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Abstract

This work proposes a system to solve the task of generating transcriptions for meetings

sessions where multiple speakers are speaking in the presence of ambient noise and re-

verberation, using multi-channel audio recordings. Multi-channel speech is enhanced to

improve the speech quality and then it is used for speaker diarization and speech recog-

nition. Single channel methods: Weighted Prediction Error (WPE) and Convolutive

Non-Negative Matrix Factorization (CNMF) are initially used for dereverberation. The

multi-channel output of each of the single-channel dereverberated audio was fed as input

to source localization and beamforming. Source localization Generalized Cross Correla-

tion (GCC) techniques: GCC-PHAT (Phase-Transform), GCC-SCOT (Smooth Coher-

ence) were implemented. The localization estimates are used to perform beamforming,

which produces single-channel enhanced audio assuming that only one speaker was active

at any instance. Several beamforming methods: conventional Delay Sum Beamforming

(DSB) and other methods: neural-network-based mask estimation: Minimum Variance

Distortionless Response (MVDR) and Generalized Eigenvalue (GEV) beamforming were

implemented. Diarization is used as a pre-processing step before ASR. One way to solve

the diarization problem is to use TDOA cues over the entire conversation length and

assign speaker ids depending on their estimated spatial location. Another way is to use

models that exploit speaker characteristics to obtain the diarization output. This work

also exploits the complementary information between TDOA and x-vectors feature types.

For ASR, multi-condition training was done using clean and reverberated audio to observe

ASR improvements using DNN-HMM and TDNN-HMM acoustic models. The output of

diarization is fed to the best performing ASR system to finally obtain the transcripts.

For evaluations, we investigated two datasets: simulated multi-channel data using Lib-

riSpeech and recorded natural conversations at Tata Consultancy Services (TCS) office

rooms. An interface (GUI) based on Python is built and implemented, incorporating this

enhancement-diarization-ASR system. A synthesis GUI was developed for generating the

multi-channel audio. The developed system performed well and was demonstrated on

both simulated and realistic multi-channel audio.



Chapter 1

Introduction

The performance of conventional Automatic Speech Recognition (ASR) systems

degrades as the distance between the speaker and the microphone increases. This is

mainly due to effects such as background noise, overlapping speech from other speak-

ers, and reverberation. While traditional ASR systems underperform for speech captured

with far-field sensors, there are several novel techniques within the recognition system

as well as techniques developed in other areas of signal processing that can mitigate the

degrading effects of noise and reverberation, as well as separating speech from overlapping

speakers. The advancement in speech recognition has led to the development of real-world

applications ranging from Smart Homes, voice-controlled personal assistants like Apple’s

Siri, Google Assistant, or Amazon’s Alexa, where the speaker can be distant while using

it. But, the deployment of speech recognition systems into the real world also comes

with a lot of challenges. For example, an ASR system should be robust to noise but only

low reverberation. On the other hand, meeting room environments, home environments

typically have a much higher SNR but have moderate to high amount of reverberation

with an additional challenge of overlapping talkers [1]. Also the distance of the person

speaking from the microphone also affects the ASR performance of ASR especially in

these challenging acoustic conditions. Current DSR systems for conversational speech are

considerably less accurate than their close-talking equivalents, and usually require com-

plex multi-pass decoding schemes and sophisticated front-end processing techniques [2],

making distant speech recognition a highly challenging area. The problem we are trying

to solve here is to automatically transcribe a conversation during a meeting in a closed

room. There are multi-speakers seated around a table and usually several microphone
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sensors placed on the table. The entire meeting session which is being recorded by these

microphones is to be recognized to obtain which speaker spoke what as shown in Figure 1.1

Figure 1.1: Scenario of distant ASR

This work tries to overcome the existing challenges of the distant ASR (DSR),

namely noise and reverberation. Also when multiple speakers are speaking in a conver-

sation, we may want to know who spoke what (diarization) in the recorded speech. This

work also tries to study and pose a solution to the speaker diarization problem, which is

discussed in subsequent chapters.

1.1 Multi-channel audio processing

Single-channel recognition results in poor speech recognition when the speaker is

distant from the recording microphone device [3] (typically of something more than 0.2m).

Also, single-channel approaches are affected by low SNR and high reverberation condi-

tions. This made the popular use of microphone array along with the added advantage of

using its strategic microphone placement to obtain spatial information. Firstly a micro-

phone array can locate and track a speaker since different positions of speakers produce

different instances of this signal being received at the microphones. Secondly, simultane-

ous source signals overlapping in frequency domain but coming from different directions

can be separated using such an array. Microphone arrays can steer its response in different
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directions, allowing it to extract the signal from a particular direction attenuating other

signals from other directions, which is called beamforming.

A large number of algorithms for microphone array processing were borrowed or

generalized (in a very simple manner) from narrowband array processing. The advantage

of this is that most algorithms conceived for decades in antenna arrays can be extended

without much effort [4]. In antennas, array processing is used for directional reception as

well as transmission of narrowband signals. So much of the theory behind the construction

of spatial filters were derived from these narrowband processing techniques. Since speech

is a wideband signal, most of the array processing algorithm works by considering each

frequency bin as a narrow band signal and applying the narrowband algorithms to each

bin.

1.2 System Description

Figure 1.2: Enhancement-Diarization-ASR system

The system we plan to incorporate to deal with DSR is shown in Figure 1.2 and

the decomposed blocks are shown in Figure 1.3.

Figure 1.3: Block diagram of the multi-channel DSR system
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The main components of the entire system is shown in Figure 1.3 comprising of

front end enhancement stage followed by a speech recognition system which takes multi-

channel audio as input and outputs the conversation decoded text in terms of who spoke

what and when. Following is a brief description of the different stages involved:

• Enhancement block:

Single Channel Enhancement : Single-channel dereverberation is done before source

localization improve localization estimates. Some single-channel denoising methods

before beamforming is also sometimes seen to have ASR performance improvement.

Source Localization : The technique of finding the direction of the speaker using

the information from the signals received at the microphone arrays. This spatial

information is used as a steering direction by the beamforming algorithm. Various

source localization algorithms are described in Chapter 2.

Beamforming : The process of steering the response of the microphone array towards

the source direction thereby attenuating the undesired signals from other directions.

Chapter 3 explains the working of different beamforming techniques.

• Diarization/ASR:

Speech Activity Detection (SAD): The enhanced output from the beamforming is

used to obtain speech only segments in the audio, having start-end timings, where

the role of SAD is to obtain non-silence regions in the audio.

Diarization : Solves the problem of who spoke from ’what time to what time’. Fea-

tures are extracted out of segment output of the SAD and then clustering is done to

assign speaker labels to each such segment. TDOA features that capture spatially

location of speakers and embeddings obtained from speaker-recognition models that

capture speaker-characteristic information were studied and are discussed in Chap-

ter 4.

ASR : The speech recognition system generates a hypothesis regarding what exactly

the speaker said from the acoustic waveform with the help of trained acoustic and

language models. These hypotheses are compared with reference text to compute

accuracy in terms of WER. Chapter 5 presents the speech recognition accuracies

of various beamforming methods under different conditions. The ASR output is
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guided with diarization speaker labels to obtain the conversation type decoded text

as shown in Fig 1.2

Although we investigated single-channel enhancements like WPE [5], NMF [6] for derever-

beration, and Wiener [1], Spectral subtraction [7] for denoising, the subsequent chapter

will discuss only the part of the system after the single-channel enhancement step.

1.3 Datasets

We have analyzed and investigated the above system blocks on two different types

of datasets, one which is simulated from single-channel audio recordings from a standard

speech research dataset and the other being natural microphone array recordings, recorded

in different meeting rooms of TCS.

1.3.1 Simulated Multi-channel Data

The idea was to simulate multi-channel audio, to be used for our study of multi-

channel enhancement, diarization, and their ASR performance. These audio recordings

consist of multiple speakers speaking in front of the single microphone array(the config-

uration of the array is fixed for all recordings). Although in any multi-speaker recording

there is a chance of two or more speakers speaking simultaneously, we only consider a

scenario when there is no speaker overlap. Also, the position of the speaker and the array

remains the same throughout the recording. A typical configuration is shown in Figure

1.4. Typically rooms of 3 different sizes are considered from a small to a large room.

The setup is such that the array is assumed to be placed around a meeting table with

speakers seating around it. The array configuration is fixed to a circular array with a

radius of 5cm (4 on the circumference at 90o apart and 1 at the center). An entire ar-

ray recording is called a session. A session consists of speakers speaking continuously or

taking turns while speaking. These continuous chunks of spoken audio of a speaker are

termed as utterances. So a session consists of multiple utterances of one or more than one

speaker. We use the image method proposed by Allen and Berkley [8] which is the most

commonly used method in the acoustic signal processing community to create synthetic

room impulse responses. was used to generate multi-channel audio. This audio generator

tool generates the Room Impulse Response (RIR) for each microphone a given source
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speaker, for every pair of microphones and speakers in the session. The position of each

microphone, each speaker, room dimensions, and reverberation time constant (T60) are

arguments to this RIR-generator.

If the number of channels is say M and number of speakers are N with labels from

S={s1,s2,..sN}, then the RIR-generator it will give M x N RIRs for each speaker-channel

given as a matrix RM×N pair. So the signal generated for ith microphone pair for the

source signal xsj is:

yij = R[ij] ~ xsj (1.1)

This is done for all speakers j=1:N in the session for the ith channel. Then all the obtained

yij are concatenated in the time domain for all j speakers by adding random silence of

02.s-0.5s to give channel single zi. In the last step, noise is at to the all the channel signals

zi, for i=1,2..M.

After it generates the RIR, corresponding speaker utterances are convoluted to ob-

tain the multi-channel session audio. Silence is added after each utterance and stationary

noise added at different SNR to each channel of the audio. For enhancement analysis, we

considered simulated multi-channel audio, where sessions have multiple speakers but with

only one utterance each (we refer to this as ’Dataset A’). Speakers are placed at different

azimuths at an angular separation of 30o from the array. The placement of speakers is

restricted to one side of the array. The speaker array distance was varied with a minimum

distance of 1m to a maximum of 2m. The total duration of the dataset is 5hrs. The details

of the Dataset A are shown in Table 1.1.
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Table 1.1: Parameters varied simulating multi-channel audio for single-utterance per
speaker type session: Dataset A

Parameter Value

No. of Speakers 1 - 5

Duration of each utterance 4 - 8 secs

Duration of silence after each ut-

terance

0.5s-1s

T60 0.2s-0.5s

SNR 5-10dB

Number of rooms 3

Distance of speaker from array 1m - 2m

Session duration 6s-30s

Figure 1.4: Meeting room configuration

The individual speaker utterances are chosen from the ’dev-clean’ set of LibriSpeech

[9](LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech,

the data is derived from reading audiobooks from the LibriVox project), a dataset of

single-speaker utterances. The simulated sessions are stored along with the corresponding

ground transcripts for each session, taken from LibriSpeech.

For diarization analysis, we simulated meeting type conversation recordings, to be

used as reference dataset (Dataset B). The idea was to have speakers having a conversation
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where each speaker speaks more than once. We assume that the speakers and microphone

positions are considered in a stationary position and no two or more speakers speak at

a time (same as in dataset A). Here the speakers sit all around the microphone array.

Either the speakers sit near to the array (v1m) or far from the array (v2m) in a session.

To generate a conversation session for a given number of speakers, say ’n’, then we

choose n distinct speakers from the mini-LibriSpeech (Utterances of individual speakers

are chosen from the ’dev-set’) dataset and then choose the utterances corresponding to

those speakers. Similar to the way we to generated ’dataset A’ data, we obtain RIRs for

each speaker and microphone and then convolve with corresponding speaker utterance,

only in this case the convolution is done for several utterances of a given speaker in the

turn. Silence is added after each utterance to have the pause in a conversation after a

speaker speaks. Noise is added from Reverb Challenge [3]. The parameters that are varied

to generate such multi-channel sessions are given in Table 1.2.

Table 1.2: Parameters to be selected for simulating meeting audio of a conversation
session:Dataset B

Parameter Value

No. Speakers 3, 5

No. of times a speaker occurs 20 - 30

Duration of each utterance 4s-8s

Duration of silence after each ut-

terance

0.2s-0.6s

T60 0.2s-0.5s

SNR 15, 20 dB

Room Dimension 6m x 4m x 2.5m

Distance of speaker from array 1m, 2m

Session duration 7min-10min

The reverberation constant (T60), number of speakers in a conversation, SNR

levels and near/far are varied so that for each selection of these parameters, there are

equal number of conversation sessions. The order of speaker turns is obtained by randomly

choosing a speaker from the given number of speakers associated with the session. Typical

duration of such a conversation session is approximately 7min-10min. The dataset sessions
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are stored with ground truth transcripts and the corresponding speaker labels, taken from

Libripseech. This dataset will serve as a typical multi-channel meeting conversation test

set for comparison of the various diarization/ASR methods in the following sections.

1.3.2 TCS Recorded Data

This dataset consists of multi microphone audio recordings of meeting type sessions,

recorded using microphone array shown in Figure 1.5b, recorded at TCS office, Mumbai.

(a) Picture of a recording room setup (b) Microphone mounted frame

Figure 1.5: The recording room set up in (a) and microphone array mounted on a frame
used in (b)

The total number of array microphones mounted on the circular frame varies and

each speaker in the meeting sessions has a lapel microphone. The array mounted micro-

phones are placed around the rim of the circular frame and one microphone is typically

placed at the center of the frame, like a circular array configuration. This circular ar-

rangement has a radius of 5cm. The array is placed on the table as shown in Figure

1.4 with speakers sitting alongside the table. The location of the array is fixed and the

speakers are stationary for almost all the session recordings. The speakers sit with a

distance of around 0.7m - 2.5m from the array, depending upon where the speakers are

placed around. The speakers converse in a non-overlapping fashion, i.e. only one speaker

is active at a time.

Sessions recorded consist of mixed gender/all-female types of recordings. The sessions
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consist of recordings of two types:

• Each speaker speaks one utterance only in the session. (like Dataset A)

• A conversation where speakers speaker multiple utterances in the session. (like

Dataset B)

Other details of the TCS recorded dataset is shown in Table 1.3

Table 1.3: Summary of the TCS dataset

Session Details Values

No. of Speakers 3 - 5

Total conversation data Total 43min:

Scripted conversations(29min)

Natural conversation(14min)

Total single-speaker data 35min

Session duration 2min-10min

Number of different rooms 4

Array radius 5cm

The dataset is stored along with the documentation describing each session, room

configuration with the transcripts corresponding to each recorded session. The recording

setup consisted of ’M-Audio M-Track Eight USB Audio’ interface connected to ’AKG

C417 PP Professional Lavalier’ microphones which synchronized all the connected array

and lavalier microphones together. A software called ’Reaper’ was used to record the

audio, at the 48KHz sampling rate and then store the individual channel recordings on

the computer.
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Chapter 2

Source Localization

For beamforming, it is essential to obtain the estimates of the location of the

speaker to apply spatial filtering techniques. The problem of finding the source location

using sensor arrays has long been of great research interest given its practical importance

in a great variety of applications. In these applications, source localization is more com-

monly referred to as the direction of arrival (DOA) or time difference of arrival (TDOA)

estimation.

One possible way of obtaining the azimuth is to run a search algorithm along with different

hypothesized locations and finding the directions where the hypothesis function obtains

a maximum or minimum. Such types of search algorithms are called Steered Response

Power (SRP) [10] search. Further, the beamformer is steered towards the obtained hy-

pothesis angle, and the direction which receives maximum power is the source direction.

Another way for estimating the source angle is to obtain the TDOAs between the micro-

phone pairs and subsequently use this information to obtain the angle. Source Localization

using TDOA estimating is the one which we will focus on.

2.1 Cross-correlation Based

One of the simplest approaches to obtain TDOA is to find the time shift where

peaks appear in the cross-correlation of signals between two channels. Let x1(t) and x2(t)

be the signals received at two different channels, then the cross-correlation (CC) Rx1x2

can be expressed as:

Rx1x2 = E[x1(t)x2(t)] (2.1)
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The time delay TD between two channels signals is the time shift for which cross-

correlation is maximum given as:

TD = argmaxτ (Rx1x2(τ)) (2.2)

CC method works when there is uncorrelated stationary noise but suffers from early

reverberation. Here the delay computed from simple cross-correlation will also give rise

to multiple peaks because of multiple relatively high signal power reflections of the source

signal.

2.2 Generelized Cross-correlation Based

TDOA values are more accurate when obtained using Generalized Cross-Correlation

(GCC) [11]. GCC based algorithms were introduced to increase the robustness of CC

method towards noise and reverberation by applying an additional weighing factor to

each frequency bin. GCC function Ryiyj with the parameter as the delay between micro-

phone pair {i,j} and every frame t can be expressed as:

Ryiyj(t, τ) =

∫
Gy1y2(t, f)ej2πfτdf

=

∫
ψ(f)Gx1x2(t, f)ej2πfτdf

(2.3)

Here ψ(f) represents the weighting factor applied to each frequency bin of short time

cross power density Gx1x2(t,f) of the input multi-channel audio signal. The TDOA TDij

is estimated by obtaining the delay value for which GCC function attains maximum value

i.e.

TDij(t) = argmaxτ (Ryiyj(t, τ)) (2.4)

The weighting function which produced satisfactory result as discussed below.

GCC - Smoothed Coherence Transform (SCOT)

The GCC function with SCOT weighing factor is given by:

Ryiyj(t, τ) =

∫
Gxixj(t, f)ej2πfτdf√

GxixjGxixj

(2.5)
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GCC - Phase Transform (PHAT)

The GCC function with PHAT weighting factor is given by:

Ry1y2(t, τ) =

∫
Gx1x2(t, f)ej2πfτdf

Gx1x1Gx2x2

(2.6)

Because of the normalization of the cross power spectral density by the weight term, the

delay component in the cross-correlation is left as a residue inside the inverse Fourier

Transform. GCC-PHAT performs better in the presence of reverberation and stationary

noise and hence will be used further for beamforming.

2.3 TDOA Estimates from Beamformit

The tool Beamformit [1] uses a dual step Viterbi filtering of TDOA values and

removing poor TDOA values. TDOA value does not show any useful information when

it is computed over a silence (or mainly silence) region or when the SNR of either of the

signals being compared is low, making them very dissimilar. The first problem could be

addressed by using a speech/non-speech detector before any further processing, but prior

experimentation indicated that further errors were introduced due to the detector. The

the selected algorithm applies a simple continuity filter on the TDOA values for each

frame index with ′t′ :

TDn
i,ref (t) =TDn

i,ref (t− 1) if maxτ (Ri,ref (t, τ)) < thresh

=TDn
i,ref (t) if maxτ (Ri,ref (t, τ)) > thresh

(2.7)

where TDn
i,ref is a vector of N-best TDOA values corresponding to N highest peaks in

the GCC-PHAT correlation for microphone pair (i,ref) and thresh is minimum correlation

value, for i=1:M,i6= ref,ref being the reference microphone. The dual step Viterbi TDOA

filtering stage is given in Fig 2.1.
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Figure 2.1: Dual step Viterbi [1] used in Beamformit

It gives one TDOA value for each channel w.r.t. the reference microphone, for every

frame (typically used frame window size of 500ms). It is observed that the TDOA values

across the frame do not change even in moderate reverberation conditions, unlike GCC-

PHAT where the only peak valued index is considered as delay, the estimation of which is

affected by noise and reverberation. The TDOA vector TD(t) = [ TD1, TD2,. . . TDM−1

] obtained for every channel pair w.r.t reference channel and for every frame is the final

TDOA output of Beamformit, which is later used as a diarization feature, as discussed in

chapter 4.

2.4 Some Observations

We compare the TDOA estimated obtained from GCC-PHAT to that of Beam-

formit which filters some more of poor GCC-PHAT estimates for various reverberation

conditions (t60). Fig 2.2 shows the TDOA obtained for two sessions (both have different

t60s) of duration v25s from Dataset A where three speakers are speaking and are placed

at 30o, 60o and 150o with respect to array axis. The window size for TDOA computation

for both GCC-PHAT and Beamformit is 500ms with a hop of 250ms. It shows the ground

truth TDOAs where the value 2 corresponds to 30o, 1 to 60o and -2 to 150o. Here the
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angle is obtained using the delay between the microphone by cos−1( τ.c
d.fs

) where d is the

distance between microphone pair, τ is the delay between the microphone pair, c is the

speed of sound in air and fs is the sampling rate.

(a) Waveform of the one of channel showing active speaker labels

(b) GCC-PHAT TDOAs at t60 = 0.2

(c) GCC-PHAT TDOAs at t60 = 0.4s

(d) Beamformit TDOAs at t60 = 0.2s

(e) Beamformit TDOAs at t60 = 0.2s

Figure 2.2: Showing TDOA values obtained for one of the microphone pair using GCC-
PHAT in (b),(c) and using Beamformit in (d),(e) for t60=0.2s,0.4s and for three speakers
placed at 30o, 60o and 150o. Legend E-Estimated , G-Ground Truth

It is observed that TDOAs obtained from Beamformit are more reliable as less
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variation is seen across frames as compared to GCC-PHAT TDOAs. TDOAs values from

GCC-PHAT get worse for higher t60 of 0.4 while there are minor changes in TDOA values

obtained from Beamformit.

Table 2.1: Showing mean angular error and variance of angular error on Dataset A for all
speakers located at 30 o, for GCC-PHAT and Beamformit estimated TDOAs

T60(s) Method Mean(Angular Error in o) Variance(Angular Error in o)

0.2
GCC-PHAT 10.3 5

Beamformit 3.1 2.2

0.3
GCC-PHAT 18.0 6.2

Beamformit 5.1 3

0.4
GCC-PHAT 25.4 7.1

Beamformit 12.2 3.7

Table 2.1 shows Angular error obtained for different t60 for GCC-PHAT and Beam-

formit method. It is obtained of all speakers located at 30o in Dataset A. Here the mean

angular error is defined as :

M(Angular Erroro) = (Estimated Angleo - Ground Trutho Angle)/(Number of

points or frames). Similarly, we can define the variance of angular error.

It is seen that for all t60s from 0.2 to 0.4, the mean and variance of angular error

for Beamformit is lower as compared to GCC-PHAT. Also, the variance of angular error

do not increase much for Beamformit at t60 increases relative to GCC-PHAT.

TDOA estimation was observed to be affected by the amount of reverberation in

the multi-channel audio. This affects spatially filtering methods (Beamforming), discussed

in the next chapter which rely on these TDOA estimates. Thus, doing single-channel

dereverberation on the multi-channel audio was seen to improve the TDOA estimates,

thus further improving the beamforming performance. Also, because of the reliable TDOA

estimation of Beamformit and less variation of the estimated values for a given speaker

utterance, these TDOA estimates are used as a diarization feature, in chapter 4.
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Chapter 3

Acoustic Beamforming

Beamforming has a long history; it has been studied in many areas such as radar,

sonar, seismology, communications, to name a few. It can be used for a lot of different

purposes, such as detecting the presence of a signal, estimating the direction of arrival

(DOA), and enhancing the desired signal from its measurements corrupted by noise,

multiple sources, and reverberation. Traditionally, a beamformer is formulated as a spatial

filter that operates on the outputs of a sensor array to form the desired beam (directivity)

pattern. Such a spatial filtering operation can be further decoupled into two sub-processes:

synchronization and weigh-and-sum [12]. The synchronization process is to delay (or

advance) each sensor output by a proper amount of time so that the signal components

coming from the desired direction are synchronized. The information required in this step

is the TDOA, which, if not known a priori, can be estimated from the array measurements

using time-delay estimation techniques. The weigh-and-sum step, as the name indicates,

is to weigh the aligned signals and then add the results together to form one output.

Although both processes play an important role in controlling the array beam pattern

(the synchronization part controls the steering direction and the weight-and-sum process

controls the beamwidth of the main lobe and the characteristics of the sidelobes), attention

to beamforming is often paid to the second step on determining the weight coefficients.

The spatial-filter based beamformers were developed for narrowband signals that

can be sufficiently characterized by a single frequency. That is, the response of the

beamformer (like beamwidth, the attenuation factor) is a function of signal frequency.

One way to design a broadband beamformer is to use a sub-band decomposition and

obtain the narrowband beamformer for each sub-band of signal frequency [13]. In that
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way, a speech signal which is typically broadband can be enhanced using such a technique.

The method of beamforming can be represented in a form on the filtering of each channel

with different filters after delaying each channel with the estimated time difference delay

as shown in Fig 3.1.

Figure 3.1: Beamforming Technique

Let h(f) be a column vector with each element representing the transfer function

of filter at the output of each channel (considering 4 channels for illustration). Then the

output at the beamformer is given by:

y =hTxa (3.1)

where xa = {x1a, x2a, . . . xMa}, with each xi being the delayed by the estimated delays

from the localization algorithm from the set α = {τ1, τ2, . . . τM} (for convenience the

time parameter is omitted in the equation). Further, the subscript a denotes the delayed

channel vector.

3.1 Delay Sum Beamforming (DSB)

The advantages of using an array to enhance the desired signal reception while

simultaneously suppressing the undesired noise can be achieved by a DSB. The first step

is to time-shift each sensor signal by a value corresponding to the TDOA between that

sensor and the reference one. The next step is to sum the delayed signal giving the output
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of delay-sum beamformer, which according to the beamforming filter h = [ 1
M
, 1
M
, . . . 1

M
]T .

y(t) =
1

M

N∑
m=1

xma(t) + nma(t) (3.2)

Since signal received at each channel is superposition of speech signal s(t-ti) and n(t), for

the actual delay ti the signal at the output of the beamformer is expressed as

y(t) =
1

M

N∑
m=1

s(t− (τi − ti)) +
1

M
nia(t) (3.3)

with τi being the estimated delay. In the ideal case when ti = τi, for all i=1:M channels,

the beamformer mainlobe points in the direction of the source.

3.2 Adaptive Beamforming

Once the array geometry is fixed and the desired steering direction is determined,

the characteristics of the beam pattern of a DSB, including the beamwidth, the amplitude

of the sidelobes, and the positions of the nulls, would be fixed. This means that if we

want to adjust the beam pattern, we have to make physical changes to the array geometry,

which is virtually impossible once an array system is delivered. The fixed beamforming

techniques can fully take advantage of the array geometry and source location information

to optimize their beam pattern. However, the ability of a fixed-beamforming array system

in suppressing noise and competing sources is limited by many factors, e.g., the array

aperture. One way to achieve a higher SNR gain when the array geometry is fixed is

through using the characteristics of both the source and noise signals, resulting in a wide

variety of array processing algorithms called adaptive beamforming techniques, discussed

in the following sections.

3.2.1 Generelized Eigenvalue (GEV) Beamformer

A more general form of a beamformer output is given in time domain as :

y(t) = s(t− ti)hTa + hTna(t) (3.4)
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where h = [h1, h2, . . . hM ] are weights to be estimated and α is the delay vector estimated

from localization. In particular, taking hi = 1
N

, ∀ i, we get the DSB. Since the signal and

noise are assumed to be uncorrelated, the correlation matrix of the vector signal y(t) can

be expressed as Ryy = σ2ααT + Rnn where σ2 is the source signal variance and Rnn is

the noise correlation matrix.

With this general filter, the output SNR is written as:

SNR(h) = σ2
(hTα)2

hTRnnh
(3.5)

can. One straightforward way of doing this is to find a filter h that would maximize

the positive quantity SNR(h). This is equivalent to solving the generalized eigenvalue

problem:

σ2ααT = λRnnh (3.6)

The solution to this is given by the beamforming vector which is the eigenvector corre-

sponding to maximum eigenvalue, i.e

y(k) = hTλmax
xa (3.7)

This beamforming method is called GEV [13] beamforming. Since it tries to maximize

the SNR, in some literature it is referred to as Maximum SNR beamforming.

3.2.2 Minimum Variance Distortionless Beamformer (MVDR)

As the name suggests, the MVDR beamformer [14] tries to minimize the output

noise variance but subject to constraint that noise coming from the source direction is

not high but constant given below:

minhh
TRnnh subject to hTα = c (3.8)

The solution to this optimization problem is given by:

hMVDR =
R−1nnα

αTR−1nnα
(3.9)
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Thus the final output of the MVDR beamformer is given by:

y(k) = hTmvdrxa (3.10)

3.3 Neural Network Mask Based Beamforming

One way to compute the spatial noise co-variance matrix is to do a time average

as :

Rnn =
T∑
t=1

xa(t, f)xa(t, f)H (3.11)

Assuming that noise properties do not change over the entire audio signal, the chunk of

frames of the audio before the onset of speech is used to compute this co-variance matrix.

Note that the covariance matrix is a function of frequency.

Another method of obtaining this matrix is to use a neural network mask [15].

We have considered both MVDR and GEV beamformer here since both these methods

require co-variance matrix estimation. For both beamformers the co-variance matrix RNN

is obtained from the estimated masks M(t,f) which is then element-wise multiplied with

x(t.f) xH(t,f) .

Rnn =
∑

Mv(t, f).(x(t.f)xH(t, f)) where v={X=speech,N=noise} (3.12)

To obtain this mask, we use noisy speech and its correspondingly labeled clean speech.

Figure 3.2: Mask estimation using RNN using multi-channel audio taken from [15]

An RNN based model is used to obtain mask spectrogram for speech for each

channel. The mask obtained for each channel take values in {0,1}. Median value is

obtained across channels for each time-frequency point to get the final output mask. If

the obtained speech mask is Mx then the noise mask is 1-Mx. The mask obtained is used

to compute the noise co-variance matrix as eq 3.12. This obtained co-variance matrix is
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then used to compute the beamforming vector as in eq 3.6 and 3.9.

3.4 Observations

This analysis here was to compare the performance of the beamforming meth-

ods. The comparison was done on the simulated testset: Dataset A (one-utterance of

each speaker type dataset mentioned in section 1.2). Here, each single-channel was first

dereverberated using WPE as TDOA improvement was observed after dereverberation

and then fed to the beamformer. TDOAs are computed using GCC-PHAT method for

the analysis window of 20ms with 10ms hop. The mask estimation neural network was

trained on CHiME4 data [16]. The estimated average performance of these beamform-

ing enhancements is evaluated using cepstral distance (CD), perceptual evaluation speech

quality (PESQ) and SDR of ′BSS Source Eval′. [17] for all sessions in Dataset A as shown

in Table 3.1.

.

Table 3.1: Performance measures evaluated on Dataset-A for various beamforming meth-
ods discussed

Enhancement Measures

BF-Method CD PESQ SDR

None 5.7 1.2 4

DSB 5.6 1.6 4.2

GEV 4.7 1.3 4.2

MVDR 4.8 1.8 5.0

NN-GEV 4.3 1.9 5.1

NN-MVDR 4.2 1.9 5.2

Other evaluations include a comparison of these methods using ASR measures.

ASR models are trained on the augmented clean-beamforming enhanced data and then

used to obtain WER will be discussed in Chapter 7.

22



Chapter 4

Speaker Diarization

Speaker diarization for recordings made in meetings consists of identifying the

number of participants in each meeting and creating a list of speech time intervals for

each participant. Since many speech processing technologies, such as in automatic speech

recognition or speaker recognition, assume the presence of only one speaker, diarization

can be an important front end in scenarios where the single-speaker assumption can be

violated. The role of diarization is to annotate recordings of multiple speakers in a way

that specifies which speaker has spoken from what time to what time. It divides the

input recording into segments or chunks as per the start and end of the utterance and

then allots speaker label to each segment.

A typical diarization system consists of three main components: (1) Speech segmentation;

the audio is divided into individual segments assuming that there is only one speaker in

each such segment and tries to remove silence portions (2) Feature extractions; specific

audio features like MFCC, speaker-specific features like i-vectors or embeddings from

neural networks are obtained for the segments (3) Speaker Clustering, where the features

extracted are clustered as per some distance measure and assigned speaker labels. In

cases, where the number of speakers is not known, some methods can itself estimate the

number of speakers.

The most common approaches for diarization of audio consist of using conventional

acoustic features like MFCC, HMM-GMM based models trained on these features to ob-

tain likelihoods and agglomerative clustering based on the obtained likelihoods [18]. Other

diarization approaches depend on using spatial information of the speaker as a feature to

distinguish between speakers in a conversation. These methods estimate the DOA of the
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speaker and then use a DOA classifier to assign labels to each speaker [19]. These DOA

or TDOA features carry information about the location of the current speaker and they

have been used as complementary features to conventional MFCC. Many state-of-the-art

diarization systems for meeting recordings are based on the HMM/GMM framework and

the combination of spectral (MFCC) and TDOA features. The combination happens at

the model level, weighting the log-likelihoods of independent GMM models estimated on

each feature stream [20] [21] [22]. Recent efforts have been successful in learning better

representations automatically using i-vectors, while others use feed-forward or recurrent

neural networks (RNN). Embeddings obtained from neural network [23] [24] models used

for speaker recognition and verification tasks seem to have outperformed state-of-the-art

techniques like the i-vector. These embeddings capture speaker characteristics and are

not dependent on what the speaker spoke, i.e, they are text-independent.

One aspect of the segmentation-based approaches above is that the resulting di-

arization marks will be restricted to begin and end according to the segmentation bound-

aries. To remedy this, the second stage of diarization, often called re-segmentation, can be

added [25]. In re-segmentation, the results of the clustering are used to initialize a frame-

level diarization system that then iterates to refine the boundaries of the speaker turns.

Most re-segmentation is performed in the acoustic feature space with a Hidden Markov

Model (HMM) or by using a neural network. In this work, we don’t use re-segmentation

after clustering.

The diarization system proposed here combines the two features i.e neural network

embeddings obtained from a TDNN based speaker recognition model [23] and the TDOA

features [1]. The new feature is a concatenation of the TDOA feature and extracted

embedding (known as an x-vector feature), as in the block diagram in Figure 4.1.

Figure 4.1: Proposed Diarization System
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4.1 Proposed Diarization System

The proposed system combines the spatial information and speaker information

obtained from the multi-channel audio for the task of diarization. The following sections

discuss each of the diarization step, i.e segmentation, the method of combining features

and clustering.

4.1.1 Speech Activity Detection (SAD)

As a first step in the diarization process, non-speech frames are identified and

removed. Speech activity detector (SAD) outputs segments with start and end time in

seconds. Each segment is seen to contain only one speaker, for the audio of no overlapping

speakers. The multi-channel audio is first enhanced using the techniques discussed earlier

and this enhanced output is given to the SAD. It is a TDNN+LSTM model trained with

the CHiME-6 data with the alignments obtained by a GMM [26]. The advantage of using

a TDNN network is, it can learn a wider context, wherein this case each layer doubles the

width, with a total duration context of +- 320ms for each frame-level decision. The de-

coded SAD output (every frame level decision is softmax probability over silence/speech)

gives the start and end time of each segment. Say the segment obtained for the audio

signal are represented by set S = {s1, s1, . . . sN}, for the obtained N segments. The

next stage of feature extraction followed by clustering is done per segment.

4.1.2 X-vector Embeddings

To obtain speaker characteristic information, we use the x-vector neural network

embedding as the diarization feature [27]. It is a pre-trained speaker recognition model on

Voxceleb1 data and the output of the before classification layer is used as this embedding.

The input is extracted MFCC features which are 24-dimensional filter banks with a frame-

length of 25ms, mean-normalized over a sliding window of up to 3 seconds, and are then

fed as input to TDNN network as shown in the Table 4.1. For each segment in S, x-vector

set X = {xs1 , xs2 , . . .xsN} is obtained.
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Layer Layer context Total

context

Input x Output

frame 1 [t-2,t+2] 5 120 x 512

frame 2 {t-2,t+2} 9 1536 x 512

frame 3 {t-3,t+3} 15 1536 x 512

frame 4 {t} 15 512 x 512

frame 5 {t} 15 512 x 1500

stats pool-

ing

[0,T} T 1500T x 3000

segment 6 {0} T 3000 x 128

segment 7 {0} T 128 x 128

softmax {0} T 128 x N

Table 4.1: Architecture of TDNN based speaker recognition model used in [27]

4.1.3 TDOA Features

TDOAs are obtained for each analysis frame of the input multi-channel audio using

GCC-PHAT between pairs of microphones with one of them as a reference (ref). If there

are ′m′ channels, then a m-1 TDOA valued vector is formed for every analysis frame

TDref,j(t) using all other microphones j= 1:M, j6=ref and then used as a feature vector

for diarization. One problem in this TDOA estimation using GCC-PHAT lies in the peak

picking of the cross-correlation, where the index of the peak is chosen for the TDOA value.

With room reverberation, the phase of the source signal is affected and hence the peak

will not always correspond to the true delay between the microphone pair. Also, it is

sometimes observed that as the analysis window changes, the TDOA value is seen to vary

even though the source position has not changed. This poses a continuity problem in the

TDOA values obtained for the segment where the speaker is fixed. These problems are

addressed by Beamformit which (1) Computes N-best TDOA values for N highest peaks

for each analysis frame and (2) Smoothing of the varying nature of these TDOA values

computed for successive analysis frames by finding the least cost path which is a two-pass

Viberti TDOA refinement; one across the individual channel, and another pass across all

channels as in Fig 2.1. For the final best path, frame-wise TDOA values of dimension
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M-1, one for each channel, are taken for the entire segment of the SAD output, and then

maximum occurring TDOA value is computed across all frames for each channel. Thus a

single segment is represented by an aggregated TDOA value given by:

agTDj(s) = modet(TD(j(t))) (4.1)

for every microphone j = 1 : M, j 6= ref . Thus the vector agTD(si) of length M-1, is the

TDOA feature vector used for diarization.

4.1.4 Feature Combination and Clustering

The idea here is to use the complementary information between the x-vector and

TDOA, to aid in diarization. Since there is no direct relation between the speaker charac-

teristic embeddings and the spatial TDOA feature from Beamformit (referred as TDOA-B

here) vector, a way to capture complementary information from both these feature types is

by combining both the feature vectors into to a single vector. The obtained segment level

x-vector xsi and TDOA-B vector agTDsi are combined to form a xTDOA concatenated

vector :

xTDsi = [xsi agTDsi
] (4.2)

for all i in segment set S. Each dimension of x-vector is mean-standard deviation nor-

malized across the segments in the entire conversation and then concatenated with the

corresponding TDOA-B vector of that segment as shown in eq 4.2. The total dimension

of this new vector is 127+M-1.

We investigated two clustering techniques for the xTDOA feature namely K-means

which clusters the feature directly (distance-based clustering) and cosine similarity(CS)

with agglomerate hierarchical clustering (AHC:for similarity matrix clustering).

For the K-means, the number of clusters are initialized to the number of speakers

in the conversation. It was observed that the Euclidean distance between the features

was best in terms of classifying the features. CS metric distinguishes features based on

the angular separation between them rather than the absolute distance, as given:

cossi,sj(θ) =
xTDsi .xTDT

sj

||xTDsi||xTDsj ||
(4.3)
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for segment pair {i,j} and then a similarity matrix is constructed, for every segment pair

in the conversation (for N segments, a N × N matrix is formed). The elements of this

matrix are then clustered using AHC.

4.2 Diarization Evaluations

4.2.1 Evaluation metric

Speaker diarization systems are usually evaluated by the diarization error rate

(DER). DER consists of three components: false alarm (FA) duration, missed detection

(Miss) duration, and speaker confusion (SC) duration, among which FA and Miss are

caused by SAD errors.

DER = (FA+ Miss+ SC)/Total reference duration (4.4)

Since a SAD is employed in our implementation and the output of this SAD is an oracle

segmentation output, we exclude FA and Miss from our evaluations. Therefore, we report

Speaker error rate (SER) as given:

SER = SC/Total segment durations detected by SAD (4.5)

4.2.2 Experiments

As per Fig 4.1, multi-channel enhanced audio (using Beamformit here) is used to

obtain segments by the SAD. A minimum speech duration of 300ms and minimum silence

of 30ms are set while decoding the SAD out-put. 40-dimensional MFCCs are obtained for

every 250ms frame with 10ms shift and are fed as input to the pre-trained SAD model.

Beam search is done on the softmax output to obtain segments of speech with start and

end-time. For obtaining TDOA-B feature, Beamformit is run on the multi-channel audio

to obtain the per frame TDOA for a frame duration of 500ms with 250ms hop. The TDOA

vector obtained from Beamformit for every frame of 500ms is aggregated over the segment

as in eq 4.1. This feature is investigated for diarization referring it as TDOA-B. Also,

the enhanced audio from Beamformit with the SAD segment output is used to obtain

the x-vector using the speaker-recognition model mentioned in Table 4.1. Concatenation
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of this segment level x-vector and TDOA is done for the xTDOA method as in eq 4.2.

We observe complementary segment level information between the two methods: x-vector

and TDOA-B to give an idea of how much improvement over we can observe, as depicted

in Table 4.2 after combining the feature types.For each correctly classified/misclassified

x-vector/TDOA method, time duration T (hrs) =
∑
njtj for nj= 0,1 and tj duration of

the segment.

Total duration of misclassified segments by x-vector method (0.31 + 1.69 hrs) is

more than that misclassified by TDOA (0.31 + 0.91 hrs),(the best being being TDOA

method with total misclassification of 0.31 + 0.91 = 1.22 hrs). Here we use the best

performing TDOA, x-vector, and TDOA + x-vector method for the analysis. The to-

tal duration of misclassified segments by x-vector method (0.31 + 1.69 hrs = 2 hrs) is

more than that misclassified by TDOA (the best being TDOA method with total mis-

classification of 1.2 hrs). With the xTDOA method, the total misclassification duration

was observed to be 0.84 hrs which is an improvement over the segments which were

misclassified.

Table 4.2: The total duration of correctly classified/misclassified segments (w.r.t duration)
for x-vector and TDOA-B method evaluated on the same 8.5 hrs of multi-channel data.
(total duration of speech segments was 7.2 hrs)

PPPPPPPPPPPPPP
TDOA-B

X-vector
Misclassified Correctly Classified

Misclassified 0.31 0.91

Correctly Classified 1.69 5.14

We compare the xTDOA diarization feature system with two individual baselines

of x-vector and TDOA-B in Table 4.3. The clustering baseline method is CS with AHC

while the x-vevctor baseline is probabilistic linear discriminant analysis (PLDA) [24] with

AHC. x-vector: method showed an average SER of 21.2%. For near and far speaker

placements, the error does not change much (maybe obvious as the x-vector diarization

system is independent of spatial information). For higher t60, the error is more than that

of lower t60. Also for some scenarios, more 5 speaker conversation has slightly more error

than 3 speakers.

TDOA-B: With an average SER of 16.2%. For low t60(300ms), on average SER’s
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Table 4.3: SER in % for a closed conversation data with using Dataset B, evaluated for
x-vector, TDOA-B(Beamformit) and xTDOA diarization method

T60 SNR(dB) No. of Spks Spk placement
SER(%)

x-vector TDOA-B xTDOA

300ms

15
3

Near 20.4 18.1 11.2
Far 20.1 16.9 10.1

5
Near 22.9 17.1 12.1
Far 22.0 15.5 11.2

20
3

Near 17.2 17.2 10.9
Far 17.0 15.6 9.0

5
Near 18.7 17.5 11.7
Far 18.4 16.1 10.4

600ms

15
3

Near 22.9 20.9 14.2
Far 22.6 19.3 12.4

5
Near 23.2 20.1 13.3
Far 23.7 19.8 12.2

20
3

Near 18.9 18.7 12.1
Far 19.2 18.2 12.0

5
Near 20.3 17.2 13.6
Far 20.6 16.7 12.4

are comparatively lower as compared to 600ms. Some improvement is also seen for 20dB

SNR as compared to 15dB. For far cases, there is around 1.5-2% improvement. xTDOA:

For low T60(300ms), SER’s are comparatively lower as compared to higher T60(600ms)

as seen from Table 4.3. As compared to the previous TDOA only method, SER for

a conversation with 3 and 5 speakers is roughly the same. Also as the distance of the

speaker increases, an average improvement of 1.5% to 2% is seen SER reduction is noticed.

Also as obvious, 20dB SNR showed lower SER as compared to 15dB.

SER for these individual feature methods namely the TDOA-B, x-vector, and the

combined xTDOA for various clustering techniques are reported in Table 4.4. We also

compare the baseline x-vector PLDA clustering as in [23]. It is seen that K-means means

does fairly well in clustering TDOA-B as compared to other metrics like CS+AHC, while

xTDOA method shows more improvement with CS+AHC.
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Table 4.4: Comparison of the TDOA-B method, x-vector method and the combined
xTDOA method for various clustering techniques

Diarization method Clustering method SER

K-means 15.6
TDOA-B

CS + AHC 16.7

PLDA + AHC 21.6
X-vector

CS + AHC 23.6

K-means 16.2
xTDOA

CS + AHC 10.7
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Chapter 5

User Interface for Analysis and

Synthesis

5.1 Multi-channel Audio to Text Tool

This tool [28] is an implementation of the complete enhancement-diarization-ASR

system. It combines the techniques investigated for each sub-block namely the multi-

channel enhancement and the diarization, discussed in earlier chapters.

It is used to generate speaker labeled transcripts using an input multi-channel

audio. It is built for Linux systems along with dependencies like Octave/MATLAB,

Python, and Kaldi toolkit used for diarization/ASR back-end. It is a shell script that

can be called from the UNIX terminal. It has a configuration file imported in the script

specifying the arguments that we can use while running the script.

5.1.1 Using the tool

The syntax of the command while running is

./multictext.sh <input-file> <number-of-speakers> <output-directory>.

<input-file>: The path of the input multi-channel file.

<number-of-speakers>: Number of speakers in the conversation.

<output-directory>: where the output transcripts are stored.

The details of how to set up the tool and run are given in [28]. The configuration

file specifies the type of enhancement, diarization method and ASR model to be used
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while calling the setup. Table 5.1 shows the arguments which can be changed inside the

configuration file. The options and their actions are part of the tool.

Table 5.1: Configuration file details for the tool

Option Description Values

-denoise
Does signal-channel denoising on the
multi-channel audio

wiener, spec-sub

-dereverb
Does single-channel dereverberation
of the multi-audio or the denoised audio
if denoising is specified

wpe, nmf

-localize
GCC based localization to compute
the time difference of arrival (TDOA)
used as steering vector for beamforming

gcc phat, gcc scot

-beamform

Does multi-channel enhancement.
Does it on the enhanced audio using
single-channel denoising and/or
dereverberation, if specified

dsb, mvdr ta, mvdr nn,
gev ta, gev nn

-diarize The type of diarization system used xvector, tdoa, xtdoa

-model dir Please give the relative model path
eg exp/chain cleaned/
tdnn sp 1a

-graph dir
Please give the relative graph directory
path

eg exp/chain cleaned/
tdnn sp 1a/graph

Below is the description of the actions of the methods under each argument specified

in the configuration file:

• Single channel dereverberation : If specified, it does single-channel dereverberation

on the multi-channel audio (hence precedes the beamforming stage). The motivation

of doing so is dereverberating each channel was observed to give reliable TDOA

estimates further improving beamforming performance. The enhanced multi-audio

is stored temporarily in the folder.

• Single channel denoising : If specified, it does single-channel denoising of the multi-

channel audio. Similar to dereverberation, it precedes beamforming but unlike WPE

dereverberation, it is not seen to significantly improve the beamforming output. The

enhanced multi-audio is stored temporarily at folder.

• Seq (Sequence): Specify the sequence for single-channel enhancement. nr: denoising

followed by dereverberation; rn: dereverberation followed by denoising.
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• Beamform : Type of beamforming method used. The multi-channel audio is either

used directly or enhanced output of the previous single-channel stages is used as in-

put for beamforming. Here the beamforming using the output from the localization

stage. The output enhanced audio is stored at the folder.

• Localization : Specifies the type of GCC localization method for TDOA estimation

used for beamforming. If the ′Beamformit′ type of beamforming is used, then it

implicitly computes the TDOA estimates.

• Diarize : Specifies the diarization feature used. First the SAD produces the seg-

ments using the enhanced audio and the segmented audio is for diarization type fea-

ture extraction. If tdoa or xtdoa is the option value, then ′Beamformit′ is used TDOA

feature extraction. If diarize is xvector then it uses the x-vector speaker recognition

model. The output labels per segment are stored at <output-directory>specified

when running the script.

• Specifies the path of the acoustic model and graph model to be used while decoding.

The models are placed inside the ’exp’ folder. The model directory structure should

be in the formats in which Kaldi requires.

All the folder paths are relative with <kaldi-root>/egs/toolasr/dia.

An output produced by the tool for a sample audio file is displayed as
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SPEAKER 1 : listen is anything going to happen here so what are we supposed to be

doing here

SPEAKER 2 : robin has lords into mighty he should short here shortly we can directly

start without the director person

SPEAKER 3 : speaker three maybe you say a few words for introduction things which

reader of aint i dot you you dot future already know

SPEAKER 2 : this meeting is called to order second that

SPEAKER 3 : i am speaker three i am the incorporator of this city

SPEAKER 1 : right now we have a problem the name of this place is you university

new newtork academy on wednesday i went to the university of state of taxes and was

told that we could not incorporate with the name college or university without beginning

existence for two years

SPEAKER 3 : the problem is that what we should we do what we can to incorporate

outside of taxes

5.2 Analysis Graphical User Interface

This is a GUI version of the previous script based tool. This Python based GUI

uses the same back-end that the setup uses (link at [28]). Like the script based tool, the

GUI has two main stages: enhancement and diarization/ASR. Each of the intermediate

stages in Figure 1.3 can be run from the interface. Also, this interface will enable decoding

at each intermediate enhancement stage to show the decoded text.
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Figure 5.1: GUI window with each step of the system block for analysis

The interface has 3 section:

• Choosing multi-channel file

• Running Enhancements

• Running ASR

5.2.1 Choosing the multi-channel file

The multi-channel file that can be chosen from the sample folder ′multiaudio
′ in

the $PWD or any other multi-channel audio. After clicking the Browse button shown in

Fig 5.2, a dialog box will open to choose the multi-channel file. Choose the multi-channel

file you wish to decode and click Open.
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Figure 5.2: Function 1 of GUI

A button to plot a selected RIR is displayed which opens a new window similar

to one shown in Figure 5.6. There is an option to play a particular channel of the file

selected which will open a media player (by default VLC media player, if installed).

Another option is decoding can be done on one particular channel which opens a text

output of the channel audio in e new window.

5.2.2 Enhancements

It starts with single-channel de-noising, single-channel dereverberation, DoA esti-

mation, and beamforming shown in Fig 5.3.

Starting with single-channel de-noising, the drop-down list has two techniques namely:

{Weiner and Spectral Subtraction}. You can similarly play and decode each single-channel

file the same as that for input multi-channel files as mentioned before. There is an option

for running single-channel de-noising and can be toggled with a checkbox.

Figure 5.3: Function 2 of GUI

This is succeeded by single-channel dereverberation if it is enabled. For dereverber-

ation, we have used {WPE and NMF}, appearing in the drop-down. We can also choose

to play or decode each of the dereverberated channels.
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This stage is followed by localization with GCC-{PHAT,SCOT} available as op-

tions. Beamforming using the TDOA estimates obtained from the localization( expect

for Beamformit Tool). Options available in beamforming are: {DSB, GEV, MVDR, NN-

GEV, NN-MVDR}. Finally, after beamforming, a single-channel enhanced file obtained

can be played or decoded.

Note that after clicking on the ’Enhance’ button only, the enhancement will run. If

single-channel denoising/dereverberation is selected, then and only then they will be used

to enhance each channel before feeding it to source localization and beamforming (Al-

though both functionality for denoising and then doing dereverberation is an option in

the GUI, just doing dereverberation is seen to have improvements in beamforming and

TDOA estimation but doing denoising before dereverberation is seen to degrade the ASR

performance after beamforming)

5.2.3 Diarization and ASR

This stage uses the enhanced output from the beamforming from the chosen method

used in the previous stage to do diarization and ASR. The drop-down in Fig 5.4 lets you

choose the feature used for diarization, i.e x-vector, TDOA, or xTDOA method before

clustering and after click ’Get Decoded Output’ will generate the conversation text using

the speaker labels generated from diarization and ASR decoded output from ASR system

back-end. After clicking on ’Get Decoded Output’, a new dialog box will open to showing

the decoded text conversation. The format of the output is the same as the one generated

by the script-based tool.

Figure 5.4: Section 2 of GUI

5.2.4 Directory Structure for Files

Linux machine is required to run this task as most of the ASR models are being

tested run on the Linux machine.
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The following toolkits are required:

• Kaldi

• Octave-dev

• Python 3

The folder from [28] to be placed in <Your kaldi path >/egs folder. The log of

each stage is displayed in the ’log’ console window.

Other Paths

After de-noising, the enhanced file is stored at ./de-noised with

<file name> <method> <channel no>.wav as file name.

After dereverberation, the enhanced file is stored at ./dereverb with

<file name> <method> <channel no>.wav as file name.

After Beamforming, the enhanced file is stored at ./outbeamform with

<file name> <method>.wav as file name.

After diarization, the speaker label file and the conversation text is stored respectively as

<output-dir>/<file name> <method> labels

<output-dir>/<file name> <method> txt

5.3 Synthesis Interface

This GUI is useful for generating multi-channel audio by selecting room configura-

tion (speaker and microphone array position, room dimensions, T60) (link in [29]). It has

two stages as shown in Figure 5.5. The first stage is where we can build a configuration

file for generating RIR for our analysis by varying all the allowing parameters. The second

stage uses the configuration file generated and then using the source files generates the

multi-channel data.

5.3.1 Generate RIR

The RIR generation is based on Habets RIR [8]. It uses the image method, proposed

by Allen and Berkley in 1979, is probably one of the most commonly used methods in
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the acoustic signal processing community to create synthetic room impulse responses. A

mex-function, which can be used in MATLAB, was developed to generate multi-channel

room impulse responses using the image method. This function enables the user to control

the reflection order, room dimension, and microphone directivity.

The room configuration used here is almost the same as that of TCS meeting rooms. The

parameters that can be varied are :

• Type of room

• Reverberation time constant (T60)

• Type of microphone array (Linear, Circular)

• Number of microphone-channels

• Number of speakers

• Positions of speakers and the array center

The positions of the speaker and array center have to be specified by inputting

the X and Y coordinates in meters with rooms one corner fixed as origin whereas array

spacing is specified in centimeters. The ’Generate RIR’ button will build the RIR mat

file. The log window (one on the right with white background) shows the status of the

process.

5.3.2 Generate Multi-channel data

The task here is taking the already generated RIR mat file and convolve in the

time domain with the source file(s) to generate the multi-channel data. The source files

have to be single-channel files of the single speaker of any duration.
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Figure 5.5: Multi-channel RIR generator used to generate RIR and multi-channel data
using generated RIR
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Figure 5.6: Room configuration of the simulated RIR

The ’Generate Multi-channel Data’ button will generate the multi-channel file while the

button ’Show Room Configuration’(enabled after choosing the RIR mat file) will open a

window as shown in Figure 5.6 showing the RIR details like locations of speaker, array

and room dimensions. Also, other parameters set while generating RIR will be listed.

5.3.3 Setup, Directory Structure and Other requirements

This GUI run on Windows and Linux with the required packages installed. The

software along with the README is found at [29] The following software packages are

42



required to be installed to run the GUI’s:

• Python 3 or >3

• Octave-cli , Octave-dev

• PyQt5, soundfile for Python3

The directory ’rir’ contains the generated RIR files, which are .mat file contain all the

information of the parameters which one has chosen during RIR generation while the

directory ’multi-channel’ contains the generated multi-channel files. Here the audio files

stored are in ’.wav’ format. This folder also contains the transcripts for each multi-channel

files with text for each source speaker file if it’s available while generating multi-channel

data.

The command-line tool along with Analysis and Synthesis GUIs can be used to

experiment with and analyze algorithms developed for the purpose of multi-channel audio

enhancement and diarization.
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Chapter 6

ASR Experiments

ASR is a technology that enables the recognition of spoken language into a textual

representation by computers. It can now be found in a large variety of consumer elec-

tronics from cars to mobile phones. These technologies often rely on statistical models

like Hidden Markov Models although state-of-the-art ASR systems use end-to-end neural

networks (use audio in the time domain to obtain the text) with the additional need of

large data to train these models. The audio to be decoded by the ASR is typically first

enhanced and then MFCC features are extracted from this audio. MFCC is a feature

widely used in automatic speech and speaker recognition. They were introduced by Davis

and Mermelstein in the 1980s, and have been state-of-the-art ever since. MFCCs are

obtained for every frame of the audio (overlapping frames are used). Let O sequence of

MFCC features corresponding to a speech signal. That is, O = {o1, o2, o3,..oT}, where

oi refers to a d-dimensional acoustic feature vector and T is the length of the sequence or

the total number of frames, for i=1,2..T. If W one of all the possible word sequences, then

the problem the automatic speech recognition(ASR) decoder solves is to find the most

likely word sequence W* as given below:

W∗ = argmaxW (P (O|W)P (W)) (6.1)

Here P(O|W) is modelled by acoustic model and P(W) by the language model.
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6.1 Acoustic Modelling

The acoustic model learns a mapping between the acoustic or observation vectors

to a unique phone which is a fundamental unit of acoustic speech. In conventional ASR

systems, they are modeled by Hidden Markov Model (HMM). The mappings are related to

the parameters of this HMM model, which are the transition and observation probabilities

of the HMM states.

Hidden Markov models are used to model the acoustic observations (feature vectors) at

the sub-word level, such as phonemes. It is typical for each phoneme to be modeled with

3 states, to separately model the beginning, middle, and end of the phoneme. Each state

has a self-transition and a transition to the next state. Each state in the HMM had a

probability distribution defined by a Gaussian Mixture Model (GMM) as referred to as the

observation probability. The simplest modeling is to model the observation probabilities

by continuous distributions like Gaussian distribution, upon which the model is called

GMM-HMM [30].

Another way of modeling the observation probabilities is to use some other model’s

parameters to learn these distributions than using GMMs. In-state of the art acoustic

models, DNN/TDNN [31] [32] or RNN [33] based neural nets are used to model these

observation probabilities. These models are trained using i-vectors and not MFCCs since

these i-vectors try to capture speaker characteristics better. Such acoustic models are

called ”hybrid” systems or DNN-HMM systems to reflect the fact that the observation

probability estimation formerly done by GMMs is now done by a DNN, but the rest of

the HMM framework, in particular the HMM state topologies and transition probabilities,

are still used.

6.2 Hybrid Acoustic models

The simplest and most common neural network used for acoustic modeling is the

conventional fully connected feed-forward neural network shown in Fig 6.1. Although we

are training a DNN-HMM to predict the label for each frame of input, it is very beneficial

for classification to provide a context window of frames to the network as input which

a time-delay neural network (TDNN) [32] utilizes. The neural network acoustic models

compute posterior probabilities p(s|xt) over phoneme labels(s). These state-level posterior
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probabilities must be converted to state likelihoods p(xt|s) for decoding using an HMM.

This can be done by an application of Bayes’ rule:

p(xt|s) =
p(s|xt)p(xt)

p(s)
(6.2)

Figure 6.1: Figure on the left is DNN-HMM [31] and on the right is TDNN-HMM [32] .
The input to these models is acoustic features like MFCC and the label is the stage of
the acoustic feature provided from the GMM-HMM alignments, for this reason, they are
called ’hybrid’ models

Note that because the prior over the observations p(xt) is constant over all HMM

phoneme states s, it contributes a constant factor to all likelihood scores so it can be

dropped. Thus, the likelihood p(xt|s) is computed by dividing the network’s posterior

probabilities by state probability. This state prior probability p(s) can be easily estimated

by counting the occurrences of each phoneme state in the training data.

6.3 Language Model

Models that assign probabilities to sequences of words are called language models

or LMs. We use the simplest model that assigns probabilities LM to sentences and se-

quences of words, the n-gram. An n-gram is a sequence of N n-gram words: a 2-gram

(or bigram) is a two-word sequence of words like “Give your”, “your mobile”, or ”mobile

phone”, and a 3-gram (or trigram) is a three-word sequence of words like “Give your

mobile”, or “your mobile phone”.
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We compute probabilities of entire sequences P(w1,w2,...,wn) using the chain rule of prob-

abilities as :

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1)P (wn|wn−11 ) (6.3)

where wj
1 is a sequence { w1, w2,..wj }. For a 2-gram LM, the context sequence is of

length 1, i.e. only depends of the previous work given by P(wj|wj−1) and for a 3-gram its

P(wj|wj−1, wj−2).

6.4 Evaluations

Model Description: Acoustic models based on GMM-HMM and neural network

hybrid models were used for evaluating ASR performance. The acoustic model was trained

on simulated multi-channel data (A total of 20hrs of audio) chosen from ′100hoursoftrain′

LibriSpeech audio. Following are the different versions of GMM-HMM, DNN-HMM, and

TDNN-HMM models acoustic models trained on different acoustic conditions:

1. Trained on clean data (original)

2. Trained on simulated multi-channel data (clean + one of the channels)

3. Trained on clean, simulated multi-channel and dereverberated data. (clean + one

of the channels+ dereverberated channel)

That is, models (2) and (3) are trained on more than one type of data (multi-condition

training). The model training was done using Kaldi TDNN models. For decoding on

TCS-set, we use a pre-trained Aspire [34] acoustic model. It is trained on Fisher English

that has been augmented with impulse responses and noises to create multi-condition

training. The language model used here was a 4-gram model, trained on the joint set of

train and test transcripts.

6.4.1 Effects of different enhancements on ASR

Here the evaluations are done on two test sets: Dataset A (single-utterance per

speaker conversation set) and TCS dataset as discussed in section 1.2 and 1.3 respectively.

We use Dataset A, a 5.1 hour simulated multi-audio as a test-set, for evaluating and
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comparing the beamforming methods v/s these different multi-conditional trained model

types (superscript to model names means the refer to multi-conditions used to train)

Table 6.1: WER in % at different enhancement stages in the enhancement block in Fig
1.3 for different AMs:1-trained on clean, 2-trained on +clean+reverberated, 3-trained on
clean+reverberated+dereverberated

Model Clean Reverb+Noise De-noised & De-

Reverb

De-Reverb &

BF(NN-MVDR)

GMM-HMM1 7.18 13.45 13.56 10.46

GMM-HMM2 7.19 14.35 13.23 12.45

GMM-HMM3 7.19 15.56 14.25 11.25

DNN-HMM1 7.14 17.13 12.13 12.50

DNN-HMM2 7.34 16.63 11.13 12.39

DNN-HMM3 7.58 12.27 13.13 10.3

TDNN-HMM1 8.34 18.63 13.13 11.39

TDNN-HMM2 9.10 16.56 10.21 10.27

TDNN-HMM3 8.27 14.25 12.5 9.13

As observed, NN-MVDR gave a better WER performance considering all types of acoustic

models, 2-3% more error than the clean on clean data. Also, it is observed that single-

channel ASR on denoised and dereverberation is not helping the ASR as in DNN-HMM

and TDNN-HMM models, the WER values are almost same as that of noisy speech WER

values (around 1% difference). Models trained on reverb and both clean and reverberated

data gave lower WER than that trained on clean data for NN based TDNN and DNN

model. Also among all the models tested, TDNN-HMM3 gave lower WER’s, one possible

reason being it does a better job looking get wider temporal observation sequence than

others and also because of the multi-conditional training of it’s AM.

Table 6.2 shows evaluations on different beamforming methods only for TCS-set

and Dataset A using the TDNN-HMM3 AM. First WPE single-channel dereverberation

is done on the multi-channel audio and then beamforming is performed. NN-MVDR

beamforming showed better performance as compared to other methods. One reason why

the WER numbers were TCS dataset on were higher as compared to simulated Dataset A,
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was because of train-test mismatch as it was decoded using Aspire AM trained on Fisher

English recordings, while the test-set TCS records were Indian English.

Table 6.2: WER in % for different beamforming methods using TDNN-HMM3 AM for
Dataset A and Aspire AM for TCS dataset

BF-Method Dataset A TCS-set
None 16.1 29.9
DSB 14.2 29.3

Beamformit 14.1 28.1
GEV 13.3 26.7

MVDR 13.2 25.7
NN-GEV 9.8 25.9

NN-MVDR 9.1 25.0

For the neural network based models, training and decoding was done using Nvidia 1080

Ti with 1 GPU using Kaldi toolkit.

6.4.2 Effects of Diarization on ASR

As discussed in section 6.1.1 where the hybrid models try to model the observation

probabilities using a neural network model like DNN/TDNN , the input to these AM mod-

els are i-vectors. Normally without speaker labels, i-vectors are extracted per utterance

of a speaker considering that every utterance in the recording session belongs to different

speakers. A minor difference when we have utterance level speaker labels is that these per

utterance speaker label information is used for extracting i-vector (i-vector feature-length

normalization is done for all utterances corresponding to a given speaker). This normal-

ization of i-vectors aids using speaker labels aided in better estimation of the observation

probabilities. For ASR evaluations using speaker information from diarization, we use

Dataset B and TCS-dataset. The multi-channel audio file is first single-channel derever-

berated using WPE and then compared for two beamforming techniques: NN-MVDR

(best performing) and Beamformit (performance of other b-f methods GEV was roughly

same as MVDR, hence only MVDR is illustrated). The enhanced audio is then used by

the diarization system: SAD is used to extract segments and feature-based diarization

methods like TDOA, x-vector and xTDOA are applied to obtain speaker labels. This

speaker information is finally used to do ASR decoding using the respective AMs.
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Table 6.3: WER in % for different diarization methods for NN-MVDR and Beamformit
beamforming methods decoded using TDNN-HMM3 AM for Dataset A and Aspire AM
for TCS dataset

Enhancement Diarization Dataset B TCS-dataset

NN-MVDR

None 13.4 25.8

TDOA 10.3 25.9

x-vector 11.3 26.1

xTDOA 10.5 25.8

Beamformit

None 15.2 27.8

TDOA 13.4 27.1

x-vector 14.3 27.2

xTDOA 13.9 27.9

We use the best performing TDNN-HMM3 acoustic model for obtaining ASR per-

formance on simulated data Dataset B and Aspire model to test on TCS-dataset. For

diarization, clustering is done using CS + AHC. It is seen that without any diarization,

the WER is around 13.4% where there is an improvement after diarization, although there

is no significant difference of WER among the types of feature-based diarization methods.

Also for the TCS dataset, no significant improvement was actually seen after diarization

as compared to 28.1% in Table 6.2. One of the reasons why the diarization output didn’t

aid much is because the SAD was not able to detect the single speaker segments in the

audio.
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Chapter 7

Summary and Future Work

This work focused on improving the ASR performance of audio recorded in a

meeting type room using a microphone array. Multi-channel enhancement techniques

based on adaptive beamforming showed promising results especially neural network mask

based beamforming enhancement outperforming conventional beamforming with respect

to WER numbers, on both LibriSpeech simulated and TCS natural recordings. Although

on the TCS recordings the WER numbers were relatively higher because of mainly train-

test mismatch/unavailability of data to train. With the help of multi-condition training,

the WER improved using a DNN/TDNN-HMM acoustic model for simulated data where

mask based beamforming MVDR showed the best improvement. A part of the work also

focused on speaker diarization which aided in the transcription of the meeting session

with speaker labels. Diarization feature-based methods such as TDOA-B and the fused

xTDOA feature showed lower confusion rates as compared to x-vector system, although

near field condition affected TDOA-B diarization system performance for the simulated

data. Over the TDOA-B method, xTDOA overall showed atleast 3% lower SER with co-

sine similarity and agglomerative clustering. With diarization aided speaker labels, there

was a slight improvement in WER number (roughly 2%) as compared to no diarization

SER number for simulated data.

The performance of the speaker diarization system discussed here strongly depends

on the SAD, apart from the feature and the clustering method used. Improving the SAD

such that it is robust enough so only the speech regions are correctly detected and silence

is suppressed, is one task to focus on, for better diarization. The feature that capture

spatial information like the TDOA and the one that captures speaker characteristic like
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the MFCC or embeddings from speaker recognition models need to be associated in a

better way rather than just doing simple concatenation which was proposed in this work.

Also, this work was restricted to recordings where there were more than one speaker in a

meeting session but not all speakers were active at the same time which is not always the

case. Such scenarios might need separating the speakers into individual speaker for speech

recognition, which too comes with its own challenges. Thus improving the ASR on such

recordings is a challenging task, an example of this can be seen in CHiME6 challenge [35].
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[22] José Pardo, Xavier Anguera, and Chuck Wooters. Speaker diarization for multi-

ple distant microphone meetings: Mixing acoustic features and inter-channel time

differences. Ninth International Conference on Spoken Language Processing, 5, 2006.

[23] Gregory Sell and et al. Diarization is hard: Some experiences and lessons learned for

the jhu team in the inaugural dihard challenge. pages 2808–2812, 2018.
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