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Abstract 

We address the automatic detection of phone-level 

mispronunciation for feedback in a computer-aided language 

learning task where the target language data (Indian English) 

is limited. Based on the recent success of DNN acoustic 

models on limited resource recognition tasks, we compare 

different methods of utilizing the limited target language data 

in the training of acoustic models that are initialized with 

multilingual data. Frame-level DNN posteriors obtained by the 

different training methods are compared in a phone 

classification task with a baseline GMM/HMM system. A 

judicious use of domain knowledge in terms of L2 phonology 

and L1 interference, that includes influence on phone quality 

and duration, are applied to the design of confidence scores for 

mispronunciation detection of vowels of Indian English as 

spoken by Gujarati L1 learners. We also show that the 

pronunciation error detection system benefits from a more 

precise signal-based segmentation of the test speech vowels, as 

would be expected due to the now more reliable frame-based 

confidence scores. 

Index Terms: Computer-assisted learning; pronunciation 

assessment; Deep Neural Networks; General Indian English; 

Bilingual models. 

1. Introduction 

Computer aided language learning tools have recently been the 

focus of active research due to their potential to complement 

classroom teaching of spoken language, including the 

facilitation of automatic assessment of language skills.  The 

two dimensions used to rate a language learner’s speech are 

correctness of pronunciation in terms of the segmentals, and 

correctness of prosody (suprasegmentals) including fluency 

and speech rate. To achieve acceptable pronunciation free of a 

perceptible non-native accent, a learner must acquire 

familiarity with the phonology and phonotactics of the target 

language. Mismatches in the phonologies of the learner’s L1 

and the target language (L2) lead to the typical error of 

substitution of L2 phones with similar, but not identical, L1 

phones. Such subtle differences in phone realization are 

particularly true for vowels [1].  Further, phone insertion and 

deletion errors can arise due to differing phonotactic 

constraints.  While an overall rating of pronunciation quality, 

as obtained from human raters, is useful, focused feedback on 

specific phone segment-level errors can be invaluable in terms 

of improving a learner’s attention to specific phonetic 

contrasts. 

Automatic speech recognition (ASR) systems, designed 

essentially to decode speech utterances to text in a given 

language, can be adapted to the task of mispronunciation 

detection via a measure of the match of the non-native 

utterance to acoustic models trained on native speech. 

Whereas most applications of automatic speech recognition 

strive towards achieving robustness to variations due to 

speakers and accents, the task of spoken language assessment 

on the contrary, requires the system to be sensitive to 

deviations from native speech. Language models, which 

typically compensate for the weaknesses of acoustic models in 

ASR systems, must instead be replaced by models that can 

effectively discriminate non-native from native speech. Well-

known approaches to segmental error detection have involved 

a “goodness of pronunciation” measure that captures the 

degree of match with respect to the target native speech 

acoustic models in a standard GMM/HMM ASR system 

framework [2]. Further, adding scores that explicitly 

incorporate the degree of match with expected substitutions 

(e.g. other phones in the same broad class) have been found to 

lead to performance improvements [3,4]. The requirement of 

sufficient labeled native and non-native training speech may 

not always be met however, thus motivating the search for 

alternate methods. Recent advances related to inherently 

discriminative acoustic models such as deep neural networks 

(DNN) have demonstrated significant gains in ASR 

performance, especially in the context of limited labeled 

training data [5,6].  The superiority of the DNN hybrid system 

for ASR has also been demonstrated for low-resourced 

languages, given unlabeled training data from other languages 

[7]. Further, very recent work on phone-level 

mispronunciation detection has shown the effectiveness of 

DNN acoustic models, followed by a Neural Network based 

classifier [8]. 

We address the assessment of spoken English by learners 

of an Indian L1, specifically, Gujarati.  A desirable goal for an 

Indian English learner is the acquisition of the standard form 

of spoken English in India known as General Indian English 

(GIE), which is devoid of regional influences and intelligible 

across the country and outside it [9,10]. Focusing on a specific 

L1 allows us to potentially exploit non-native error patterns to 

improve system reliability. In our task, the L1 is Gujarati and 

the target language is GIE. In this case, we do not have non-

native training speech (i.e. Gujarati L1 speakers’ IE speech) 

and, more significantly, we do not have a large enough 

database of the target speech (i.e. GIE). Thus our target 

language is resource limited. Although the IE phone set is a 

subset of American English (AE), our previous work on 

mispronunciation detection of IE vowels on isolated words 

uttered by Gujarati L1 speakers showed that better 

performance was obtained when target acoustic models were 

trained on the same IPA phone segments from a Hindi 

database with unavailable phones drawn from the TIMIT AE 

database over models trained purely on AE [10]. Further, the 



MAP adaptation of the GMM/HMM models with a limited 

amount of target (GIE) data provided significant improvement. 

We may thus view the present scenario as a case for the cross-

lingual training of acoustic models. Since, unlike the case for 

GMMs, adaptation methods for DNN models are still a topic 

of research, we consider different methods for the language 

based adaptation of a DNN hybrid system. 

The present work extends our previous work on vowel 

mispronunciation detection towards a more realistic evaluation 

on read text and further includes newer acoustic modeling 

approaches. The overall system follows the framework of van 

Dormelan et al. [4,1] where they used error modeling in a 

phone-based logistic regression classifier for correct/wrong 

pronunciation based on GMM/HMM posterior features. Our 

new contributions are (i) using DNN/HMM posteriors with an 

investigation of how to effectively use the limited GIE (i.e. 

target language) data for the language adaptation of the 

network; alternate approaches are compared via a GIE vowel 

classification experiment. (ii) applying the knowledge of L1 

interference errors in determining the best feature set for the 

binary classifier for correct/wrong pronunciation; (iii) 

incorporating a robust vowel segmentation method  for more 

accurate state-level alignment of non-native speech for feature 

computation. 

2. Training and testing datasets 

As seen from our task description above, our target language is 

GIE. However we have only limited labeled data of GIE 

(spoken by “natives” i.e. proficient Indian speakers). We 

therefore consider training data from other related language 

datasets. There are 11 pure vowels in GIE [9]. It has been 

observed that Indian English vowels are more similar to AE 

vowels than to British R.P. [11]. Table 1 compares the vowel 

phonologies of all the languages involved. The closely spaced 

AE central vowels are collapsed into one in GIE. Previous 

work [10] results indicated that IE vowels are phonetically 

closer to the corresponding Hindi vowels, when available, 

rather than to AE realizations. Gujarati (the L1 of our “non-

native” GIE speakers) has 6 pure vowels.  As seen in Table 1, 

these correspond to the collapsed forms of each of 4 sets of 

GIE vowels, and the two remaining GIE vowels [10]. The 

collapsed phonemes are of an “intermediate” quality and when 

used for English pronunciation give rise to the corresponding 

ambiguities, i.e. confusions between long and short vowels: /i:, 

I/, /u, u:/ , /e:, ɛ, æ /, and  /ɒ, o:/ [12,10]. Some of these 

distinctions exist in written script but are in disuse in the 

spoken form, similar to the case of the Marathi language [13]. 

2.1. Training and adaptation datasets 

Based on the observations above, we use available AE and 

Hindi datasets to train native (GIE) vowel models. The TIMIT 

AE database is used for the AE vowel models unavailable in 

Hindi [14]. TIMIT train set comprises of 462 speakers across 8 

dialect regions uttering 8 unique phonetically balanced 

sentences each. We also use a standard Hindi speech database 

[15] to train the 8 acoustic models selected from 10 vowels 

listed in Table 1 that are common to GIE and Hindi (the 8 

Hindi vowels are from among the 10 listed in Table 1, by 

omitting /ɒ, o:/ (bat, caught) since they have too few instances 

in the training data). The Hindi database is patterned on 

TIMIT but much smaller with 100 native Hindi speakers 

uttering 8 unique sentences each. 

Also available is a relatively small dataset of GIE by 20 

proficient (i.e. “native”) speakers of Indian English, each with 

18 unique sentences from TIMIT prompts. These speakers of 

various L1 were students of IIT Bombay identified by their 

absence of any recognizable L1 accent. Thus we have the 

following transcribed datasets: 3 hours of AE, 1 hour of Hindi 

and 25 min of IE, all at 16 kHz sampling, 16-bit word length. 

2.2. Test datasets 

Read out text comprised the 3 standard paragraphs of ‘Stella’, 

‘The North Wind and the Sun’, ‘The Rainbow Passage’ [16, 

17, and 18]. Two speaker groups (10 “native” IE speakers and 

21 Gujarati-L1 speakers of low to moderate English 

proficiency) recorded the 3 paragraphs each.  The former were 

Mumbai college students schooled in English with no 

discernable accent. Gujarati L1 speakers were drawn from 

college students in Gujarat state schooled in Gujarati, learning 

English as a second language. Further, the Gujarati-L1 data is 

manually annotated at the level of the vowel segments of 

interest in each paragraph. 3 annotators (students of speech 

processing) labeled each vowel by its GIE surface 

transcription. Any segment found to be rated different from its 

text transcript by 2 or more raters was treated as a 

pronunciation error. Table 2 shows the resulting confusion 

matrix after omitting 2 GIE vowels that are never confused. 

The major confusions observed are within the short-long (lax-

tense) high vowel pairs: / i: , ɪ / and / u:, ᴜ /. Equally important 

are confusions within the clusters /e:, ɛ, æ / and / o:, ɒ/. These 

observations conform to previous literature [12]. 

Table 1. Mapping of AE, GIE, Hindi and Gujarati 

vowels with example words [10] 

Sr. 

No 
AE word AE IPA 

GIE 

word 

GIE 

IPA 

Hindi 

IPA 

Gujarati 

IPA 

1 beat i: beat i: i: 
I 

2 bit ɪ bit ɪ ɪ 

3 bait eɪ gate e: e: 

E 4 bet ɛ get ɛ --- 

5 bat Æ bat Æ æ 

6 

about, 

bird, 

butter 

Ʌ, ə, з: cut ə ə ə 

7 father ɑ past a: a: a: 

8 boat ɔ: coat o: o: 
ɔ 

9 or, golf ɔ caught ɒ ɒ 

10 boot u: fool u: u: 
U 

11 book ʊ put ᴜ ᴜ 

Table 2. Confusion matrix of Gujarati test data: ‘P’ 

indicates perceived and ‘I’ indicates intended vowels 

 P 

I 
i: ɪ e: ɛ æ ɒ o: u: ᴜ 

Total 

count 

i: 286 139  1      426 

ɪ 65 554        621 

e:  1 299 23 10     333 

ɛ   14 138 40     292 

æ   13 99 152     265 

ɒ      471 136   633 

o:      52 143   196 

u:      1 1 193 23 218 

ᴜ        28 194 222 



3. Acoustic model training and evaluation 

3.1. GMM/HMM baseline system 

As we are mainly concerned with pronounced vowel quality, 

the non-vowel speech is absorbed into 5 broad class models. 

Thus we have a total of 22 context independent models (11 

vowels + 6 diphthongs + 5 broad classes). Each is a 3-state 

HMM. A 12 component GMM with diagonal covariances 

models each state. 13 dimensional MFCCs and short time 

energy with their delta and acceleration coefficients extracted 

every 10 ms comprise the feature vectors. The 11 vowels 

consist of 3 AE models and 8 Hindi models. The AE vowel 

models are trained using the TIMIT dataset while the Hindi 

vowel models and the broad class models are trained using the 

Hindi dataset. The HMMs are trained based on the ML 

criterion using the CU-HTK[19]. Finally the “native” GIE data 

is used for adapting the trained GMMs using MAP estimation. 

We use context-independent models throughout our work due 

to training data limitations. 

3.2. DNN/HMM hybrid system 

In a DNN/HMM hybrid model [20] the outputs of a trained 

DNN are estimates of the posterior probabilities P(si|Ot) for 

each HMM state si for a given observation vector Ot at time t. 

These can be divided by the prior probabilities p(si) over the 

HMM states to give scaled likelihoods which can be used in 

place of GMM likelihoods in the HMM framework. We make 

the simplifying assumption of equal prior probabilities across 

HMM states as in [5]. 

For DNN training in the current “under resourced” setting 

(i.e. the small native GIE dataset), we employ cross-lingual 

training where available data from different languages is used 

for initializing the DNN weights for an under resourced target 

language with the same or similar phone set [21,22,7]. Here, 

we use the TIMIT and Hindi datasets for unsupervised Deep 

Belief Network (DBN) training followed by supervised Error 

Back Propagation training of the DNN on the same datasets. 

The so initialized DNN weights are next “adapted” to the 

target dataset by one of 2 distinct approaches. 

 

(1) Retraining where the GIE data is used for supervised error 

back propagation training of the DNN allowing all model 

weights to be modified. 

 

(2) Model adaptation where a limited set of model parameters 

is tuned, conceptually similar to GMM adaptation. We apply 

some recent work where affine transforms applied to the input 

vector and to the top hidden layer of the DNN are shown to 

reduce error rates in a speaker-adaptation context over 

unadapted models. Feature Discriminative Linear Regression 

(fDLR) [23] applies a block diagonal affine transform to the 

input vector before it is given to the DNN. The shared weights 

and the bias term of the affine transform are learned using 

error back propagation with the rest of the DNN weights kept 

fixed.  Similarly if an affine transform is applied to the outputs 

of the final hidden layer of the DNN before being given to the 

softmax layer, learning the affine transform weights amounts 

to re-training of the final layer of DNN weights [24]. Model 

adaptation thus involves updating only the final layer DNN 

weights and the weights and bias terms of the fDLR transform. 

Thus it requires update of much fewer parameters as compared 

to retraining the DNN using the GIE data. Specifically in our 

case, retraining the DNN involves 25 times the number of 

parameters compared to fDLR and final layer adaptation. 

3.2.1. DNN training specifics 

All the DNNs used in this work [25] have a fixed topology of 

5 hidden layers of 1000 sigmoidal units each and a softmax 

output layer having 66 units corresponding to the number of 

HMM states for the 22 phone classes. The input layer uses 9 

consecutive frames of input features, here 13 dimensional 

MFCCs and short time energy with their delta and acceleration 

coefficients. 

For pre-training the first layer of the DBN is trained as a 

Gauss-Bernoulli RBM while the subsequent layers are trained 

as Bernoulli RBMs. Supervised fine tuning of the network is 

carried out using stochastic gradient descent for minimizing 

the cross entropy error. Mini batches of size 100 are used for 

weight updates. An exponential learning rate update and a 

momentum term are used for speeding up training. The HMM 

state labels required for training are obtained using forced 

alignment with the baseline GMM/HMM system. 

3.3. Acoustic model evaluation 

It is expected that mispronunciation detection is highly 

correlated with the ASR performance of the native acoustic 

models [8].We compare our DNN hybrid systems by the 11-

way classification of vowel segments from the paragraphs read 

by the native IE speakers. The vowel segments are extracted 

by forced alignment using the baseline system.  (We found 

that both GMM and DNN hybrid systems provide similar 

alignment performance.) Next the state-level segmentation is 

achieved using re-estimation with the corresponding posteriors 

from the system under consideration. Table 3 shows the vowel 

classification accuracies. We observe that the DNN/HMM 

acoustic models clearly outperform the GMM/HMM. We also 

observe that the DNNs which used the GIE data for re-training 

of all the model weights outperform the DNN which used the 

GIE data for fDLR and final layer adaptation. This indicates 

that the amount of GIE data available was sufficient for 

updating all the parameters of the DNN rather than just the 

output layer and the fDLR weights (probably unlike the 

speaker adaptation context the methods were proposed for). 

For all our further experiments we retain only the best 

performing DNN models i.e. the one initialized using cross 

lingual data via pre training and supervised back propagation, 

and then retrained with GIE native data. 

Table 3.Vowel classification accuracy in % (over 3947 

instances of 11 GIE vowels across 10 native speakers) 

GMM/HMM  
(GIE adaptation) 

DNN/HMM 
(GIE retraining) 

DNN/HMM 
(GIE adaptation) 

61.1 69.8 64.6  

4. Vowel mispronunciation detection 

After forced aligning with the text transcript using a 

language model that allowed for hesitation pauses and 

commonly observed deletion errors such as those of the 

articles ‘a’, ‘the’, the vowel segments in the non-native test 

data are extracted for pronunciation classifier training and 

evaluation. Due to the expected mismatch between non-native 

speech and native acoustic models, the forced alignment of the 

transcript may not be accurate [1, 8] in terms of phone as well 



as state (senone) boundaries. Hu et al. [8] deal with this by 

ignoring senone boundaries and using the average of all state-

level posteriors across the phone for the confidence score. We 

instead address the problem at its root by using a phone 

boundary refinement stage in the processing before feature 

extraction. The vowel boundaries obtained by the 

GMM/HMM system forced alignment are subjected to a fine-

search (2.5 ms resolution) in a neighborhood of 100 ms based 

on acoustic cues to vowel onset and offset. The acoustic cues 

depend on the vowel context in terms of the broad class of the 

adjacent phone and include formant band energy changes and 

periodicity strength, and have been shown to significantly 

reduce the error between automatically detected and manually 

marked vowel onsets over using forced alignment alone [26]. 

Phone mispronunciation detection is usually carried out 

with a discriminative binary classifier using one or more 

confidence measures computed for the phone segments [1,8, 

27]. The scores typically involve estimates of posterior 

probabilities obtained from an ASR system. The posterior 

probability of the target phone given the vowel segment is a 

measure of the match of the acoustics with the underlying 

model. The Average Posterior probability Estimate (APE) is a 

representative measure [1,3]. It is an estimate of the posterior 

probability P(ptarget|O) of the target phone ptarget given the 

observation vectors Ot in the phone segment. It is computed by 

averaging the frame posterior probabilities for a given phone 

segment. The expression for APE for a target phone is: 

APE(ptarget) =
1

𝑡𝑒 − 𝑡𝑏
∑ log(P(ptarget|Ot))

𝑡𝑒

𝑡=𝑡𝑏

 

 

Where tb, te are the start and end frames of the extracted 

vowel segment. For the DNN/HMM system, the posteriors 

P(ptarget|Ot)  are directly obtained using the DNN outputs  after 

obtaining the state wise forced alignment for phone ptarget for 

that segment from the DNN/HMM system. For the 

GMM/HMM system the posteriors are computed using the 

likelihoods P(Ot|pi) under the assumption of equal priors. 

Non-native vowel realizations can often lie on a 

continuum between native vowels rather than involve outright 

substitution of one vowel with another. We thus expect the 

APE scores of vowels other than the target vowel to contain 

complementary information for determining whether the 

vowel was mispronounced.  Therefore the APE is extended to 

“weighted” APE (wAPE) using an approach similar to [1].   

This measure takes a weighted combination of APE scores 

with respect to all the 11 vowels for a given vowel segment. 

The weights are learnt using a logistic regression classifier. A 

separate logistic regression classifier is trained for each vowel. 

Finally, we consider using our knowledge of important 

phone confusions as depicted in Table 2 to select only the 

relevant competing vowel scores for the weighted APE. For 

example, for the target vowel /e:/, we use the following APEs: 

APE(e:), APE(ɛ), APE(æ). We term this the “subset wAPE”. 

Once again, a logistic regression classifier is used with this 

input scores vector. 

We also consider augmenting the scores vector with 

log(duration) of vowel segments since duration is a 

discriminating feature in the vowel set. We expect duration to 

provide complementary information to the posterior based 

measures which essentially capture spectral differences. The 

logistic regression models for each of the vowels are trained 

and tested in a cross validation setting leaving one speaker out 

(all 3 paragraphs) on the 21 non-native speakers’ test data 

using the correct/wrong pronunciation labels obtained as 

described in Sec. 2.2. The logistic regression models are 

evaluated in terms of equal error rate (EER), i.e. at the point 

where false acceptance rate for mispronunciation detection 

equals false rejection rate. 

5. Results and Discussion 

Table 4 shows the EER results for the different configurations 

of scores presented in Sec. 4 across GMM/HMM and 

DNN/HMM acoustic models. For compactness, EERs are 

averaged across the confusable groups of vowels as in Table 2.  

We note that the DNN/HMM acoustic models provide lower 

EER over the baseline GMM/HMM in every configuration 

given the same training and adaption datasets.  In particular, 

the best system using DNN/HMM acoustic models shows an 

EER of 25.2% as compared to 28.9% for the best GMM/HMM 

based system, a relative improvement of 12.8%. 

We also observe by comparing columns 2 and 3 that 

adding the log duration score improves the average EERs. In 

particular, significant improvement is seen in case of the 

vowel groups u: U and i: I which are long-short vowel pairs, 

confirming our hypothesis that vowel segment duration 

conveys useful cues for certain vowel pairs with the quantity 

distinction. Comparing columns 3 and 4, we observe that using 

subset wAPE improves EER for every vowel group as 

compared to the (full) wAPE in case of the DNN/HMM 

acoustic models, with a relative improvement of 6.3% in terms 

of average EER. This improvement is ambiguous in case of 

the GMM/HMM acoustic models. 

Finally we note the contribution of vowel boundary 

refinement by comparing configurations with and without it 

(col. 4 and 5 in Table 4) to find that it clearly benefits the 

DNN/HMM system. The best system in terms of average EER 

uses the DNN/HMM acoustic models, the subset wAPE 

restricted to the confused vowel set scores with log duration 

and vowel boundary refinement. Future work involves 

incorporating context-dependent acoustic models. 

Table 4. Average EER of confusing vowel groups and 

overall average EER in %  

Confusable 

groups 
wAPE 

wAPE 
+ 

duration 

subset wAPE 
+ 

duration 

subset wAPE 
+ duration 

(w/o refinement) 

GMM/HMM 

i:, ɪ 30.1 27.6 23.9 25.6 

e:, ɛ, æ 23.6 22.4 23.1 24.0 

ɒ, o: 42.3 41.0 42.1 38.7 

u:, ᴜ 28.0 22.7 31.8 29.5 

Average 31.2 28.9 29.5 29.1 

DNN/HMM 

i:, ɪ 28.1 25.7 23.6 24.9 

e:, ɛ, æ 22.9 23.0 21.5 22.1 

ɒ, o: 35.7 35.3 34.6 36.8 

u:, ᴜ 24.4 22.2 18.8 18.9 

Average 28.1 26.9 25.2 26.4 
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