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Abstract

The computer-assisted learning of spoken language is closely
tied to automatic speech recognition (ASR) technology which,
as is well known, is challenging with non-native speech. By
focusing on specific phonological differences between the
target and source languages of non-native speakers,
pronunciation assessment can be made more reliable.
Aspiration, an important phonemic attribute in plosives of
Indo-Aryan languages such as Hindi, Marathi and Gujarati, is
rarely found in the world”s languages. The improper
production of the aspiration contrast is thus often the most
important cue to non-native accents of spoken Hindi. A
system for the detection of phonemic aspiration in unvoiced
and voiced stops based on discriminative acoustic features is
shown to be effective for rating non-native accents and
providing reliable phoneme-level feedback.

Index Terms: computer-assisted language learning,
pronunciation scoring, non-native accent, phonemic aspiration

1. Introduction

The computer-assisted learning of spoken language is closely
tied to automatic speech recognition (ASR) technology. The
automatic assessment of a non-native learner based on
carefully designed speaking tests coupled with focused phone-
level feedback would go a long way into expanding the reach
of the language education industry. While intelligibility is a
prime requirement, the absence of non-native accents, as
indicated by segmental (phone articulation) and
suprasegmental (prosody) differences from native speech, are
desirable. A key manifestation of foreign accent is the
improper production of the target language (L.2) phones. This
is especially true when the phones in question do not belong to
the phonology of the learner™s native language (L1).

The challenges of automation are linked to the known
deficiencies of state-of-the-art ASR systems where phone
recognition accuracies are relatively low and an acceptable
performance in practical tasks is achieved only through the
constraints of a powerful language model. In an application
such as pronunciation assessment, however, language models
would obscure genuine pronunciation errors by the non-native
learner. Further, for better raw phone recognition accuracy, the
acoustic models need to be trained on actual non-native
speech. Such a speech database may not be easily available.

In recent past work, widely used direct measures of
pronunciation quality from hidden Markov model (HMM) log-
likelihoods in state-of-the-art mel-frequency cepstral
coefficient (MFCC) feature based systems have not been
found completely effective [1]. The MFCC features are a
generic representation of the spectral envelope of the signal.
More accurate judgement as well as meaningful feedback may
be obtained via acoustic features that can be mapped to
specific phonological attributes. In the present work, we
investigate this approach to the automatic assessment of
pronunciation of stop consonants of Hindi, belonging to the

Indo-Aryan group, among the few language groups of the
world where aspiration is a phonemic attribute. The improper
production of the aspiration distinction is an important cue of
non-native accent, in addition to vowel quality and intonation
[2]. Limiting the scoring to the relevant aspects only would
improve the reliability of the system by ignoring other natural
variabilities of speech, and facilitate the use of specific
discriminatory acoustic features for these aspects.

The 4-way contrast of Hindi stops where voicing and
aspiration are independent for each place-of-articulation (PoA)
are typically challenging for a learner from a different native
language group. In the present study, we consider speakers of
Tamil (as L1), a Dravidian language whose phonology is
devoid of phonemic aspiration. Hindi is the native tongue of
200 million people in India and Tamil, that of 70 million.
Hindi is the national language of India and together with
English serves as a link language across the multilingual
country. With widespread internal migration, the need for
spoken language acquisition of the common languages is high.

The detection of phonetic differences involving aspiration
has been previously attempted for Korean unvoiced stops,
where a spectral tilt feature was added to vowel onset time
(VOT), a traditionally used acoustic measure to distinguish
aspirated stops from unaspirated (tense) [3]. While this
achieved a good discrimination between aspirated and lax
stops, it was less effective for the aspirated-tense case. Based
on a phonological observation that aspiration is marked by
breathy voice in the following vowel, Clements and
Khatiwada [4] investigated the acoustic distinction between
aspirated and unaspirated Nepali affricates on a small set of
speakers to find that the acoustic measures of breathiness were
not reliable across speakers. Voice quality features have been
shown to enhance detection accuracies for phonemic
aspiration in unvoiced Marathi stops [5], [6]. Voiced aspirated
plosives, due to their rare occurrence in the world*s languages,
have been studied minimally [7], [8]. Our recent work
proposed and evaluated multiple acoustic features, extracted
from the consonant and the following vowel regions, for the
reliable detection of aspiration in word-initial voiced stops [9].

A goal of the present study is to develop and evaluate a
speaker-independent automatic system for the robust detection
of aspiration in Hindi voiced and unvoiced stops that can be
used in a pronunciation scoring task for non-native speech. An
objective measure of intelligibility is proposed based on
maximum likelihood classification that is further validated by
human listener ratings. The performance of the proposed
system is compared with that of a baseline MFCC-HMM ASR
system in the context of rating non-native pronunciation and
providing corrective feedback.

2. Database and baseline system

Hindi and Tamil belong to distinct language groups that differ
prominently in the plosive system. While both languages
contain oral stops of 4 places of articulation, voicing and
aspiration are used distinctively only in Hindi as depicted in
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Table 1. Tamil does not distinguish aspiration or even voicing;
stops are voiceless and weakly aspirated in initial position, and
voiced after nasals [10]. Since our work is targeted towards a
pronunciation assessment task, we collect data from native and
non-native Hindi speakers in the form of read-out words
containing the target phones in word-initial position across
vowel contexts. For training the acoustic models, we use an
already available database of Marathi spoken words by 20
native Marathi speakers. Marathi and Hindi are both Indo-
Aryan languages and share the stop series of Table 1. In both,
the unvoiced, aspirated labial is rarely used and therefore
omitted.

Table 1. IPA chart showing stops of Hindi and Tamil

languages.
Language PoA of unvoiced and voiced stops

Labial | Dental | Retroflex Velar

p 4 L k

Hindi t ¢ K"

b d d g

b 4 ¢ g
Tamil | p(®) | L) @ | k@

2.1 Training and testing datasets

The training database comprises Marathi spoken words
sampled at 16 kHz. Two distinct meaningful words with word-
initial stops corresponding to each Hindi phone in Table 1 and
each of the 8 vowels of the language (/o/, /a/, /i/, /1/, lu/, /U/,
/e/, and /o/) are formed and each word uttered in two carrier
sentence contexts by 20 native speakers (equal male and
female). The total number of words in each stop category
appears in Table 2. The utterances were manually transcribed
at phone level to use for acoustic model training.

Table 2. Count of stop consonant-vowel (CV) pairs
from train and test datasets.

small set of utterances (less than 20 words) by the speaker. It
was observed by the listener that phonemic aspiration was the
main discriminating attribute. Voicing was always realised
correctly even though voicing is allophonic in Tamil stops.

Table 3. Examples of stops in word initial as
articulated by native and non-native speakers.

Stop | Word | Meaning Native Non-native
pronunciation | pronunciation
t grer Clap tall tall
t | o Plate all tall
b T Orchard bag bag
bh TIT Section bhag bag

Datasets | Marathi | Hindi Hindi
train native | non-native
Stop category (20) (20) (10)
Unvoiced | Unaspirated 2560 1280 640
Aspirated 1920 960 480
Voiced Unaspirated 2560 1280 640
Aspirated 2560 1280 640

For the pronunciation assessment evaluation, testing
datasets were recorded by 20 native Hindi speakers and 10
speakers of Tamil L1. All were college-going adults. The non-
native speakers had been exposed to Hindi reading and writing
during their school years but had had limited exposure to the
spoken language. They were fluent in Tamil, and used Hindi
to varying extents as they currently lived outside their home
state. The test dataset involved one meaningful word of Hindi
corresponding to each consonant and vowel context embedded
in 2 carrier phrases read out by each speaker. The speakers
were presented the list of written words in Hindi script along
with its English meaning. Table 3 shows examples of the
words (that also happen to be minimal pairs) along with their
typical pronunciations by native Hindi and Tamil speakers.
Each dataset has an equal number of male and female
speakers. A native Hindi listener was able to correctly identify
every one of the speakers as native or not by listening to a

2.2 System frame work and baseline

Acoustic features computed from the segment of interest are
used in a statistical classifier, previously trained on native
speech (the Marathi database in this case), to derive a measure
of correctness of pronunciation in terms of the aspiration
attribute of oral stops across places of articulation. Since the
test speech comprises of known utterances, an alignment with
the word™s phonetic transcription is first achieved using
manner broad class models in an available state-of-the-art
MFCC-HMM ASR system [11]. Such broad phonetic class
based alignment can provide better robustness to speaker and
language variability expected in the context of non-native
speech since most confusions in a phone recognizer tend to be
within the same manner class [12]. The broad classes are:
vowels, sonorant consonants, unvoiced fricatives, unvoiced
affricates, unvoiced stops, voiced affricates, voiced stops,
silence and voice bar. The acoustic models are context
independent, 3-state  HMM with 8 mixtures, diagonal
covariance and flat-start initialization. The standard 39 dim
MFCC, delta and acceleration feature vector was computed at
10 ms intervals.

The aligned segments corresponding to voiced and
unvoiced stops are processed for the extraction of acoustic-
phonetic (AP) features as described in the next section. A
Gaussian Mixture Model (GMM) classifier (6 mixtures, full
covariance) is trained on the feature vectors of each class:
unvoiced unaspirated (UU), unvoiced aspirated (UA), voiced
unaspirated (VU), voiced aspirated (VA). Two-way
classification is carried out on test unvoiced stop segments,
and similarly on test voiced segments. For comparison, we
also have a baseline system, implemented by extending the
broad class MFCC-HMM system by separating the unvoiced
and voiced stops further into 2 classes each to get UU, UA,
VU and VA classes.

3. Acoustic-phonetic feature extraction

Aspiration is perceived as a release of breath following the
stop burst. The aspiration feature has traditionally been
associated with the timing of voicing onset [13]. Aspiration is
also accompanied by an increased glottal opening in many
languages including Hindi and the presence of aspiration noise
during the following vowel [14]. Acoustic correlates of
aspiration thus include VOT, aperiodicity of the vowel
waveform and spectral shape attributes: HI-H2 (amplitude of
the first harmonic relative to the second, reflecting the glottal
open quotient) and spectral tilt. The latter two have been
extensively studied as acoustic correlates of breathy voice
quality in vowels where spectral tilt has been measured in
various ways including HI-A3 and A1-A3 where An is the
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highest amplitude in the region of the n' formant [15], [16].
Thus phonemic aspiration is clearly multidimensional in terms
of articulation, and trade-offs can be expected in both the
production and perception of a specific realization. Therefore
multiple acoustic features have been considered for reliable
detection. The implementation of feature extraction is
presented next.

3.1. Acoustic landmark detection

The extraction of the acoustic-phonetic features needs the
precise temporal locations of landmarks corresponding to
burst onset and vowel onset in the CV region of each
utterance. The segmentation achieved by the broad-class
HMM recognizer of Sec. 2.2 is coarse and must be refined as
presented here.

The release burst onset is detected by the largest peak in
the rate-of-rise (ROR) of the smoothened energy in 3500-8000
Hz within a 40 ms vicinity of the coarse boundary [17], [18].
This achieves burst localization to acceptable precision.
However, cues to vowel onset are dependent on the nature of
the consonant and especially difficult for aspirated and voiced
stops. We employ different methods for vowel onset detection
in the case of unvoiced stops and voiced stops. The rise of
periodicity is a prominent cue to vowel onset after an
unvoiced stop. Periodicity measured by the autocorrelation
function peak computed from sliding 25 ms windows at 1 ms
intervals, throughout a region of 40 ms around the initial
boundary, is input to a previously trained decision tree to
detect the vowel onset. The decision tree is trained on the
manually labeled vowel onsets of the Marathi database. In the
case of voiced stops, we use the rapid rise in the signal
amplitude envelope in the low frequency band (50 Hz — 600
Hz) to detect the precise vowel onset in the vicinity of the
initial coarse boundary [19]. While a median localization error
of 5 ms is observed with respect to manually detected onsets,
experimentally measured acoustic parameters extracted based
on the automatically labeled onsets are seen to correspond
well with those extracted using manual labels indicating the
efficacy of the landmark detection methods.

3.2. Feature implementation

The features used in the pronunciation scoring task are from
previously published (or to appear) work on acoustic-phonetic
features for aspiration detection [5], [9]. VOT has been widely
used to discriminate unvoiced aspirated stops from unaspirated
stops in English where the former appear in word-initial
context as allophones for voiced stops [13]. It was shown that
including spectral tilt (A1-A3) and noise (signal-to-noise ratio
— SNR) features improves the classification performance for
unvoiced stops further [5]. In the case of voiced stops,
performance with VOT alone is barely above chance.
Including the A1-A3 and SNR improves it greatly. It was later
demonstrated that a performance more comparable to that on
unvoiced stops was obtained only after including all the
further features listed in Table 4 for voiced stops [9].

Table 4. Features used for aspiration detection in the
AP-GMM system.

Class of stops Features in AP-GMM system
Unvoiced VOT, H1-H2, A1-A3, SNR
Voiced VOT, HI-H2, A1-A3, SNR, F1F3-sync,

Low-band-slope, B3-band energy

The feature implementation available in [5], [9] is briefly
reviewed here. VOT is the duration between burst onset and
vowel onset. H1-H2 and spectral tilt measurements are
obtained in the vowel region from magnitude spectra from 25
ms Hamming-windowed DFTs computed at 1 ms hop and
averaged over a selected 5 ms duration. Low-band slope and
B3-band energy provide further descriptions of spectral roll-
off from the second and third formant regions respectively.
The SNR provides the ratio of harmonic energy to aspiration
noise energy. It is computed using a 25 ms analysis window
placed at a selected time instant beyond the vowel onset.
Signal power is obtained from the DFT spectrum but
aspiration noise power is estimated using cepstral liftering
[20]. Cepstral liftering separates the source from the vocal
tract shaping and helps make the SNR less sensitive to
formant influences. Since aspiration noise dominates the
higher frequency region where formants are weak, an
independent method to estimate the noise strength is to
measure the uncorrelatedness of the signal components in two
different frequency regions. “F1-F3 sync” is such a feature
proposed by Ishi [16], computed using F1 and F3 bands of
width 600 Hz around the automatically detected formant
values corresponding to that token. The index represents
correlation of the amplitude envelopes of the two band-pass
filtered signals over a 25 ms region centered at a specific time
instant beyond the vowel onset. The time-instants for spectral
shape and noise features have been experimentally shown to
be most discriminative at 13 ms and 23 ms respectively after
the detected vowel onset [9].

4. Experiments and results

Table 5 shows the performances of the AP and MFCC features
on 2-way classification (aspirated, unaspirated classes) of
voiced and unvoiced stops. Table 4 lists the specific features
used by the AP-GMM system. A 20-fold cross-validation
(leave-one-speaker-out) experiment was carried out on the
Marathi dataset. We observe that the MFCC features achieve
an accuracy comparable to the AP features (the voiced stops
performance is a bit lower) on the Marathi dataset. Next, both
systems were trained on the full 20 speaker Marathi dataset,
and tested on the 20 native speaker Hindi dataset. As seen in
Table 5, the AP features show comparable performances on
both language datasets whereas the MFCC features™
performance decreases significantly. The AP features are
clearly more robust to the cross-language transfer, as might be
expected from their phonological basis.

Table 5. Recognition accuracies on stops of Marathi
and native Hindi datasets.

Class % accuracies in % accuracies in
AP-GMM MFCC-HMM
Marathi | Hindi Marathi Hindi
native native
Unvoiced 90.5 90.2 90.3 76.4
stops
Voiced 85.1 84.9 80.8 77.8
stops

We next present an evaluation of the acoustic-phonetic
system for pronunciation assessment and compare it with the
baseline MFCC-HMM system on the same tasks. The tasks
are designed to demonstrate the suitability of the systems for
overall rating of the pronunciation quality of phonemic
aspiration of a non-native learner and the accuracy of phone
level feedback. The test database is as described in Sec. 2.1,

118



SLaTE 2013 - Grenoble, France - Proceedings

where each of the 20 native and 10 non-native speakers read
out 240 words each embedded in a carrier phrase. The
automatic systems are evaluated on this dataset for the (i)
detection of non-native accent (with respect to ground-truth
about the speaker™s L1), (ii) rating of non-native accent via
ranking of speakers (with respect to correct recognition as the
intended target phone by native listeners), and (iii) accuracy of
phone-level feedback with respect to human perception.

4.1 Detection of non-native accent

Each test word is automatically segmented and the classifier
makes a two-way forced choice between unaspirated and
aspirated classes for each test CV segment. For each speaker,
we compute the percentage of instances that the target is
correctly achieved (i.e. the classifier output matches the
intended target phone) as an objective measure of speaker
“intelligibility”, separately for the unvoiced stops and voiced
stops. Figures 1 and 2 show the obtained %correct for each
speaker for the unvoiced and voiced stops respectively for
each of the two different classifier systems. We see that the
measured intelligibility varies across speakers with the non-
native speakers™ group doing worse overall. Observations of
the individual scores of the 10 non-native speakers showed
that their relative positions matched across the voiced and
unvoiced stops, indicating that the phonemic aspiration
contrast is acquired by Tamil-L1 learners similarly across both
voicing classes.
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Figure 1: Percentage correct achieved target unvoiced
stops in native (N,+) and non-native (NN,o0) datasets.
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Figure 2: Percentage correct achieved target voiced
stops in native (N,+) and non-native (NN,0) datasets

We note that the overall intelligibilities of the native (N) and
non-native (NN) speakers are better separated by the AP
system relative to separation achieved by the baseline MFCC
system. While the non-native speakers show poor realization
of aspirated targets, the AP system also indicates
compromised unaspirated targets by the non-native speakers.
This is not surprising in view of the allophonic usage of
aspiration in Tamil word-initial stops, leading to the incorrect
introduction of aspiration in the target Hindi word-initial
unaspirated stops. For instance, ,fll” of Table 3 was
sometimes pronounced ,{"all"

4.2. Ranking non-native accent

In Figures 1 and 2 we observe an overlap in the overall
intelligibility scores especially in the case of the MFCC
system. That is, some native speakers are rated /ower than the
best ranked non-native speaker. We use this observation to
choose a smaller set of speakers for the subjective validation
of the ranking trends by human perception tests. The speakers
used in the perception test data include the worst-rated native
speaker from the baseline system, and 3 non-native speakers
with various automatic intelligibility ratings, separately for the
unvoiced and voiced stops.

Three judges, all fluent speakers of Marathi and Hindi,
only one of whom is a trained speech scientist, labeled every
voiced and unvoiced stop segment of each chosen speaker
with one of 3 categories: unaspirated, aspirated, unsure. So as
to not bias the judges, the isolated stop segments extracted
from the word were presented for listening in random order.
Each listener classified 512 and 448 segments each of the
voiced and unvoiced stop CVs respectively, presented in
randomized order over 4 sessions of approximate durationl5
minutes each. The recognition task was chosen for the
perception experiment rather than a “quality” evaluation in
order to reduce subjectivity.

Table 5. Percentage correct production of unvoiced
stops as detected by listeners and by the automatic

systems.

Speaker Perceptual results (%) Classifier results (%)
ID ["Subject | Subject | Subject | MFCC- | AP-
1 2 3 HMM GMM
N-8 94.6 93.8 93.8 60.7 89.3
NN-6 67.9 71.4 69.6 67.0 62.5
NN-1 58.9 58.0 59.8 545 58.9
NN-9 43.8 46.4 50.0 56.3 53.6

Table 6. Percentage correct production of voiced
stops as detected by listeners and by the automatic

systems.

Speaker Perceptual results (%) Classifier results (%)
ID Subject | Subject | Subject | MFCC- AP-

1 2 3 HMM GMM
N-20 92.2 89.8 89.8 65.6 82.0
NN-4 75.0 74.2 68.0 71.9 69.5
NN-9 57.0 57.0 50.8 53.9 51.6
NN-5 53.1 53.1 50.0 453 52.3

The results appear in Tables 5 and 6. A target is
considered correctly achieved only if its perceived value
(aspirated/unaspirated) matches the target. The maximum
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number of instances rated “unsure” by any judge, were below
3% of the total targets for the native speaker, and less than 4%
for the 3 non-native speakers. The unsure cases were ignored
in the analysis of this section. Tables 5 and 6 show the
%correct target achieved according to each of the judges as
well as each automatic system, arranged in decreasing
intelligibility as per the 3 judges (whose speaker rankings
turned out to be identical). We observe that the rank ordering
of the AP system matches the subjective ranking. This is not
the case with the baseline system which ranks N-20 lower than
NN-4.

4.3 Accuracy of phone-level feedback

A pronunciation assessment system that provides focused
feedback in terms of flagging poorly articulated phones can be
very useful in computer-aided language learning. In the
classifier framework, the normalized likelihood of the target
model, given the observation, provides a measure of the match
between the test utterance and the native-trained model [21].
We use the log of ratio of likelihoods of the target and the
opposite models as an estimate of the “goodness of
pronunciation” of an uttered phone.

L(x| A1)
d(x) =log <L(x| )
where L(x| A 1) is the likelihood of an arbitrary point x in the
feature space for model of class 1 (likewise L(x| A 2) for class
2). Class 1 represents the target class while class 2 the
opposite class.

A ratio much greater than 1.0 would indicate native-like
articulation of the target while a ratio much less than 1.0
would indicate wrong articulation. This is illustrated by Fig. 3
which shows the distribution of the log likelihood ratios over
the native dataset for voiced stops for each of the AP and
MEFCC systems. As expected, the native utterances lie mostly
to the right of the zero log-likelihood point. We choose a
region around log likelihood ratio = 0 of width given by a
fixed fraction (0.1) of the standard deviation of the native
distribution to indicate “unsure” in the 3-way classification
(correct/wrong/unsure) of the non-native utterances.
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Figure 3: Distribution of log-likelihood-ratio from AP-
GMM and MFCC-HMM systems over native data set
Jor voiced stops.

The same speakers™ data (extracted consonant segment
only) ratings by the human judges, as already available from
Task (ii) as presented in Sec. 4.2, were assigned the same
numerical values viz. +1, 0, -1 for target correctly achieved,
unsure and opposite achieved respectively. Next the
correlation between corresponding ratings was computed
between judges, and between each judge and each automatic
system output. The inter-judge correlation is found to be 0.70.

Table 7. Correlation between subjective and objective
phone-level ratings for unvoiced and voiced stops.

Class Average correlation ratings
AP-GMM MFCC-HMM
Unvoiced stops 0.53 0.39
Voiced stops 0.52 0.13

Table 7 shows the average of the correlation coefficients
between each of the subject™s ratings and the corresponding
objective rating. We observe that the AP features provide
phone-level feedback that is closer to subjective ratings when
compared with that of the MFCC-HMM system which is
especially poor for voiced stops.

5. Conclusion

The non-native accent that appears in a language learner"s
speech is, at the segmental level, related to the phonological
differences between the speaker™s L1 and the target language.
Exploiting such relevant distinctions with suitable
discriminating acoustic features can lead to reliable automatic
assessment of degree of nativeness as well as detection of
phoneme-level pronunciation errors. In this work, we
presented the design and evaluation of a pronunciation scoring
system for spoken Hindi where the learners™ L1 is Tamil. The
incorrect production of the aspiration distinction in voiced and
unvoiced oral stops of Hindi is a prominent characteristic of
non-native Indian speakers whose L1 does not belong to the
Indo-Aryan language group. A statistical classifier using
acoustic-phonetic features for aspiration detection was
proposed based on the acoustic characteristics of voiced and
unvoiced stops of Marathi. A number of methods are
presented to evaluate the performance of the system in a
pronunciation assessment context.

The AP features based system was shown to provide
a measure of intelligibility that separates native and non-native
speakers well. The acoustic-phonetic features outperformed a
standard MFCC-HMM system on overall speaker
intelligibility scoring as well as phoneme-level error detection.
A discriminative classifier is expected to enhance the
performance of the AP system further. Future work will
extend the system to include other salient phonological
attributes of spoken Hindi and larger scale evaluations on non-
native speakers. A drawback of the AP features approach is
that specific features are needed for specific phonological
distinctions. Finding ways to select features automatically
from suitable labeled training data would extend the scope of
such work (similar to the suggestion by Strik et al [1]).
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