could not have progressed.

I’d also like to thank everyone in DAPLAB for making it a great environment to

work in. I would especially like to thank Sachin and Rohit for their help in setting up

my workspace and in resolving any system issues I faced and Krishna for helping me

resolve Python and Latex issues much faster than I would on my own. I’d also like to

thank Prof. Preeti Rao, Prof. Rajbabu, Rohit and everyone else who ensured that the

lab facilities kept running smoothly even during the pandemic.

Lastly I would like to thank my family and friends whose support helped me get

through the most stressful periods of the project.

Aniruddha Deshpande

IIT Bombay

(Date)

v

Contents

Abstract iv

Acknowledgments v

List of Figures 1

1 Introduction 2

1.1 Motivation . 2

1.2 Approach . 3

1.3 Organisation . 4

2 Source separation overview 5

2.1 Source separation methods . 6

2.1.1 Modelling the lead signal: Harmonicity 6

2.1.2 Modelling the accompaniment as redundancies 7

2.1.3 Data driven approach . 7

2.2 Evaluation measures . 7

2.2.1 BSS eval . 8

2.2.2 Tabla transcription accuracy . 10

2.2.3 Vocal pitch tracking accuracy . 12

3 Network architecture 16

3.1 Open Unmix overview . 17

3.1.1 Architecture description . 17

3.1.2 Data representation . 17

3.1.3 Training Procedure . 19

3.1.4 Hyperparameters . 19

3.2 Multi-task learning overview . 20

3.3 MTL extension of Open Unmix for tabla source separation 22

vi

3.3.1 Loss Functions . 22

3.4 Pytorch implementation . 24

4 Dataset Description 26

4.1 Overview . 26

4.2 Vocals plus tanpura tracks . 27

4.3 Tabla tracks . 27

4.4 Dataset Split and Mixing . 27

4.4.1 Test set . 28

4.4.2 Train and Validation sets . 28

4.5 Dataset preparation scripts . 29

5 Tabla source separation experiments 31

5.1 Motivation . 31

5.2 Models evaluated . 32

5.3 Results and observations . 34

5.3.1 Additional comments . 40

6 Vocal source separation experiments 42

6.1 Motivation . 42

6.2 Train Open Unmix on vocals+tanpura target 43

6.3 Remove tabla estimate from mixture audio using Wiener filtering 45

7 Potential applications: Music complexity analysis 50

7.1 Facets of complexity . 50

7.1.1 Pitch-related variables . 51

7.1.2 Rhythm-related variables . 51

7.1.3 Structure-related variables . 52

8 Conclusion and Future work 53

8.1 Conclusion . 53

8.2 Future Work . 54

vii

List of Figures

1.1 Contributions in this thesis . 4

2.1 The source separation problem shown for the typical Hindustani concert audio

with vocals accompanied by tabla and tanpura 5

2.2 From left to right: Spectrogram of (a) Drums (b) Tabla. Note the harmonic

components present upto ∼1.5kHz in the tabla spectrogram 12

2.3 Confusion matrix of frame voicing estimates 14

3.1 Open-unmix network architecture [1] . 17

3.2 Two methods of MTL for deep learning 21

3.3 Proposed MTL architecture. 1) and 2) refer to the two branching positions

(early, late) that we have considered while evaluating this multi-task architec-

ture. The box on top contains the original Open Unmix [1] architecture. The

box at the bottom shows the details of the tabla onset detection branch that we

propose . 23

3.4 Python scripts used for implementation 25

5.1 Validation error plots during model 1 training. From left to right: (a)

Validation MSE (b) Validation BCE SF 37

5.2 From left to right: (a) Train MSE loss plot for model 1 (b) Validation

BCE SF loss . 37

5.3 Spectrograms of tabla outputs (0-8kHz shown) predicted by model 1 (Top) and

model 4 (Bottom). The spectrograms correspond to an excerpt from a 10dB test

set example . 38

5.4 (From left to right) Training MSE plots for (a) Model 1 (b) Model 4 . . 39

viii

5.5 From top to bottom: Spectrograms of (i) Mixture (ii) Model 5 output (iii) Model

7a output and (iv) Clean tabla. At time (a) and (d) model 7a output has a more

pronounced onset. (b) Model 7a has worse separation in some non-onset frames

(c) Model 5 output has vertical spread which could be mistaken as tabla onset,

model 7a has filtered this out . 40

5.6 Model 7a validation BCE SF loss . 41

6.1 Training and validation MSE plots for Open Unmix trained on tabla (left)

and vocals+tanpura (right) targets . 44

6.2 PYIN pitch tracks of an excerpt from a test example of (a) Mixture (b)

Mixture-Tabla (c) (M-T)30dB compared with pitch track of clean vocals.

(M-T)30dB refers to the track obtained by suppressing the tanpura of the

Mixture-Tabla track at 30dB level. 47

6.3 CREPE pitch tracks of excerpt from test example of (a) Mixture (b)

Mixture-Tabla (c) (M-T)30dB compared with pitch track of clean vocals.

(M-T)30dB refers to the track obtained by suppressing the tanpura of the

Mixture-Tabla track at 30dB level. 48

6.4 (Clockwise from top-left) Spectrograms of (a)Mixture (b)Mixture-Tabla

(c)Clean vocals (d)(M-T)30dB . 49

7.1 Calculation of self-similarity [2] . 52

1

Chapter 1

Introduction

1.1 Motivation

Vocal performances, accompanied by the tabla providing the rhythmic framework, are a

significant component of the repertoire of khyal, the North Indian classical music genre.

Musicological studies of the metrical structure and its relationship to the melodic con-

text can benefit from MIR tasks such as automatic transcription of the tabla, which

includes detecting the sequence of tabla onsets and the type of stroke at each onset, and

of the vocals which involves obtaining the pitch contour corresponding to the melody.

However, given that the performances involve musicians improvising together, we typ-

ically have access only to the mixed audio recordings for this musical genre. Even if

there are separate mics for the tabla and the vocalist during audio recording, there is

usually significant leakage from other sources. Tabla transcription will suffer because

standard onset detection algorithms when applied on such an audio are likely to pick

out onsets corresponding to the vocals and other accompanying instruments along with

tabla onsets. Stroke classification algorithms, which analyse the spectral representation

of the audio in the vicinity of the detected stroke onset are also likely to be prone to

errors because of the interference from vocals and other instruments. Vocal transcrip-

tion would also suffer because of spectral leakage from other sources. This motivates the

need to develop an audio source separation system that is able to isolate the tabla and

the vocals, so we can perform relevant MIR tasks on the individual streams as opposed

to performing them on the mixture audio.

Audio source separation in the context of music has been widely studied and has

numerous applications such as automatic karaoke, remixing, up-mixing, pre-processing

for further analyses on individual streams and others. In recent years various kinds

2

1.2 Approach

of deep learning methods have had great success in source separation both in terms

of objective evaluation metrics [3] as well as perception. The problem however with

available deep learning models trained on data-sets such as MUSDB18 [4], DSD100 [5]

which are primarily Western music data-sets is that they fail to generalise to kinds of

music and instruments that are not represented in them. An example of this is that

when we used the pre-trained Spleeter [6] vocals model on Hindustani vocal mixtures,

we could see tabla harmonics (especially those of the right drum stroke, which has higher

spectral content) in the estimated ’vocals’ track. This is because typical drums, which is

the prominent percussion instrument in the data used for training Spleeter do not have

the tonal property of tabla strokes. Given that we are interested in studying Hindustani

vocal concerts, we could not directly use available trained source separation models for

this reason. Hence, there was a need to develop a source separation system that is

trained on a dataset comprised of tracks from this genre, and also to synthesise such a

dataset from available sources.

1.2 Approach

We consider a state-of-the-art source separation architecture and train it on a dataset of

Hindustani vocal concert audios. Since such a dataset is not freely available, we create

it by mixing vocals, tabla and tanpura obtained from various sources. Different models

are trained for separating tabla and vocal targets.

In this thesis, we attempt to move away from the most commonly adopted view of

source separation as an end in and of itself. Source separation quality is often judged

using the same standard metrics, irrespective of the task for which it is being developed.

We aim to develop a source separation system that separates the tabla and vocal tracks

in such a way that the MIR tasks described above perform well when applied on these

separated streams, and we evaluate source separation quality by comparing the accu-

racies of MIR tasks applied on separated tabla/vocals with those obtained by applying

the same on clean (unmixed) tabla/vocals.

For tabla separation, we exploit multi-task learning to bring in a loss function that

relates to the transcription task. Our proposed architecture thus has two branches

which perform source separation and tabla onset detection tasks respectively. Adding

an onset detection loss would drive the network to learn features that better preserve

onset information, which in turn would provide separated tabla that has better preserved

onsets and stroke information.

3

1.3 Organisation

For vocal separation, we first obtain an estimate of the vocals+tanpura audio, by

removing the tabla estimate from the mixture using Wiener filtering. The vocal estimate

is obtained from this by suppressing the tanpura using an available noise reduction tool.

STUDY AVAILABLE
SOURCE SEPARATION
MODEL TRAINED ON

WESTERN MUSIC
DATASET

SYNTHESIZE HINDUSTANI
MUSIC DATASET FROM
AVAILABLE SOURCES

EVALUATE SOURCE
SEPARATION MODELS

TRAINED ON HINDUSTANI
MUSIC DATASET

EVALUATE MODIFIED
MULTI-TASK LEARNING

ARCHITECTURE TRAINED
ON HINDUSTANI MUSIC

DATA

Figure 1.1: Contributions in this thesis

1.3 Organisation

The thesis is organised as follows. Chapter 2 contains the literature survey on the source

separation problem. Chapter 3 details the used source separation network architecture

and the proposed multi-task learning modification. Chapter 4 describes the dataset that

we have developed and used for training. Chapters 5 and 6 contain experiments, obser-

vations and results corresponding to tabla and vocal separation respectively. Chapter

7 contains a literature survey on musical complexity, a future application for which

we would like to use the developed source separation system. Chapter 8 presents the

conclusion and potential extensions of this work.

4

Chapter 2

Source separation overview

Source separation

+ +

Mixture

Figure 2.1: The source separation problem shown for the typical Hindustani concert audio

with vocals accompanied by tabla and tanpura

The source separation problem has been studied in various contexts over the years.

The aim of the problem is to separate the signal corresponding to a given source from

a mixture of signals coming from different sources. Let si(t) (1 ≤ i ≤ n) be the signal

corresponding to the ith source. The aim is to recover si(t) from x(t) =
∑n

i=1 aisi(t).

In our case we want to be able to obtain an estimate of the tabla and vocals from a

Hindustani classical music track, which will be a mixture of vocals, tabla and tanpura.

Research in source separation for audio started off being motivated by the problem

of speech enhancement, which involves obtaining a clean speech signal from a noisy

5

2.1 Source separation methods

recording[7]. The problem of separating vocals from instruments however, is a more

difficult problem than the former, as the former can be solved assuming the background

noise to be stationary and uncorrelated with the speech signal. In the case of sepa-

ration of music audio however, the other musical instruments in the background are

non-stationary as well as highly correlated with the target instrument to be separated.

It is clearly non-stationary because a guitar for example can be playing a different chord

or a different pitch at a different time and correlated, because for the song to be au-

dibly pleasing there needs to be some relation between the different music sources in

the mixture, like having the same key, tempo and time signature. The applications

for separation of vocals [7] and other instruments from a mixture are many, including

automatic karaoke, music up-mixing, remixing and others.

Over the years several methods have been used to tackle the music source separa-

tion problem, including but not limited to Non-negative matrix factorisation, harmonic

methods, but in recent years deep-learning and data driven methods have shown the

best performance,both in terms of perception as well as objective measures to evaluate

the quality of separation. This is why we have chosen a deep learning based approach

towards this problem.

In this chapter, we first review the different kinds of source separation techniques,

followed by which we discuss the different measures we will be using to evaluate the

quality of separation.

2.1 Source separation methods

2.1.1 Modelling the lead signal: Harmonicity

This method exploits the fact that vocal melodies are harmonic and will have a funda-

mental frequency associated with them. The approach involves estimating this funda-

mental frequency at every time frame and also then estimating the energy of the higher

harmonics. This information is then used to reconstruct the lead signal.

The fundamental frequency is estimated using suitable pitch detection methods or

using available score of the music. The reconstruction of the voice is done either by

sinusoidal synthesis or by filtering out any parts of the signal that do not lie close to

the detected harmonics. It’s performance may also be affected in the case where some

of the accompaniment is harmonic as well.

These methods have a few shortcomings associated with them. First, is the assump-

tion that the vocal signal is always harmonic, as certain phonemes may be unvoiced,

6

2.2 Evaluation measures

whispered or saturated making it difficult to deal with a harmonic model. The second

is that it heavily relies on the pitch detection algorithm working well on a mixture.

2.1.2 Modelling the accompaniment as redundancies

This set of methods is based on the assumption that the accompaniment is somehow

more redundant than the lead signal, in that they are likely to be more structured and

have a repeating pattern. This could involve using non-negative matrix factorisation

to decompose the mixture spectrogram, which is then used to identify the different

components of the mixture. These individual components are then re-synthesised to

give the lead and accompaniment signals.

These methods however, are unable to take into account the situations where there

are accompaniments that may not always be repetitive or redundant, and occur less

frequently in the audio. They also do not take into account the fact that the lead signal

may also be redundant or repetitive and fail to handle these cases.

Another set of methods also exist which jointly model the signal as being harmonic

and the accompaniment to be redundant.

2.1.3 Data driven approach

Data driven approaches use large amount of data, containing information about the

mixture and the individual components. Machine learning models are then trained

using this data to learn how it should perform the separation. Typically, these methods

involve using the network to estimate a time frequency mask, which when applied over

the input mixture spectrogram gives an estimate of the spectrogram of the desired

component.

2.2 Evaluation measures

Evaluating the results of source separation has been a difficult problem for quite some

time. There is no one objective metric to evaluate source separation results. The BSS

eval metrics [3] [8] which have been used as a part of the Signal Separation Evaluation

Campaign (SiSec) are the most commonly used source separation quality evaluation

measures. These measures involve projecting the estimate signal into noise and signal

sub-spaces and using these quantities to come up with various SNR terms, each having

a specific significance. We will also use specific measures for tabla and vocal separation

that evaluate the accuracy of transcription obtained by applying standard transcription

7

2.2 Evaluation measures

algorithms on these separated tracks. These measures are important because we are

developing our source separation system specifically as a pre-processing step for tran-

scription. All of the evaluation measures described in the following sections require

access to the corresponding clean target audios.

VOCAL CONCERT
AUDIO

CLEAN VOCALS
AUDIO

CLEAN TABLA
AUDIO

TABLA
SEPARATION

VOCALS
SEPARATION

VOCALS
TRANSCRIPTION

ACCURACY

TABLA
TRANSCRIPTION

ACCURACY

BSS EVAL

TABLA ESTIMATE

VOCALS ESTIMATE

1) ONSET DETECTION
2) STROKE CLASSIFICATION

2.2.1 BSS eval

The BSS eval metrics involve decomposing the estimated signal into various components

and using these components to calculate some SNR values. Let,

x(t) =
n∑

j=1

ajsj(t) + n(t) (2.1)

where, x(t) is the linear mix of the sources and n(t) is measurement noise. ŝj(t), the

estimate for the jth signal source can be decomposed as :-

ŝj(t) = starget + einterference + enoise + eartifact + espat (2.2)

This decomposition can be based on orthogonal projections. Consider the vector spaces

:-

Psj := Π{sj} (2.3)

Ps := Π{(sj′)1≤j′≤n} (2.4)

Ps,n := Π{(sj′)1≤j′≤n, (ni)1≤i≤m} (2.5)

8

2.2 Evaluation measures

Psj is the vector space defined by the original source vector, Ps is the vector space

defined by all the source vectors and Ps,n is the vector space defined by all the source

vectors as well as the measurement noise vectors. Since in our case we have only one

measurement, we put m = 1. The four decomposition terms are given by :-

starget := True source signal (2.6)

einterf := Psŝj − Psj ŝj (2.7)

enoise := Ps,nŝj − Psŝj (2.8)

eartif := ŝj − Ps,nŝj (2.9)

espat := Psj ŝj − starget (2.10)

The global performance measures for source separation are given by the following :-

Source to Distortion Ratio

SDR := 10 log
||starget||2

||einterf + enoise + eartif + espat||2
(2.11)

Source to Interference Ratio

SIR := 10 log
||starget + espat||2

||einterf ||2
(2.12)

Source to Artifacts Ratio

SAR := 10 log
||starget + einterf + enoise + espat||2

||eartif ||2
(2.13)

Source image to Spatial distortion Ratio

ISR := 10 log
||starget||2

||espat||2
(2.14)

The SDR and SIR terms are particularly useful for evaluating source separation. It’s

benefits over other existing methods are the following :-

1. They range from −∞ to +∞

2. Does not make any assumptions on the type of method used for separation

3. The different quantities defined above allow to distinguish between different kinds

of estimation errors

9

2.2 Evaluation measures

2.2.2 Tabla transcription accuracy

We are performing tabla source separation with the aim of performing accurate tabla

transcription on Hindustani vocal concert mixtures. Hence, we would like to evaluate the

quality of a tabla source separation system based on how available tabla transcription

algorithms perform on source separated tabla as compared to their performance on

clean (unmixed) tabla. Tabla transcription has two components, first is onset detection,

which gives the time instants at which tabla strokes occur and the second is stroke

classification, which gives the sequence of the types of strokes that are played. The

algorithms and evaluation measures used corresponding to both of these are described

below.

Onset Detection

To perform onset detection, we use a spectral flux based method [9]. A novelty curve

is first obtained by calculating the flux on the STFT magnitude of the audio signal

computed using a window size of 92ms and a hop size of 23ms. Peaks in the novelty

above a selected fixed threshold are then marked as onsets. We will refer to this series of

steps as the OD algorithm. The ground truth tabla onsets for the test set are obtained

by applying the OD algorithm on the clean tabla audios and manually correcting any

errors through a combination of observing the spectrogram and listening to the audio.

For evaluation, the OD algorithm is applied to the outputs of the source separation

model and the predicted onsets are compared to the ground truth onsets. The perfor-

mance is evaluated using precision, recall and f-score metrics, where a predicted onset is

considered a hit if it lies within ±25ms of an unmatched ground truth onset and a false

alarm otherwise, as in [10]. The fixed threshold value is varied from 0.1 to 0.9 to obtain

a precision-recall curve, from which the values at the point of best f-score are reported.

The precision, recall and f-score values are defined as :-

1. Precision: It is the ratio between the number of frames that are correctly pre-

dicted as onsets to the total number of frames that are predicted as onsets (=

TP
TP+FP).

2. Recall: It is the ratio between the total number of frames that are correctly pre-

dicted as onsets to the total number of ground truth onset frames (= TP
Total GT onsets).

3. F-score: It is the harmonic mean of precision and recall (= 2×precision×recall
precision+recall).

where, TP, FP and GT are true positive, false positive and ground truth respectively.

10

2.2 Evaluation measures

Stroke classification

One significant difference between tabla and common Western percussion instruments

like the drums is the presence of low-frequency harmonic components in the tabla (see

figure 2.2), which vary with the type of stroke played. This makes the problem of

tabla source separation for transcription even more complicated than for its Western

counterpart, as it involves preserving not only the wide-band energy burst corresponding

to the onset, but also the harmonic components in the low-frequency regions right after

the onset, which are crucial in identifying the type of stroke being played. For this

reason we use tabla stroke classification accuracy as a measure of evaluating tabla source

separation quality.

Tabla stroke classification, or bol transcription as it is sometimes known, commonly

involves detecting stroke onsets and identifying the bol or stroke [11, 12]. In the present

evaluation for stroke classification only, we use ground-truth onsets in order to focus

on the stroke classification errors uninfluenced by onset location uncertainty. While

the outputs of a tabla transcription system can encompass all the distinct tabla strokes

(bols), an important level in the taxonomy of bols is the classification into resonant and

damped strokes [13]. We restrict ourselves to the following four broad stroke categories -

resonant bass, resonant treble, resonant both, and damped. This is based on the distinct

musical roles that these stroke categories play in marking important sub-divisions in the

cyclic pattern of the tabla accompanying the lead musician [14].

For stroke classification into the prescribed categories, the input audio is first sepa-

rated into the two frequency bands: 50-150 Hz and 200-1000 Hz. These bands capture

the major harmonic energies of the resonant bass drum and resonant treble drum strokes

respectively. Next, at every specified onset instant, we extract the region from 20ms be-

fore the instant extending to the next onset instant in each filtered signal and carry out

further analyses on these segments. Resonant and damped strokes can be distinguished

from each other by the rate of decay of the spectral energy in two regions, one close to

the onset instant and the other, 25 ms or more removed. Linear fits to the short-time

logarithmic energy computed at 5 ms intervals are examined in terms of the best fitting

slope values, separately in each frequency band. The estimated slopes are subjected to

empirically selected thresholds to detect the presence of a resonant stroke separately

in each band (corresponding to treble and bass strokes for the higher and lower bands

respectively). If a resonant stroke is not detected in either, then the stroke is classified

as being damped.

To obtain the ground truth stroke classes on the test set, the algorithm is applied

11

2.2 Evaluation measures

on the clean tabla audios, and any errors are manually corrected. The output of this

algorithm when applied to the separated tabla audios from the various source separation

networks is compared to the target strokes, and the 4-way classification accuracy is

reported.

0 2 4 6 8
Time [sec]

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y
[H

z]

Drums Spectrogram

100

50

0

50

100

150

10 12 14 16 18
Time [sec]

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y
[H

z]

Tabla Spectrogram

300

250

200

150

100

50

Figure 2.2: From left to right: Spectrogram of (a) Drums (b) Tabla. Note the harmonic

components present upto ∼1.5kHz in the tabla spectrogram

2.2.3 Vocal pitch tracking accuracy

Similar to the above transcription based evaluation metrics for tabla separation, we will

evaluate our vocals separation results by comparing the pitch track extracted from the

estimate of the vocals obtained by the source separation network to the pitch track

extracted for clean vocals (ground truth). We will be obtaining pitch estimates using

the CREPE [15] and PYIN [16] algorithms.

A pitch tracking algorithm has two sets of outputs, the pitch track and the voicing

confidence probabilities. The pitch track is just an array containing the frame-wise

fundamental frequency estimates. The voicing confidence probabilities gives a number

between 0 and 1 which gives the confidence with which the algorithm estimates a given

frame to be voiced. If the value is greater than a given threshold the frame is estimated

to be voiced, and if lower than the threshold it is detected as un-voiced. To evaluate

the accuracy of a given pitch estimate, we account for the accuracies of both the pitch

track as well as the voicing confidence estimates.

The performance of the pitch tracker in [15] is evaluated by applying the algorithm

12

2.2 Evaluation measures

on a sound track, whose exact pitch track is known and the estimated pitch is compared

with this ground truth. The track with exact known pitch track is obtained using the

analysis/synthesis framework presented in [17]. This involves using a pitch tracker on

a given audio, and using this pitch track to re-synthesise the audio using sinusoids.

However, for our purpose we will use the pitch track obtained by applying the algorithm

on clean vocals as the ground truth, and then compare the pitch track obtained by

applying the algorithm on the vocals extracted by our model.

In this section we first give a brief overview of the two pitch detection algorithms

used, followed by a description of the measures used to evaluate pitch accuracy.

PYIN [16]

The Probabilistic YIN or PYIN [16] algorithm is a monophonic pitch tracking algo-

rithm. It consists of a series of steps. The first step involves computing a difference

function for each frame, which is proportional to the negative of the autocorrelation

function of the frame. The position of the peaks of the autocorrelation function are

indicative of the wavelength of the signal, hence the minimas of the difference function

indicate the wavelength. Each minima value and position is then finetuned by parabolic

interpolation, to account for the discretisation due to sampling. This is followed by a

probabilistic thresholding step, and minimas with values lesser than the threshold are

considered. If no minima is below the threshold, some probability is assigned to the

event that the frame is unvoiced. This step gives a probability distribution of estimated

pitches for each frame based on the distribution of thresholds used. The pitches are

discretised into 480 bins, ranging from 55Hz to 880Hz (4 octaves), in steps of 10 cents

(0.1 semi-tones). Each frame is now considered to be a timestep in an HMM, the pitches

are the states of the HMM, and the probability distribution of these states is obtained

from the thresholding step. For each pitch there are 2 states, corresponding to voiced

and un-voiced states. The transisition probabilities are fixed such that it allows only

upto a given amount of pitch difference between consecutive frames. Viterbi decoding

of this HMM gives the estimated pitch track. The HMM smoothing serves to make it

more robust to noise, but because the algorithm depends on the difference function, it

performs poorly in a polyphonic setting. The difference function computed for the sum

of two signals is significantly different than that for only one of the signals.

13

2.2 Evaluation measures

CREPE [15]

Convolutional REpresentation for Pitch Estimation (CREPE) is a deep learning based

pitch detection model, which uses a CNN architecture. It is trained using two different

datasets, the RW-synth, which has a fixed timbre over all tracks, and MedleyDB which

contains tracks with realistic timbre. For each time frame, the model outputs a prob-

ability distribution over 360 discrete pitch values, ranging from 32.70Hz to 1975.5Hz

(6 octaves) in 20-cent intervals. The model is trained by minimizing the binary cross

entropy error between the predicted and target pitch vectors, where the target pitch

vector is a 360 dimensional vector with the ground truth bin having a value of 1, which

is Gaussian-blurred in frequency to reduce penalty for nearly correct predictions. The

available CREPE implementation performs a temporal smoothing using Viterbi decod-

ing. This model is found to be significantly more robust to different kinds of noises as

compared to the PYIN algorithm.

Pitch accuracy measures

Figure 2.3: Confusion matrix of frame voicing estimates

In order to define the pitch evaluation metrics we will use the terms in figure 2.3. We

use the following metrics to evaluate the performance of a given pitch track as compared

to the ground truth. :-

1. Voicing recall: This is defined as the ratio between the number of frames that are

correctly labelled as voiced in the estimate, to the total number of voiced frames

in the ground truth(= TP
GV).

2. False alarm - This is defined as the ratio between the number of frames that are

14

2.2 Evaluation measures

incorrectly labelled as voiced in the estimate, to the total number of un-voiced

frames in the ground(= FP
GU)

3. Raw pitch accuracy: This is defined as the ratio between number of voiced

frames for which the estimated pitch is within 50 cents (1cent = (1
100)thsemitone)

of the ground truth value to the total number of voiced frames. This includes the

pitch guesses for frames that were estimated as unvoiced(= TPc+FNc
GV).

4. Raw chroma accuracy: This is defined as the ratio between number of voiced

frames for which the estimated pitch is within 50 cents (1cent = (1
100)thsemitone)

of the ground truth value, or a different octave of the ground truth pitch to the

total number of voiced frames. This includes the pitch guesses for frames that

were estimated as unvoiced.

5. Overall accuracy: This measure combines the voicing accuracy measures along

with the pitch accuracy measures. It is defined as the ratio between the sum of

number of frames labelled as unvoiced and the number of frames labelled as voice,

having estimated pitch within 50 cents of the ground truth to the total number of

frames in the audio(= TPc+TN
GU+GV).

The subscript c refers to frames for which pitch has been correctly estimated upto a

given tolerance.

We have used the mireval [18] python library to compute the pitch track evaluation

metrics.

15

Chapter 3

Network architecture

We have chosen the network architecture of Open Unmix [1] as the baseline for our task.

The choice was made because this network gives state-of-the-art separation performance

on using the MUSDB18 dataset [19]. However, this is not the only well-performing

deep learning architecture. Spleeter [6] uses the U-net [20] architecture. SVSGAN [21]

uses generative adversarial networks, in which a second network specifically trained to

distinguish between the target source audio and the output of the source separation

model is used to improve the performance of the source separation model. Both these

models also give state-of-the art source separation performance. We choose Open Unmix

over these, because of the easy availability of its open source implementation using

Pytorch.

The Open Unmix network trained on MUSDB18 dataset performs very well on west-

ern music [1]. MUSDB18 is a data-set consisting of 150 songs (nearly 10 hours) belonging

to different genres along with separate vocals, drums, bass and other instruments stems.

This trained model’s performance on Hindustani classical music however is quite poor

(as shown in chapter 5). We propose to first train this network on a Hindustani music

data-set, and then propose a multi-task learning based modification to this architecture

that would help further improve tabla source separation performance in the terms of

improved tabla transcription as mentioned in chapter 1.

The organisation of this chapter is as follows. We first provide a detailed descrip-

tion of the Open Unmix architecture, the training procedure employed and the hyper-

parameters of interest. This is followed by an overview of the multi-task learning ap-

proach, which we will be using to modify the baseline architecture. The next section

details the architectural modifications that we introduce. In the last section, we provide

an overview of the pytorch implementation of the network architecture.

16

3.1 Open Unmix overview

3.1 Open Unmix overview

MIXTURE SPECTROGRAM TARGET SPECTROGRAM

CROP 16 KHz

INPUT SCALER OUTPUT SCALER

OPEN UNMIX

FC1

F
C

B
A
T
C
H
N
O
R
M

T
A
N
H

BN1 TANH

SKIP CONNECTION

BLSTM
X3

FC2

F
C

B
A
T
C
H
N
O
R
M

R
E
L
U

R
E
L
U

BN2 FC3

F
C

B
A
T
C
H
N
O
R
M

BN3RELU RELU

Figure 3.1: Open-unmix network architecture [1]

3.1.1 Architecture description

The network architecture is showed in figure 3.1. It consists of a tanh activated fully

connected layer (FC1) followed by a 3-layer bidirectional LSTM (BLST), followed by 2

fully connected (FC2, FC3), Relu activated layers. Each fully connected layer is followed

by batch normalisation (BN1, BN2, BN3). It takes as input the A brief description of

the components of the architecture is given below.

3.1.2 Data representation

The network takes the mixture spectrogram as the input and is trained to estimate a

time-frequency mask, which when applied on the mixture spectrogram gives the esti-

mated spectrogram of the clean target. Before feeding into the first fully connected

layer, the input mixture spectrograms are cropped to 16kHz and normalised using mean

and variance computed on the mixture spectrograms of the training dataset used (Input

scaler). The output of the last layer is scaled using the mean and variance computed on

the target spectrograms of the training dataset (Output Scaler).The window-size and

hop-size used for computing the spectrograms are variable parameters (default=4096,

1024).

17

3.1 Open Unmix overview

Bidirectional LSTM layer

LSTM layers are used to model temporal data. They are an improvement over regular

recurrent neural networks (RNNs) in that they have special gates within their cells that

allow selective retention and forgetting of past information [22]. They have what is

known as a cell state at every given time instant that is a function of the input at that

time as well as all the past inputs. In multi-layer LSTMs the nth layer takes the output

of the (n− 1)th layer as its input. In bidirectional LSTMs the cell state at a given time

is not just a function of the past inputs, but of the future inputs as well. This is useful

for our problem, because at a given time the network is able to use information from

the past as well as the future to perform source separation, which is better than using

information just from the past as in a regular LSTM.

Batch Normalisation

The model also uses a batch normalisation layer after every fully connected layer to

account for the internal covariate shift [23]. The layer normalises the output of each

fully-connected layer to have a mean of 0 and and variance of 1. This has been shown

to speed up convergence during training. The intuition behind why this happens is the

following. If batch normalisation is not applied, then each time there is an update on

the weights of the nth layer, it changes the distribution of the input to the (n + 1)th

layer. This leads to training of layers happening in a sequential manner, from the early

to the late layers. Applying batch normalisation before every layer ensures that the

distribution of the input to each layer stays the same throughout the training, causing

the layers to start learning simultaneously as opposed to sequentially, thus speeding up

training.

Early Stopping

The model also employs Early stopping to prevent overfitting. The patience argument

specifies the number of epochs (default=140) to wait after the last time validation loss

improved, before stopping training. Using this we can training the model only up to

that point till which performance on validation set is improving and stop training if it

isn’t.

18

3.1 Open Unmix overview

Learning rate decay

The model also uses learning rate decay, which reduces the learning rate by a given

factor if a particular metric (here, validation error) does not improve for a given number

of epochs (default=80). It is found that learning benefits by reducing learning rate when

learning stops improving.

3.1.3 Training Procedure

In each epoch of training the training data is arranged and fed into the network as

follows. First, random audio chunks of length given by the variable seq-dur (default

value=6s) are taken from the mixture and target (tabla or vocals) stem for each track of

the training data. These are then arranged into batches of size given by the ’batch-size’

variable. The spectrograms corresponding to these are computed on the fly.

After passing through FC1, tanh and BN1, each example in each batch is now fed

into the LSTM framewise, ie. each timestep for the LSTM corresponds to one frame of

the spectrogram. Since the LSTM used is bidirectional, the spectrogram is fed in both

directions simultaneously. The input of the LSTM is concatenated with the output of

the LSTM with a skip connection and is then passed through two fully connected layers,

followed by an output scaler to give a time-frequency mask. This mask is multiplied

elementwise to the input mixture spectrogram, to get the estimated target spectrogram.

After all the examples in a batch are fed in, the back propogation through time

(BPTT) algorithm [22] is used to compute the gradients of the loss function (MSE be-

tween estimated and target spectrograms) with respect to the weights. These gradients

are then averaged over the batch and weights are updated. This is done one after the

other for all the batches. After this the next epoch begins for which random chunks are

chosen again and the procedure is repeated.

3.1.4 Hyperparameters

The given network has a large number of hyperparameters which have different effects

in the training of the network. In this section we describe some of the important hyper-

parameters and the effects that they have on the training.

1. Batch size: Size of the batches into which data is divided for training

• A smaller batch size means the noise in gradient estimation is more. This

could lead to more generalisable training, but at the same time given a fixed

learning rate, convergence is slower.

19

3.2 Multi-task learning overview

• A larger batch size also means slower training, because it takes longer to

estimate the gradient

2. Spectrogram Window length:

• Broad band spectrograms are better at capturing formant information and

transients like tabla onsets, while narrow band spectrograms better capture

fundamental frequency of the sound. The performance of the network could

vary based on the type of spectrogram used and it would be interesting to

observe what window length works best. One intuition could be that for

the problem of pitch detection on extracted vocals, using a narrow band

spectrogram could give better results

3. LR decay gamma: Factor by which learning rate is reduced if validation loss

isn’t improving

4. LR decay patience: The number of epochs for which validation error must not

improve after which learning rate decay is applied

5. Sequence duration: The length of the chunk taken from each song for one epoch

of the training.

• This directly relates to the amount of context you take into account while

training the LSTM. Longer sequence duration means more context, but it

makes it harder to train the LSTM .

6. Loss function used for training:

• The Open Unmix architecture uses the MSE loss between the estimated and

target spectrograms as the loss function for training.

• In order to perform source separation that yields better to transcription after

separation, adding a loss that corresponds to the transcription accuracy could

help perform better separation in this context. We do this for the tabla source

separation problem, by using a multi-task learning approach and introduce a

new loss that corresponds to tabla onset detection accuracy.

3.2 Multi-task learning overview

Multi-task learning (MTL) refers to optimising a network using multiple loss functions,

where each loss function could correspond to a different task. Learning shared represen-

20

3.2 Multi-task learning overview

tations for related tasks is found to help better generalise the performance on each task,

compared to if they are learned independently [24]. There are two methods of using

MTL for deep learning [24] (see figure 3.2).

TASK 2TASK 1 TASK 1 TASK 2

SHARED
LAYERS

TASK
SPECIFIC
LAYERS

CONSTRAINED
LAYERS

(a) HARD PARAMETER
SHARING

(b) SOFT PARAMETER
SHARING

Figure 3.2: Two methods of MTL for deep learning

1. Hard parameter sharing: In this approach, the network architectures has hid-

den layers that are shared across the different tasks, followed by task specific

output layers.

2. Soft parameter sharing: In this approach, different models with different pa-

rameters are used for different tasks. A regularisation term is used in the loss

function during training to encourage the parameters of the different tasks to be

similar.

Multi-task learning has been used in a variety of contexts in audio signal processing

tasks. Sebastian et. al.,[25] use the multi-task learning approach on a temporal convolu-

tion network architecture for simultaneous tempo estimation and beat tracking. In the

context of source separation, speaker source separation is found to improve when a DNN

is trained to separate both target and interfering speakers as opposed to when the DNN

only separates the target speaker from the mixture [26]. Clement et. al., [27] proposes

a model with a shared encoder and independent decoders for simultaneously separating

multiple target instruments from music audio instead of using separate models trained

independently for different instruments. Very recently, we came across a work that

sought to simultaneously separate the instruments and obtain a MIDI transcription of

21

3.3 MTL extension of Open Unmix for tabla source separation

a polyphonic mixture using a multi-task trained network [28]. They use L2 distance to

a MIDI based transcription as the transcription loss for training to eventually obtain

improvements in both source separation and transcription.

We use the hard-parameter sharing multi-task learning approach to further improve

tabla source separation. The details of our proposed MTL architecture are given in the

next section.

3.3 MTL extension of Open Unmix for tabla source sepa-

ration

In this work we aim to develop a source separation network for the separation of the tabla

from a Hindustani vocals concert audio for the express purpose of tabla transcription in

terms of stroke type and onset instants. We exploit multi-task learning to bring in a loss

function that relates to the transcription task. Our proposed architecture thus has two

branches which perform source separation and tabla onset detection tasks respectively

(see figure 3.3).

The onset detection branch takes as its input, the output from an intermediate layer

of the source separation network (as shown in figure 3.3). It consists of a convolutional

layer followed by an average pooling layer and finally a fully connected layer with a

sigmoid activation function, so the output can be interpreted as a probability. The

convolutional layer uses 2D filters with unit height and a width of 7. This choice was

made so that while detecting onsets, information from 3 neighboring frames on either

side is available. The average pooling layer pools along the height, which corresponds

to aggregating the energy in a given frame. The branch output is a vector of frame-wise

onset probabilities.

The target for training the system is obtained by applying onset detection as de-

scribed in section 2.2.2 on the corresponding target clean tabla spectrogram. The loss is

computed as the binary cross entropy (BCE) between the target onset probabilities and

the corresponding predicted frame-wise onset probabilities at the output of the MTL

branch. We choose binary cross entropy loss because the onset detection can be viewed

as a binary classification task for each frame.

3.3.1 Loss Functions

The network is trained using a linear combination of the MSE loss computed on the

source separation branch and the BCE loss computed on the onset detection branch.

22

3.3 MTL extension of Open Unmix for tabla source separation

Figure 3.3: Proposed MTL architecture. 1) and 2) refer to the two branching positions (early,

late) that we have considered while evaluating this multi-task architecture. The box on top

contains the original Open Unmix [1] architecture. The box at the bottom shows the details of

the tabla onset detection branch that we propose

On observing the loss values, we noticed that the scale of the onset loss was much smaller

than the scale of the source separation loss. To counteract this, we scaled the onset loss

by 10. The architecture is trained on the following loss expression.

Ltotal = (1− γ)LSS + 10γLOD (3.1)

where, γ ∈ [0, 1] is the hyperparameter to control relative weighting of the two losses,

LSS is the MSE loss corresponding to the source separation branch and LOD is the BCE

loss computed on the onset branch. It is computed as in equation 3.2.

LOD = − 1

N

∑
n

wn[pn log p̂n + (1− pn) log(1− p̂n)] (3.2)

where, pn and p̂n are the target and predicted tabla onset probabilities corresponding

to the nth frame, N is the total number of frames and wn is the weight assigned to the

frame. wn = 0.5 for frames on either side of target onsets and wn = 1 for the rest. That

is, frames on either side of target onsets are weighted half as compared to the rest of

the frames, so as to account for the spread of onset events between frames by reducing

penalty in the close vicinity.

23

3.4 Pytorch implementation

3.4 Pytorch implementation

Open Unmix as well as our MTL extension of it are implemented in pytorch. The MTL

architecture is built on top of the baseline architecture. In this section, we describe the

functions of the different scripts that are used for the implementation, and how they

interact with each other. More details about the implementation and the complete code

can be found in this github repository..

• train mtl.py: Contains script for training the proposed MTL architecture. On

running, it saves the trained model weights, as well as the training and validation

curves corresponding to the losses of interest. The script saves the model weights

in a ’.pth’ file.

• data.py: Contains classes to arrange the dataset in a way that they can be given

to the network as input.

• model mtl.py: Contains classes of the model description of the architecture used.

• test new.py: Contains scripts for using a trained model to perform separation

and tabla onset detection using the onset detection branch of the MTL architec-

ture.

• eval new.py Uses specified trained model to separate and save separated tracks

and the BSS evaluation measures for the entire test set. The separated tracks

along with the accompaniment are saved as ’.wav’ files.

• eval onsets.py Uses specified trained model to obtain and save tabla onset

estimates using the onset branch of the MTL architecture, for the entire test set.

The estimated framewise onset probabilities are saved in the form of a csv file.

• od 1 eval.py: Evaluates the onsets obtained from the onset branch of the MTL

architecture.

• od 2 eval.py: Takes the separated tabla track as its input, performs the spectral

flux onset detection algorithm on it, and evaluates the accuracy.

• sc eval.py: Takes the separated tabla track as its input, performs the stroke

classification algorithm on it, and evaluates the accuracy.

24

https://github.com/Ani0203/MTL_SS_transcription

3.4 Pytorch implementation

train_mtl.py

data.py

model_mtl.py

Trained model

eval_new.py

test_new.py

eval_onsets.py

Separated track

Onset estimates
od1_eval.py

od2_eval.py

sc_eval.py

Figure 3.4: Python scripts used for implementation

25

Chapter 4

Dataset Description

Performance of source separation models is heavily reliant on the data that they have

been trained on, leading to poor performance on music not represented in the training

data. We aim to perform source separation on Hindustani music mixtures containing

vocals, tanpura and tabla, an Indian percussive instrument that is significantly different

in terms of its characteristics from any percussion instrument (usually drums) that

appear in available source separation data sets. The tabla is a pair of drums with a

structure and playing style that permits a rich variety of strokes with further control

over their expressive characteristics [29, 11]. This motivated us to synthesise a dataset

for training that is representative of the genre we wish to work with. In this chapter

we describe the data that we have collected from different sources, and the procedures

used to synthesise the source separation dataset using it.

4.1 Overview

As presented in table 4.1, the dataset consists of a total of 301 mixed audio tracks,

sampled at 44.1kHz consisting of vocals, tanpura (drone) and tabla, of duration ∼17

hours. This is one of the typical ensembles, the others being inclusion of a second

melodic instrument such as the harmonium. Each mixture is represented by its tabla

audio, vocals plus tanpura audio and the full mix. We create a test dataset which is

representative of realistic vocal concert mixtures. The train and validation datasets are

created with an emphasis on efficient utilisation of the limited available solo instrument

tracks, so as to get a large number of mixtures without resorting to excessive repetition.

26

4.2 Vocals plus tanpura tracks

4.2 Vocals plus tanpura tracks

We have 73 distinct vocal tracks spanning 5 different tonics, sung by over 20 different

male and female singers, with durations ranging from 2 minutes to 6 minutes. Some of

these are recordings of trained Hindustani vocalists that we obtained on request, while

others are taken from Youtube. Some of the available recordings had a duration longer

than 10 minutes. These were partitioned appropriately and saved as separate tracks.

Some of the vocal tracks were made available along with tanpura backing, ie. there was

no access to the solo vocal audio for these tracks. So to make the dataset uniform, for

the others we mixed the vocals with tanpura corresponding to the tonic of the vocals at

10dB (higher energy vocals). The tanpura was recorded from the iTabla pro application

for iOS, and looped over the duration of the vocals.

4.3 Tabla tracks

We have 257 tabla tracks obtained partly from the iTabla pro app, while some are

recordings by trained tabla players. We also obtained a solo tabla performance off

Youtube, which we de-noised (using inbuilt tools in Audacity), partitioned appropriately

and saved as separate tracks. The recordings obtained from the iTabla app are single-

cycles, while the others are complete compositions. The recordings span 6 different

tonics and have durations ranging from 4 seconds (single cycle) to 3 minutes. The

recordings range over greater than 13 tempo values.

Split Tabla Vocals+

Tanpura

Mixes Duration

(hours)

Train 215 51 247 15

Valid 36 16 48 1.50

Test 6 6 6 0.25

Total 257 73 301 16.75

Table 4.1: Distribution of component audio tracks and mixtures across dataset splits

4.4 Dataset Split and Mixing

Table 4.1 summarises the data set split into train, test and valid. It is ensured that there

are no overlapping singers across the train, validation and test sets. The composition of

27

4.4 Dataset Split and Mixing

each split is described next.

4.4.1 Test set

The test set was designed to represent real world mixes. This meant making sure that

the tabla in each track is coherent with the vocal track that it is mixed with, in terms

of tonic, timing and style of playing. To obtain this, a trained tabla player was asked

to listen to the vocal track over headphones and play the corresponding tabla accom-

paniment, which we recorded. These recordings were then manually aligned with the

vocal+tanpura tracks and mixed at 10dB and 15dB (louder vocals). The levels were

heuristically decided by comparison with typical available concert recordings.

4.4.2 Train and Validation sets

Train-long Train-short Valid

Tabla 16 (×3) 199 (×1) 36 (×1/2)

Vocals+Tanpura 12 (×4) 39 (×5/6) 16 (×3)

Mixture 48 199 48

Table 4.2: Table shows the number of long and short tracks of each source present in

the train set and number of tracks in the validation set. The × in the brackets indicate

the number of mixes that each of the tracks from the corresponding set are used for.

(×5/6) indicates that some of tracks are used in 5 mixtures, while others are used in 6.

Similarly for (×1/2)

Unlike in the test set, the tabla and vocal+tanpura tracks used to create the train

and validation sets are unrelated to each other, ie. they are not necessarily coherent.

For both sets, the mixtures are made by looping each tabla track over the duration of

the corresponding vocal+tanpura track. Half the mixtures are made at 10dB and the

other half at 15dB.

For the train and validation sets, mixing is done such that we utilise the available data

to the fullest, while also preventing more than warranted repetition. We first divide the

tabla and vocal tracks into two sets each, long(≥ 2 minutes and ≥ 6 minutes respectively)

and short. Some tracks from the short set are set aside to make the validation set. A

total of 247 train set mixtures are made by mixing long and short vocals+tanpura tracks

28

4.5 Dataset preparation scripts

with long and short tabla tracks respectively. A total of 36 validation mixtures are made

by mixing the tabla and vocal tracks that were set aside, while ensuring that each track

was utilised in a fixed maximum number of mixtures. The number of repetitions and

mixtures made in the train data and validation data are detailed in table 4.2.

To create even larger training and validation sets, a number of possible augmenta-

tions can be applied on the data. This includes, pith-shifting and tempo-shifting the

solo instruments before mixing them. Another way could be to loop multiple shifted

versions of a given tabla track over the corresponding vocals+tanpura track, so that one

pair of vocals+tanpura and tabla tracks yield more than one mixture. These multiple

mixtures would be such that the relative position of the two tracks is different in each

mixture. We have not used any of these augmentation techniques in the creation of our

dataset. However, future work could employ them to create an even more expansive

dataset.

4.5 Dataset preparation scripts

The mixing and arranging of the dataset to be used for the source separation task has

been implemented using python. These scripts can be re-used to re-mix the dataset, as

and when more data is made available. In this section we will provide a brief overview

of the different scripts that are used.

• make train dataset.py, make valid dataset.py, make test dataset.py: Scripts

used to prepare the train, validation test sets for the source separation task. The

scripts save each mixture in a folder containing the mixture audio, vocals+tanpura

audio and the tabla audio.

The mixing is implemented by first looping the tabla track over the duration of

the vocals+tanpura track, followed by normalising their energies, summing the two

tracks based on the mixing level (10dB or 15dB) and scaling the obtained mixture

to have a fixed energy per sample. It is described by the following equation.

u[n] = w
v[n]√∑
i v

2[i]
+

t[n]√∑
i t

2[i]
(4.1)

m[n] = kN
u[n]√∑
i u

2[i]
(4.2)

where, m[n], v[n] and t[n] correspond to the mixture, vocals+tanpura and mixture

tracks respectively. w is the weighting parameter which is a function of the mixing

29

4.5 Dataset preparation scripts

level (10dB or 15dB), N is the total number of samples, and k is the average per

sample energy for the created mixtures (we use k=0.005)

• mix tanpura.ipynb: This notebook has codes to mix the vocal tracks which are

available without tanpura, with the tanpura track of the corresponding key. The

mixing in this script is also implemented in a similar way as the dataset creation

scripts.

More details about the dataset and the scripts used for mixing can be found in this

github repository.

30

https://github.com/Ani0203/dataset_creation

Chapter 5

Tabla source separation

experiments

In this chapter, we evaluate the tabla source separation performance of the architec-

ture(s) described in chapter 3, trained on the dataset described in chapter 4. We eval-

uate the separation performance based on the metrics described in section 2.2. This

chapter is organised as follows. In the first section, we motivate the need for develop-

ment of an improved tabla separation model. The next section describes the different

models we trained and the experiments we performed. In the last section, we present

the results, observations from each of the performed experiments. 1

5.1 Motivation

Table 5.1 shows the performance of the tabla transcription evaluation algorithms on

clean tabla, mixture audios of the test set, as well as tabla estimates obtained by passing

the test set mixtures through the Open Unmix architecture trained on the drums target

using the MUSDB18 [19] dataset. We note how poor the transcription scores are when

applied on the mixture audio as well as when applied on the outputs of an available

percussion separation model. We also see that while the Open Unmix drums model

is able to slightly improve the onset detection performance in terms of the f-score, it

highly degrades the performance of the stroke classification. This can be explained by

the differences in the spectral characteristics of drums and tabla. While both have sharp

onset bursts, the tabla also has some low frequency harmonic components which vary

1This chapter is largely based on our submission to ISMIR 2020 on ”Audio source separation for

improved tabla transcription in vocal mixtures”

31

5.2 Models evaluated

based on the stroke type. A model trained to separate drums is to some extent able to

separate the wide-band energy bursts corresponding to table onset, but it completely

fails to preserve the low-frequency harmonic components of the tabla. This is reflected

in the poor stroke classification performance.

The performance on the clean tabla is an upper bound that we wish to get closer

to via improved source separation. This sets up the need to develop a tabla source

separation model that allow us to improve tabla transcription accuracy when provided

with only a vocals mixture of Hindustani music.

P R F SC (%)

Clean tabla 0.99 0.92 0.95 74.90

10dB mix 0.67 0.70 0.68 51.05

15dB mix 0.54 0.65 0.59 45.85

OU-drums (10dB) 0.637 0.809 0.713 40.03

OU-drums (15dB) 0.500 0.814 0.619 41.26

Table 5.1: Onset detection and 4-way stroke classification performance on clean tabla,

mixture audio and mixture audios passed through Open Unmix trained on drums target

using the MUSDB18 [19] dataset. P, R and F refer to precision, recall and f-score

respectively. SC (%) refers to percentage stroke classification accuracy

5.2 Models evaluated

All the models evaluated in this section are trained with a batch size of 16, using an

Adam optimiser with an initial learning rate of 10−3. Spectrograms with a window size

of 92ms and a hop-size of 23ms are used. Every training epoch uses sequences of 6s

duration. We use a learning rate decay of 0.3 and patience of 80 epochs. The models

are trained up to a maximum of 1000 epochs, however early stopping with a patience of

140 epochs is used to prevent overfitting. The training procedure is borrowed from the

original Open Unmix [1] implementation, and is as described in section 3.1.3.

We perform a total of 7 experiments based on varying choices of γ, position of intro-

duction of the onset branch, training procedure and loss function choices in order to get

insights on their effect on the problem of effective tabla source separation for improved

transcription. These experiments are described below. The details of the models trained

are summarised in Table 5.2.

Experiment 1 : We first train the Open Unmix architecture on our dataset and evalu-

32

5.2 Models evaluated

ate its performance, which serves as the baseline. This is equivalent to training our MTL

architecture using the loss from equation 3.1 with γ = 0. The MSE loss is computed

over the entire frequency range (0-22.05kHz).

Experiment 2 : We then introduce the onset detection branch to this architecture.

However, before we train the architecture for both the tasks simultaneously, we want to

verify that the introduced OD branch is performing as expected and learning the tabla

onsets. For this reason, we train our MTL architecture using γ = 1, so that only the

onset branch of the architecture is trained, and evaluate the OD performance of the

branch output.

Experiment 3 : The aim of this experiment is to decide on the exact training procedure

to be used while training the MTL architecture. We train models by first pre-training

the source separation branch (γ = 0) up to a varying number of epochs (0, 75, 100,

125 and complete training), followed by which we introduce the OD branch loss in the

training. In this experiment we use γ = 0.8 for the second part of the training, and

introduce the OD branch in the early position as described in figure 3.3.

Experiment 4 : We introduce the onset detection branch to this architecture in the

late position as described in figure 3.3 and train it using losses from both the branches

with γ = 0.8, right from the start. This is done based on the outcome of the previous

experiment.

Experiment 5 : Next, we train only the Open Unmix architecture (γ = 0) using MSE

loss computed only between the bins of the spectrograms corresponding to frequencies

lesser than 4kHz. This modification was motivated in part by the observed outcomes of

experiments 1 and 4, as explained further in the next section.

Experiments 6 & 7 : The onset detection branch (ODB) is now introduced to this

architecture where the source separation MSE is computed only for bins up to 4kHz. We

experiment with two possible positions of branching from the source separation architec-

ture, which are before FC2 (early) and before FC3 (late), ie. the second and third fully

connected layers of Open Unmix. Each of these model architectures are trained using

a range of values of loss weighting (γ) as seen in table 5.2. Based on the outcomes of

experiment 3 which are described in the next section, we train both the branches of the

MTL architecture from the start, without pre-training any of the branches individually

first.

33

5.3 Results and observations

Network Type MSE BL ODB position γ Pretraining

1 OU 22.05kHz - 0.0 -

2a OU+ODB 22.05kHz Early 1.0 -

2b OU+ODB 22.05kHz Late 1.0 -

3a OU+ODB 22.05kHz Early 0.8 0

3b OU+ODB 22.05kHz Early 0.8 75

3c OU+ODB 22.05kHz Early 0.8 100

3d OU+ODB 22.05kHz Early 0.8 125

4 OU+ODB 22.05kHz Late 0.8 0

5 OU 4kHz - 0.0 -

6a OU+ODB 4kHz Early 0.8 0

6b OU+ODB 4kHz Early 0.6 0

6c OU+ODB 4kHz Early 0.4 0

6d OU+ODB 4kHz Early 0.2 0

7a OU+ODB 4kHz Late 0.8 0

7b OU+ODB 4kHz Late 0.6 0

7c OU+ODB 4kHz Late 0.4 0

7d OU+ODB 4kHz Late 0.2 0

Table 5.2: Models trained and evaluated. Except for model 1, all are trained on our

dataset described in chapter 4 .OU refers to the Open Unmix architecture. OU+ODB

refers to Open Unmix along with the onset detection branch. ODB position early and

late refer to onset branch being introduced before the FC2 layer and before the FC3 layer.

MSE BL is the frequency up to which we compute the MSE loss on the spectrograms.

γ decides the relative weighting of the losses. A higher γ corresponds to more weight to

the onset branch loss. Pretraining refers to the number of epochs upto which the source

separation branch was trained before introducing the ODB

5.3 Results and observations

Tables 5.3 and 5.4 contain the evaluation metrics for the outputs of the source separa-

tion branch and onset detection branch respectively of the trained models . The salient

observation for the performed experiments are presented below.

Experiment 1 : Separated tabla from the Open Unmix architecture trained on our

dataset (model 1) gives significantly improved onset detection as well as stroke classifica-

tion performance as compared to that obtained on the mixtures as well as that obtained

34

5.3 Results and observations

10dB mix 15dB mix

Model P R F SC (%) SDR P R F SC (%) SDR

1 0.892 0.770 0.827 64.31 1.905 0.845 0.731 0.784 59.99 1.035

2a - - - - - - - - - -

2b - - - - - - - - - -

3a 0.879 0.772 0.822 62.67 1.878 0.842 0.751 0.794 58.93 1.035

3b 0.880 0.779 0.827 64.40 1.912 0.840 0.756 0.796 60.67 1.037

3c 0.874 0.783 0.826 62.98 1.863 0.827 0.754 0.789 59.38 1.026

3d 0.876 0.778 0.824 63.51 1.889 0.835 0.756 0.794 59.37 1.025

4 0.872 0.774 0.820 62.13 1.883 0.834 0.760 0.796 59.38 1.038

5 0.933 0.848 0.889 63.75 1.915 0.846 0.802 0.824 58.46 1.041

6a 0.960 0.848 0.901 61.35 1.856 0.902 0.820 0.859 59.30 1.035

6b 0.939 0.851 0.893 64.96 1.924 0.886 0.792 0.836 60.16 1.046

6c 0.952 0.854 0.900 63.11 1.904 0.892 0.816 0.852 59.32 1.055

6d 0.938 0.845 0.889 63.73 1.906 0.876 0.799 0.836 60.17 1.052

7a 0.959 0.842 0.896 65.18 1.900 0.896 0.818 0.856 60.94 1.023

7b 0.953 0.859 0.904 63.77 1.903 0.891 0.825 0.857 59.33 1.056

7c 0.935 0.857 0.894 64.48 1.9045 0.863 0.816 0.839 58.23 1.054

7d 0.939 0.860 0.898 64.11 1.859 0.858 0.832 0.845 57.80 1.031

Table 5.3: Performance of the source separation branch of the trained models in terms

of the metrics described in 2. P, R and F refer to precision, recall and f-score for onset

detection respectively. SC (%) is the percentage stroke classification accuracy. SDR is

the source-to-distortion ratio.

on the separated tabla from the drums target Open Unmix architecture trained on the

MUSDB18 [4] dataset as shown in table 5.1. This experiment highlights the effectiveness

of our genre specific dataset in improving tabla separation performance.

Figure 5.1 (left) shows the validation MSE plot obtained during the training of model

1. The clear decreasing trend indicates that the train dataset we have synthesised is

large enough to train the model to generalise well and improve the MSE between clean

and estimated tabla over the independent validation set as well.

Figure 5.1 (right) shows the plot of the validation BCE between the target onsets

(obtained by applying the OD algorithm on clean tabla) and the novelty curve esti-

mated by applying spectral flux on the tabla estimate during the course of the training.

Henceforth, we will refer to this as the BCE SF loss. The decreasing trend of this plot

35

5.3 Results and observations

10dB mix 15dB mix

Model P R F P R F

1 - - - - - -

2a 0.956 0.867 0.909 0.932 0.826 0.876

2b 0.949 0.861 0.903 0.918 0.813 0.862

3a 0.944 0.879 0.910 0.909 0.845 0.876

3b 0.944 0.879 0.910 0.909 0.845 0.876

3c 0.938 0.852 0.893 0.895 0.812 0.852

3d 0.940 0.877 0.907 0.911 0.851 0.880

4 0.934 0.867 0.899 0.908 0.821 0.862

5 - - - - - -

6a 0.950 0.860 0.900 0.916 0.814 0.862

6b 0.905 0.822 0.861 0.879 0.771 0.822

6c 0.948 0.869 0.906 0.903 0.820 0.860

6d 0.940 0.844 0.889 0.906 0.784 0.840

7a 0.960 0.860 0.910 0.917 0.821 0.866

7b 0.949 0.862 0.903 0.910 0.820 0.862

7c 0.939 0.86 0.898 0.891 0.799 0.842

7d 0.939 0.854 0.895 0.886 0.822 0.853

Table 5.4: Onset detection performance of the ODB of the trained models. P, R and F

refer to precision, recall and f-score for onset detection respectively.

indicates that training Open Unmix on the MSE target also leads to the model being

trained in such a way that the output tabla gives increasingly better onset detection.

This kind of plot was particularly useful for us in the later experiments, as it was a quick

way of gauging how much source separation has improved in terms of giving improved

onset detection, without having to formally test the performance on the test set.

Experiment 2 : Figure 5.2 shows the training and validation plots of the BCE loss of

the ODB for model 2a (similar observation for model 2b). The decreasing trend as well

as the significantly small final value of loss in both the training and the validation plots

is an indication that the ODB is working as expected and is learning to detect tabla

onsets.

This can further be confirmed by observing the accuracy of the onsets predicted by

the ODB of both models 2a and 2b on the test set (see table 5.4). Both model predic-

tions give F-scores of around 0.9 on 10db mixtures and 0.x on 15dB mixtures, indicating

36

5.3 Results and observations

0 200 400 600 800
Iterations

1

2

3

4

5

6

7

Lo
ss

Validation MSE loss
Validation

0 200 400 600 800
Iterations

0.16

0.18

0.20

0.22

0.24

0.26

Lo
ss

Validation BCE SF loss
Validation

Figure 5.1: Validation error plots during model 1 training. From left to right: (a)

Validation MSE (b) Validation BCE SF

that the branch has learnt to detect tabla onsets reasonably well.

0 50 100 150 200 250 300 350
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Training BCE MTL loss
Training

0 50 100 150 200 250 300 350
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Validation BCE MTL loss
Validation

Figure 5.2: From left to right: (a) Train MSE loss plot for model 1 (b) Validation BCE

SF loss

Experiments 3 & 4 : Observing the results of experiment 3, ie. models 3a-3d in table

5.2 we can see that there are minor differences in the onset detection and stroke clas-

sification performance of the different models, however there is no significant difference

that would compel us to choose one training procedure over the other. Hence, for all

the following experiments we choose to train both the branches simultaneously without

doing any pre-training of the source separation branch.

Model 4 is the same as model 3a (both trained without any pre-training of the source

separation branch), the only difference being the position of introduction of the ODB.

Comparing the performance of models 3 and 4 with model 1 (see table 5.3) we note

37

5.3 Results and observations

that adding an onset branch to the Open Unmix architecture has a negligible impact

on onset detection performance, while stroke classification performance either becomes

slightly worse or stays nearly the same. These experiments however helped us obtain

useful insights via observations on the different spectrograms. As expected, the predicted

tabla spectrograms deviate from the corresponding target spectrograms in different ways

depending on the architecture, and in particular, the influence (position, loss weighting)

of the introduced onset detection branch.

Observing the spectrograms in figure 5.3, we can see that the output obtained from

model 4 is significantly distorted with vocals spectra above 5kHz, as compared to the

output from model 1. This, along with the observation that training MSE loss finally

settles at similar values for model 1 and 4 (see figure 5.4) indicates that bringing in the

onset branch loss changes the distribution of the mean squared error across the time-

frequency regions. The errors are worse at the higher frequencies, probably at the cost

of better matching in lower frequency regions. This significant distortion however is not

reflected in the onset detection and stroke detection performance which degrade only

slightly. This, along with the understanding of tabla acoustics led to the insight that

onset detection is large reliant on the frequency spectrum up to roughly 4kHz. This

motivated us to restrict MSE loss computation to the 0 - 4kHz region in the ensuing

experiments.

0
2k
4k
6k
8k

0 1 2 3 4 5
Time (s)

0
2k
4k
6k
8k

Fr
eq

ue
nc

y
(H

z)

Figure 5.3: Spectrograms of tabla outputs (0-8kHz shown) predicted by model 1 (Top) and

model 4 (Bottom). The spectrograms correspond to an excerpt from a 10dB test set example

Experiment 5 : Training Open Unmix on MSE loss restricted up to 4kHz (model 3)

significantly improves onset detection performance over the case where MSE uses the

entire frequency range. The stroke classification performance in this case is degraded.

38

5.3 Results and observations

0 200 400 600 800
Iterations

0

1

2

3

4

5

6

7

Lo
ss

Training MSE loss
Training

0 200 400 600 800 1000
Iterations

1

2

3

4

5

6

7

Lo
ss

Training MSE loss
Training

Figure 5.4: (From left to right) Training MSE plots for (a) Model 1 (b) Model 4

Experiments 6 & 7 : Introducing the onset branch now (models 6,7) further improves

onset detection performance. This improvement is even more pronounced in the case of

15dB test mixtures. Observing the values in table 5.3 we can see that the precision is

what improves as compared to model 5. Recall stays nearly the same with the introduc-

tion of the onset branch. Stroke classification performance also shows improvement over

the baseline case, for some of the MTL models (especially model 7a). This indicates

that introducing the onset branch and loss to the source separation architecture leads

to source separation that not only better filters out onsets which are not from the target

source (indicated by higher precision), but also better preserves spectral content of the

strokes to which the target onsets are associated. This can be confirmed by observing

the output spectrograms of model 5 and 7a in figure 5.5 in comparison with the corre-

sponding target and mixture spectrograms. Model 7a not only emphasizes onset frames

more clearly, but also suppresses spectral artifacts that could be mistaken for a tabla

onset. Model 7a on the other hand has more artifacts than Model 5 in regions that do

not matter in onset detection computations, like continuous patches of vocal harmonics.

At point (a) in the figure, which is an onset, we can see that model 7a performs cleaner

separation as compared to model 5. Point (b) which has no onset is more distorted in

the model 7a output as compared to that of model 5. At point (c) there is a vertical

spread in model 5 output which resembles an onset. This is eliminated by model 7a. At

point (d) an onset which is weakly detected by model 5, is much stronger in model 7a.

Observing the validation BCE SF loss curve in this case also gives an indication

that this approach improves source separation in terms of better tabla onset detection.

Figure 5.6 shows the Validation BCE SF plot for model 7a. Comparing it with the same

plot for model 1 (see figure 5.1 (right)) we can see that the loss settles at a lower value

39

5.3 Results and observations

for model 7a as compared to model 1.

The position of introduction of the onset branch and the loss weighting (γ) impact

onset detection as well as stroke classification performance, but there is no discernible

pattern to be able to to predict what position or which γ is likely to give better perfor-

mance. We note that model 7a gives improved performance over both the tasks.

0

2k

4k

0

2k

4k

0

2k

4k (a) (b) (c) (d)

0 1 2 3 4 5
Time (s)

0

2k

4k

Fr
eq

ue
nc

y
(H

z)

Figure 5.5: From top to bottom: Spectrograms of (i) Mixture (ii) Model 5 output (iii) Model

7a output and (iv) Clean tabla. At time (a) and (d) model 7a output has a more pronounced

onset. (b) Model 7a has worse separation in some non-onset frames (c) Model 5 output has

vertical spread which could be mistaken as tabla onset, model 7a has filtered this out

5.3.1 Additional comments

We also evaluated the onsets detected by the onset branch. Table 5.4 shows the accuracy

of the onsets detected by the ODB . The accuracy was found to be comparable to that of

the onsets obtained from the source separated tabla, and in some cases slightly better.

Model 3a seems gives the best onset detection performance from the ODB.

We also report the source-to-distortion values for the tabla separation performed on

the test set. Its interesting to note that introducing the additional onset loss does not

40

5.3 Results and observations

0 100 200 300 400 500 600 700
Iterations

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Lo
ss

Validation BCE SF loss
Validation

Figure 5.6: Model 7a validation BCE SF loss

cause source separation to perform worse in terms of source separation quality metrics,

but it even slightly improves those metrics for some cases.

41

Chapter 6

Vocal source separation

experiments

In this chapter we detail the vocal source separation experiments performed. The source

separation performance is evaluated using the metrics described in section 2.2. While

evaluating the performance in terms of a given pitch tracking algorithm, we use the

pitch track obtained by applying that algorithm on the clean vocals as the ground truth

pitch estimate.

Ideally, to get good vocal separation on our test set, we would like to train the

Open Unmix architecture on a vocals only target using a Hindustani music dataset.

Unfortunately, the data obtained by us was such that a significant part of the vocals

already had tanpura backing. Hence, in order to make use of all the available data,

the dataset was constructed such that there are two stems available ; clean tabla and

vocals+tanpura. Due to this, we were unable to train the architecture on a vocals

only target. Based on this, we experiment with two approaches of obtaining the vocals

estimate, which are described in this chapter. The chapter starts with motivating the

need for an improved vocal source separation model, followed by sections describing the

two approaches we used.

6.1 Motivation

Table 6.1 shows the performance of both the pitch tracking algorithms applied on mix-

ture audios of the test set as well as vocal estimates obtained by passing the test set

mixtures through the Open Unmix architecture trained on the vocals target using the

MUSDB18 [4] dataset. We can see that CREPE overall performs significantly better

42

6.2 Train Open Unmix on vocals+tanpura target

than PYIN, because of its robustness to noise [15]. Using the pretarained Open Un-

mix model for vocals improves the performance of the PYIN and CREPE algorithms

as compared to the mixture, although even these performances are objectively unsatis-

factory. This sets up the need for a vocal source separation system trained specifically

on Hindustani music mixtures that is able to separate vocals in such a way that pitch

detection algorithms applied on these separated vocals give improved performance.

PYIN

VR FA RPA RCA OA

10dB mix 0.849 0.862 0.208 0.301 0.161

15dB mix 0.834 0.847 0.334 0.425 0.196

OU-vocals (10dB) 0.837 0.780 0.611 0.630 0.401

OU-vocals (15dB) 0.834 0.809 0.595 0.617 0.296

CREPE

VR FA RPA RCA OA

10dB mix 0.911 0.408 0.877 0.904 0.819

15dB mix 0.926 0.433 0.886 0.908 0.830

OU-vocals (10dB) 0.931 0.431 0.880 0.901 0.836

OU-vocals (15dB) 0.934 0.430 0.882 0.903 0.839

Table 6.1: Vocal pitch detection performance using PYIN and CREPE algorithms on

mixture audio and mixture audios passed through Open Unmix trained on vocals target

using the MUSDB18 [19] dataset. VR, FA, RPA, RCA and OA refer to voicing recall,

false alarm, raw pitch accuracy, raw chroma accuracy and overall accuracy respectively.

6.2 Train Open Unmix on vocals+tanpura target

Our first approach was to train the Open Unmix architecture on the vocals+tanpura

target, and use this model to obtain an estimate of the vocals+tanpura. After this the

tanpura from this would be suppressed using the Noise reduction tool on Audacity.

However, the architecture was unable to train successfully on this target. This was

first observed by hearing the ’vocals+tanpura’ estimated by the trained model. It can

further be confirmed by comparing the validation MSE plot for training on this target,

with that of the tabla target (which we know has trained successfully). There are 2 main

differences between the two plots (figure 6.1). First, the plot for the tabla target has a

slight decreasing trend all throughout, while that of the vocals+tanpura target decreases

43

6.2 Train Open Unmix on vocals+tanpura target

once at the start, but only oscillates after that, without any clear trend. Second, is

the number of epochs for which the training happens. Training on the tabla target

goes on for nearly 800 epochs, while that for the vocals+tanpura target goes on only

for about 170 epochs. Given that we have used early stopping (patience=140) during

training, training goes on only upto such a point where validation loss is improving.

The tabla target training going on for 800 epochs indicates that for this duration of

training the separation performance is improving on the independent validation set.

For the vocals+tanpura target training stops only at 170 epochs. This along with

the observation that the training MSE loss for this case is decreasing indicates that

minimizing MSE on the train set is not able to improve MSE on the validation set. This

leads us to the conclusion that the architecture does not train well for a combination of

audio from two instruments, as it does for audio from only one instrument, and we try

the next approach.

0 200 400 600 800
Iterations

0

1

2

3

4

5

6

7

Lo
ss

Training MSE loss
Training

0 25 50 75 100 125 150 175
Iterations

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Training MSE loss
Training

0 200 400 600 800
Iterations

1

2

3

4

5

6

7

Lo
ss

Validation MSE loss
Validation

0 25 50 75 100 125 150 175
Iterations

0.2

0.4

0.6

0.8

1.0

Lo
ss

Validation MSE loss
Validation

Figure 6.1: Training and validation MSE plots for Open Unmix trained on tabla (left)

and vocals+tanpura (right) targets

44

6.3 Remove tabla estimate from mixture audio using Wiener filtering

6.3 Remove tabla estimate from mixture audio using Wiener

filtering

In this approach, we obtain an estimate of the vocals+tanpura by ’subtracting’ the

tabla estimate obtained using tabla separation model 1 (see table 5.2) from the mixture

using Wiener filtering. We then suppress the tanpura using the Noise Reduction tool on

Audacity, to get the vocals estimate. The tool requires the user to first manually choose

a section of the song that has only tanpura audio. Then, assuming the tanpura to be

stationary, it suppresses the part of the spectrum that it detects to be corresponding to

the tanpura, based on information from the earlier chosen section. The tool allows us to

perform this suppression at various dB levels, where the level indicates the amount of

volume reduction of the chosen noise to be applied. A higher level leads to more noise

suppression, but could come at the cost of damaging the signal of interest.

Table 6.2 shows the performance of the pitch tracking algorithms applied on the

vocal+tanpura estimates obtained by filtering out the tabla and the vocal estimates

obtained by suppressing the tanpura in these mixtures at different levels of suppression.

We make the following observations from these experiments.

For PYIN, the performance on the Mix-Tabla (M-T) estimate is an improvement over

the mixture. The 20dB suppression estimate shows no significant change in performance

as compared to the M-T, but the 30dB suppression estimate shows improved overall

accuracy. This improvement in accuracy comes mainly from a lower false alarm rate.

The raw pitch accuracy has in fact slightly degraded as compared to M-T. Figure 6.2

shows an excerpt of the PYIN pitch tracks of a test example. At around the 8s mark ((i)

in figure 6.2) we can see that the clean vocals are unvoiced, but the M-T estimate detects

that entire section as being voiced, because of the background tanpura drone. For the

(M-T)30dB estimate however, we see that some part of that section is now detected as

unvoiced. This kind of occurrence is common throughout the test examples, where the

vocalist takes a pause between lines. In the M-T estimate, even though the vocalist

has stopped singing, the harmonicity of the tanpura causes the corresponding frames to

be detected as voiced. Suppressing the tanpura using the available tool leads to some

of these frames being correctly detected as unvoiced. The raw pitch accuracy however

does not noticeably benefit from the suppression. Points (ii) and (iv) on the plots show

regions here M-T follows the clean vocal pitch track better than (M-T)30dB. Point (iii)

shows a section where (M-T)30dB performs better than M-T. Upon closer observation of

section (iv), we can see that in this section the vocals pitch is nearly the same as that of

45

6.3 Remove tabla estimate from mixture audio using Wiener filtering

PYIN

10dB mix 15dB mix

Estimate VR FA RPA RCA OA VR FA RPA RCA OA

Mix 0.849 0.862 0.208 0.301 0.161 0.834 0.847 0.334 0.425 0.196

M-T 0.835 0.818 0.592 0.618 0.376 0.832 0.828 0.583 0.613 0.280

(M-T)20dB 0.828 0.802 0.579 0.592 0.373 0.832 0.819 0.558 0.577 0.279

(M-T)30dB 0.827 0.589 0.540 0.548 0.432 0.819 0.692 0.527 0.546 0.350

CREPE

10dB mix 15dB mix

Estimate VR FA RPA RCA OA VR FA RPA RCA OA

Mix 0.911 0.408 0.877 0.904 0.819 0.926 0.433 0.886 0.908 0.830

M-T 0.928 0.480 0.883 0.906 0.827 0.932 0.478 0.886 0.909 0.831

(M-T)20dB 0.922 0.478 0.873 0.903 0.816 0.925 0.486 0.875 0.903 0.818

(M-T)30dB 0.912 0.489 0.852 0.891 0.790 0.914 0.499 0.854 0.892 0.791

Table 6.2: Pitch detection performance of PYIN and CREPE algorithms when applied

on different vocal estimates. M-T refers to Mix-Tabla which is the estimate obtained

by wiener filtering the tabla estimate from the mixture. (M-T)xdB refers to the vocal

estimate obtained by applying a tanpura suppression of xdB on the M-T estimate.

the tanpura drone (see pitch detected in section (i) by Mixture-Tabla, where the vocalist

is slient). For this region it can be hypothesised that the suppression also suppresses

vocal harmonics, leading to poor pitch tracking. On observing the spectrograms (figure

6.4) and listening to the audio at instants (ii) and (iii), it is difficult to identify why

one estimate performs better over the other in these regions. Average statistics indicate

there is not a significant difference between M-T and (M-T)30dB in terms of raw pitch

accuracy, but suppression does slightly damages it.

Since CREPE is more robust to noise it still gives a reasonably good estimate in the

presence of other sources. We can see in figure 6.3 that for all three cases shown, the

pitch track follows the clean vocals pitch track quite well. The performance of M-T is a

slight improvement over the mixture. Suppressing the tanpura worsens overall accuracy.

We hypothesise that the reason for this is the following. The CREPE algorithm because

of its robustness to noise, is able to ignore voicing due to the tanpura leading to a

significantly low false alarm rate even on the mixture. Hence, suppressing tanpura does

not further help with that. Raw pitch accuracy gets degraded slightly on suppression,

causing the overall accuracy to go down. This could be happening as a result of the vocal

46

6.3 Remove tabla estimate from mixture audio using Wiener filtering

6 8 10 12 14
Time [sec]

0

50

100

150

200

250
Fr

eq
ue

nc
y

[H
z]

PYIN pitch track
Mix
Clean

6 8 10 12 14
Time [sec]

0

50

100

150

200

250

Fr
eq

ue
nc

y
[H

z]

(i)

(ii)
PYIN pitch track

6 8 10 12 14
Time [sec]

0

50

100

150

200

250

Fr
eq

ue
nc

y
[H

z]

(i)

(iii)

(iv)

PYIN pitch track

Figure 6.2: PYIN pitch tracks of an excerpt from a test example of (a) Mixture (b)

Mixture-Tabla (c) (M-T)30dB compared with pitch track of clean vocals. (M-T)30dB

refers to the track obtained by suppressing the tanpura of the Mixture-Tabla track at

30dB level.

harmonics being damaged during the tanpura suppression. An attempt was made to

verify this from the spectrogram (figure 6.4) and audio, but because of the slight amount

of degradation in performance, it was difficult to conclusively find a region where this

could be observed.

From these experiments we conclude that the available tanpura suppression is not

sophisticated enough to obtain a vocals estimate that gives good pitch detection perfor-

mance. Future work on this problem should focus on restructuring the dataset to have

a vocals only stem, and to train the Open Unmix architecture using it.

47

6.3 Remove tabla estimate from mixture audio using Wiener filtering

6 8 10 12 14
Time [sec]

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y
[H

z]

crepe pitch track
Mix
Clean

6 8 10 12 14
Time [sec]

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y
[H

z]

crepe pitch track
Mixture-Tabla
Clean

6 8 10 12 14
Time [sec]

0

200

400

600

800

Fr
eq

ue
nc

y
[H

z]

crepe pitch track
Clean
(M-T)30dB

Figure 6.3: CREPE pitch tracks of excerpt from test example of (a) Mixture (b)

Mixture-Tabla (c) (M-T)30dB compared with pitch track of clean vocals. (M-T)30dB

refers to the track obtained by suppressing the tanpura of the Mixture-Tabla track at

30dB level.

48

6.3 Remove tabla estimate from mixture audio using Wiener filtering

6 8 10 12 14
0

1

2

3

4

Fr
eq

ue
nc

y
[k

Hz
]

6 8 10 12 14
0

1

2

3

4

6 8 10 12 14
Time [sec]

0

1

2

3

4

Fr
eq

ue
nc

y
[k

Hz
]

6 8 10 12 14
Time [sec]

0

1

2

3

4

Figure 6.4: (Clockwise from top-left) Spectrograms of (a)Mixture (b)Mixture-Tabla

(c)Clean vocals (d)(M-T)30dB

49

Chapter 7

Potential applications: Music

complexity analysis

The idea of complexity in Hindustani classical music is not very thoroughly understood in

terms of objective metrics that can be directly extracted from the audio of a performance.

That is not to say however, that an objective notion of complexity does not exist for this

kind of music. Trained professionals would almost unanimously be able to distinguish

between an amateur vocalist’s rendition of a raga from that of an experienced singer.

They would also be able to tell whether a particular performance of a composition is

”good” or ”bad”.

There has been a fair bit of research about complexity in the context of Western

music, but little work has been done to extend these concepts to Hindustani classical

music.

In this chapter there will be a discussion on different facets of musical complexity

and the numeric measures associated with them. This will also include discussions on

how these measures could apply in our specific concept, or conversely what they could

miss out on

7.1 Facets of complexity

A given melody could be considered complex for a variety of reasons. It could be because

the sequence of notes in the harmony. It could also be because of the timing relative

to the bar that these notes are played. In literature some objective notions for these

aspects have been defined. They come under broadly 3 categories [2] :-

1. Pitch-related variables

50

7.1 Facets of complexity

2. Rhythm-related variables

3. Structure related variables

7.1.1 Pitch-related variables

These variables try to capture the complexity present in the notes and the sequence of

notes that make up a melody :-

1. Entropy of pitch class distribution: 12 pitch classes considered for the case

of western music. Weighted by notes duration to account for more perceptual

salience of longer notes. This weighting done using model proposed in [30].

2. Entropy of interval distribution: Interval is difference in pitch between suc-

cessive notes. There are 25 components in this (unison, +- in semitones). Finding

the entropy of distribution gives an understanding of the first order distribution

of the pitch.

For Western music it is enough to consider only MIDI notes to describe complexity.

For Hindustani classical music however, we would like to also be able to characterise

the transitions between notes, vibrato around notes and other details which form an

integral part of the vocals We would like to come up with measures that use not just

the MIDI notes but the entire pitch track.

Having the ability to obtain the pitch track of the vocals (often the primary melodic

instrument in Hindustani music) from a concert audio, would be of great help in being

able to accurately obtain such measures.

7.1.2 Rhythm-related variables

These variables try to capture the complexity that arises due to varying note duration

and the timing of them being played :-

1. Entropy of note duration of melody: This involves first classifying note du-

ration into discrete categories and the finding entropy of this distribution

2. Rhythmic variability can be captured by finding standard deviation of log of note

durations

3. Note Density: This is given as the number of notes played per second.

51

7.1 Facets of complexity

7.1.3 Structure-related variables

These variables try to capture the complexity from a broader perspective of the structure

of the entire song :-

1. Tonal Ambiguity: This measure distinguishes how stable a pitch class is in a

given key. It uses key profile values [31] corresponding to each pitch class with

respect to the key of the score. Key profile values give in a sense the distribution

of pitch classes within a given key. This could be extended to the concept of ragas

for Hindustani classical music instead of keys. The way ragas are defined is a bit

more complicated than keys as it not only specifies the notes but also transitions

between notes.

2. Self similarity of melodic contour: This measure deals with melodic device of

repeating melodic segments or phrases. Calculated after normalising pitch contour

(mean pitch = 0, standard deviation = 1) .

S(t) =

∫ T
0 ρ(R)dt

T
(7.1)

a R is autocorrelation of contour, ρ is half wave rectification, T is total time.

Figure 7.1: Calculation of self-similarity [2]

52

Chapter 8

Conclusion and Future work

8.1 Conclusion

The aim of this thesis was to perform source separation of tabla and vocals from Hin-

dustani vocal concert audios, to aid in performing improved transcription of both these

components. We first perform an exhaustive literature survey of the different approaches

used in tackling the source separation problem, specifically in the context of music. We

then present the BSS eval [3] metrics, a set of objective measures used to evaluate source

separation performance, and also propose to use vocal and tabla transcription accuracy

measures as an additional way of evaluating performance. Based on the survey, we find

that data driven techniques have shown the best source separation performance in re-

cent times [7]. Hence, we choose the state-of-the-art Open Unmix [1] as our baseline

architecture.

Next, we present a detailed study of this architecture, describing its layers, input and

output representations, the training procedure used and the hyperparameters of interest.

We find that this architecture trained on a western music dataset (MUSB18 [4]), is not

able to perform satisfactory source separation on Hindustani vocal mixtures, because of

the difference in characteristics of the music. The absence of a source separation dataset

specifically for Hindustani music led us to synthesise one from audios collected from

various sources. We develop a test set that is representative of realistic vocal concert

audios. The training and validation sets are synthesised with the aim of efficiently

utilising the limited available data.

We first focus on the tabla source source separation task. We use our created dataset

to train the Open Unmix architecture for the tabla target. Tabla separated by this

trained model gives improved onset detection and stroke classification performance as

53

8.2 Future Work

compared to performance obtained on mixture audio as well as tabla separated by

available trained pecussion separation model (Open Unmix trained on drums target

using MUSDB18). To further improve the tabla separation performance, we propose to

use a multi-task learning (MTL) approach.

We present a short survey on MTL approaches used to tackle problems such as

tempo and beat estimation [25] and speaker source separation [26], and model our MTL

approach based on these. We propose a modification of the Open Unmix architecture by

introducing an additional branch to perform tabla onset detection, and perform experi-

ments by varying the weighting of the losses from the two branches, training procedure

and loss function used. We find that this architecture trained such that the source

separation branch is trained with MSE only upto 4kHz, along with the onset detec-

tion branch (ODB), gives improved tabla separation in terms of transcription accuracy

measures. The ODB also gives very good onset detection performance.

For vocal separation, we first attempt to train Open Unmix on the vocals+tanpura

target, but find that the model does not train for multiple targets. We then use wiener

filtering to ’subtract’ the obtained tabla estimate from the mixture to obtain a vo-

cals+tanpura estimate. Applying tanpura suppression on this using the noise reduction

tool in Audacity, we get an estimate of the vocals. We find that suppression improves

overall accuracy of the PYIN algorithm, by more correctly identifying unvoiced frames.

The performance of the CREPE algorithm is found to be slightly degraded after tanpura

suppression.

Last, we present a literature survey on musical complexity analysis, which is an

application that would greatly benefit from improved vocal and tabla transcription on

mixture audio.

8.2 Future Work

Future work in source separation for Hindustani music should focus on :-

• Further building up the dataset by adding more solo vocal audios, and reconstruct-

ing the dataset to allow training on a vocals only target.

• Constructing a similar dataset, replacing the vocals with instruments such as sitar

as the harmonic lead.

• Expanding current dataset by also adding harmonium.

54

8.2 Future Work

• Employing the multi-task learning approach for vocal separation, where the addi-

tional branch performs pitch tracking.

• Improving tabla source separation in terms of improved stroke classification. One

approach could be developing a multi-task architecture, where the additional

branch learns to perform stroke classification.

55

Bibliography

[1] F.-R. Stoter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-unmix - a reference

implementation for music source separation,” Journal of Open Source Software,

2019.

[2] T. Eerola, T. Himberg, P. Toiviainen, and J. Louhivuori, “Perceived complexity of

western and african folk melodies by western and african listeners,” Psychology of

Music, vol. 34, no. 3, pp. 337–371, 2006.

[3] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in blind

audio source separation,” IEEE transactions on audio, speech, and language pro-

cessing, vol. 14, no. 4, pp. 1462–1469, 2006.

[4] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “Musdb18-hq -

an uncompressed version of musdb18,” Aug. 2019.

[5] A. Liutkus, F.-R. Stöter, Z. Rafii, D. Kitamura, B. Rivet, N. Ito, N. Ono, and

J. Fontecave, “The 2016 signal separation evaluation campaign,” in Latent Variable

Analysis and Signal Separation - 12th International Conference, LVA/ICA 2015,

Liberec, Czech Republic, August 25-28, 2015, Proceedings (P. Tichavský, M. Babaie-

Zadeh, O. J. Michel, and N. Thirion-Moreau, eds.), (Cham), pp. 323–332, Springer

International Publishing, 2017.

[6] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: A fast

and state-of-the art music source separation tool with pre-trained models.” Late-

Breaking/Demo ISMIR 2019, November 2019. Deezer Research.

[7] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, D. FitzGerald, and B. Pardo,

“An overview of lead and accompaniment separation in music,” IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, vol. 26, no. 8, pp. 1307–1335,

2018.

56

BIBLIOGRAPHY

[8] E. Vincent, H. Sawada, P. Bofill, S. Makino, and J. P. Rosca, “First stereo audio

source separation evaluation campaign: data, algorithms and results,” in Inter-

national Conference on Independent Component Analysis and Signal Separation,

pp. 552–559, Springer, 2007.

[9] S. Dixon, “Onset detection revisited,” in Proceedings of the 9th International Con-

ference on Digital Audio Effects, vol. 120, pp. 133–137, Citeseer, 2006.

[10] J. Schlüter and S. Böck, “Improved musical onset detection with convolutional

neural networks,” in Proceedings of the 39th IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 6979–6983, IEEE, 2014.

[11] P. Chordia, “Segmentation and recognition of tabla strokes,” in 6th International

Society for Music Information Retrieval Conference (ISMIR 2005), 2005.

[12] O. K. Gillet and G. Richard, “Automatic labelling of tabla signals,” in 4th Inter-

national Society for Music Information Retrieval Conference (ISMIR 2003), 2003.

[13] K. Narang and P. Rao, “Acoustic features for determining goodness of tabla

strokes.,” in ISMIR, pp. 257–263, 2017.

[14] A. Srinivasamurthy, A. Holzapfel, K. K. Ganguli, and X. Serra, “Aspects of tempo

and rhythmic elaboration in hindustani music: A corpus study,” Frontiers in Digital

Humanities, vol. 4, p. 20, 2017.

[15] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe: A convolutional represen-

tation for pitch estimation,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 161–165, IEEE, 2018.

[16] M. Mauch and S. Dixon, “pyin: A fundamental frequency estimator using proba-

bilistic threshold distributions,” in 2014 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 659–663, IEEE, 2014.

[17] J. Salamon, R. M. Bittner, J. Bonada, J. J. Bosch, E. Gómez, and J. P. Bello, “An

analysis/synthesis framework for automatic f0 annotation of multitrack datasets.,”

in ISMIR, pp. 71–78, 2017.

[18] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang, D. P. Ellis,

and C. C. Raffel, “mir eval: A transparent implementation of common mir metrics,”

in In Proceedings of the 15th International Society for Music Information Retrieval

Conference, ISMIR, Citeseer, 2014.

57

BIBLIOGRAPHY

[19] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The MUSDB18

corpus for music separation,” Dec. 2017.

[20] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde,

“Singing voice separation with deep u-net convolutional networks,” 2017.

[21] Z.-C. Fan, Y.-L. Lai, and J.-S. R. Jang, “Svsgan: Singing voice separation via gen-

erative adversarial network,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 726–730, IEEE, 2018.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[24] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv

preprint arXiv:1706.05098, 2017.

[25] S. Böck, M. E. Davies, and P. Knees, “Multi-task learning of tempo and beat:

Learning one to improve the other,” in 20th International Society for Music Infor-

mation Retrieval Conference (ISMIR 2019), 2019.

[26] Y. Tu, J. Du, Y. Xu, L. Dai, and C.-H. Lee, “Speech separation based on improved

deep neural networks with dual outputs of speech features for both target and inter-

fering speakers,” in The 9th International Symposium on Chinese Spoken Language

Processing, pp. 250–254, IEEE, 2014.

[27] C. S. Doire and O. Okubadejo, “Interleaved multitask learning for audio source

separation with independent databases,” arXiv preprint arXiv:1908.05182, 2019.

[28] E. Manilow, P. Seetharaman, and B. Pardo, “Simultaneous separation and tran-

scription of mixtures with multiple polyphonic and percussive instruments,” in

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pp. 771–775, IEEE, 2020.

[29] M. A. Rohit and P. Rao, “Acoustic-prosodic features of tabla bol recitation and

correspondence with the tabla imitation,” in Interspeech, 2018.

[30] R. Parncutt, “A perceptual model of pulse salience and metrical accent in musical

rhythms,” Music Perception: An Interdisciplinary Journal, vol. 11, no. 4, pp. 409–

464, 1994.

58

http://www.deeplearningbook.org

BIBLIOGRAPHY

[31] C. L. Krumhansl and E. J. Kessler, “Tracing the dynamic changes in perceived tonal

organization in a spatial representation of musical keys.,” Psychological review,

vol. 89, no. 4, p. 334, 1982.

59

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Approach
	Organisation

	Source separation overview
	Source separation methods
	Modelling the lead signal: Harmonicity
	Modelling the accompaniment as redundancies
	Data driven approach

	Evaluation measures
	BSS eval
	Tabla transcription accuracy
	Vocal pitch tracking accuracy

	Network architecture
	Open Unmix overview
	Architecture description
	Data representation
	Training Procedure
	Hyperparameters

	Multi-task learning overview
	MTL extension of Open Unmix for tabla source separation
	Loss Functions

	Pytorch implementation

	Dataset Description
	Overview
	Vocals plus tanpura tracks
	Tabla tracks
	Dataset Split and Mixing
	Test set
	Train and Validation sets

	Dataset preparation scripts

	Tabla source separation experiments
	Motivation
	Models evaluated
	Results and observations
	Additional comments

	Vocal source separation experiments
	Motivation
	Train Open Unmix on vocals+tanpura target
	Remove tabla estimate from mixture audio using Wiener filtering

	Potential applications: Music complexity analysis
	Facets of complexity
	Pitch-related variables
	Rhythm-related variables
	Structure-related variables

	Conclusion and Future work
	Conclusion
	Future Work

