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Abstract
The evaluation of oral reading skills is considered an important
component of language education in school. Compared with
word decoding skill, prosodic fluency typically takes children
much longer to achieve. Prosodic fluency, however, is linked
to comprehension making its evaluation very useful in an auto-
matic reading assessment system. We consider the detection of
prominent words in recordings of oral reading by children, who
display good word recognition but varying degrees of prosodic
fluency. The manual annotation of prominent words proves
to be relatively challenging, likely due to inconsistencies by
our speakers with respect to top-down lexical cues. Acoustic-
prosodic features drawn from prominence detection research on
adult speech are tested on the annotated data using a random
forest classifier. Normalized maximum syllable duration and
F0 (fundamental frequency) derived features turn out to be im-
portant predictors of word prominence with their relative im-
portances being highly speaker dependent.
Index Terms: prominence, prosody evaluation, oral reading

1. Introduction
Oral reading assessment for children in early and middle school
grades has typically involved measurements of word decod-
ing accuracy and speaking rate. However, it is recognized that
prosodic fluency is an important aspect of good reading, and fur-
ther, that it is closely linked to comprehension ability [1],[2],[3].
A child who reads with proper phrasing (grouping of words) and
prominence (using emphasis for new or important information)
is engaged in constructing meaning from the text and reveals
comprehension. Such suprasegmental aspects take longer to de-
velop implying that there are children in middle and high school
who display automaticity in word recognition but have still to
attain prosodic fluency [3].

Phrase boundaries and prominence are signaled by the vari-
ation of acoustic attributes across an utterance [4]. The prosodic
attributes can be categorized as based on one of F0 (i.e. funda-
mental frequency), duration, energy and spectral shape. Per-
ceived phrase boundaries and prominence are also influenced
by top-down structural cues, such as word identity and part-of-
speech, apart from bottom-up acoustic features [5],[6].

The present work is a step towards implementing the rating
of prosodic fluency for the automatic assessment of children’s
oral reading, a topic on which there has been much research
over the years but focused chiefly on the detection of lexical
miscues [7],[8],[9]. A very recent work [3] reported a study
on the measured acoustic attributes of phrasing in an imitation
task across older children with similar word decoding-skill but
differing comprehension abilities. The better comprehenders
were found to provide stronger durational cues to the syntac-
tic structure. In our work, we target the evaluation of promi-
nence in read text by children with adequate word recognition

skills. Since the children have not necessarily achieved adult-
like prosody, they may not employ acoustic-prosodic features of
prominence reliably, apart from a possible lack of consistency
with structural cues present in the text. We evaluate various
acoustic-prosodic features for prominent word detection in read
aloud text by children of different prosodic proficiencies.

We are not aware of any specific previous work on promi-
nence detection in children’s speech. In studies of the acous-
tic correlates of prominence in adult speech corpora, one or
more of the following attributes, viz. F0, energy, duration and
spectral balance form the basis of the contributing acoustic fea-
tures [6],[10],[11],[12]. The language specific realization of
prominence may vary, but the acoustic features usually come
from the same set of attributes [13],[14],[15], as also in infant
directed speech [16]. Breen et al. [17] reported that focused
words by American English speakers are produced with longer
duration, higher F0 and intensity. German speakers are found to
use both intensity and pitch accents [18]. In our previous work
on Marathi speech, we found that segment duration is the dom-
inant local cue to focus in Indo-Aryan languages accompanied
by post focal compression of F0 span [19].

The automatic detection of prominent words has been
widely researched with focus on robust acoustic features com-
puted from the measured prosodic attributes for specific test cor-
pora. Features are calculated for individual syllables [11],[20],
words [21],[22] or sub-part of words [23]. Temporal context
plays a key role in prominence detection and has been achieved
by considering features computed across adjacent word or syl-
lable segments [5]. Similarly, features normalized across the
intonational phrase are found to be more useful than unnormal-
ized features [5]. Some other approaches like conditional ran-
dom fields [11] and convolutional neural networks [22] embed
temporal context implicitly.

The prominence detection task has been implemented in
supervised, semi-supervised and unsupervised fashion, super-
vised often yielding the best results as expected [12]. Top-
down lexical and syntactic cues have also been profitably incor-
porated in prominence detection tasks in corpora like the BU
Radio corpus [24]. Different machine learning algorithms and
classifiers are used on the combination of lexical and prosodic
features such as Support Vector Machine (SVM) [6], Gaus-
sian Mixture Model-Neural Network (GMM-NN) [23], Bidirec-
tional Neural Network (BiRNN) [25], Probabilistic Graphical
Model (PGM) like Conditional Random Field (CRF), Condi-
tional Neural Field (CNF) [20]. Different combinations of fea-
tures in different normalization conditions with different classi-
fiers have been investigated [10],[11],[26].

In the next section, we present our dataset of children’s oral
reading and the manual annotation method and accompanying
observations. This is followed by a review of the acoustic-
prosodic features implemented and tested in this work in section
3. Prominence detection experiments using the more distinctive
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features in a random forest classifier are presented in section 4.
We conclude with a discussion of the automatic detection per-
formance and its implications for automatic assessment of oral
reading.

2. Dataset and Annotation
Recordings of oral reading of short stories by 20 children in
Grades 5-7 were made using a headset mic in a quiet room at
16 kHz sampling frequency. Each story, presented as a printed
text, was recorded in a separate session. The children were na-
tive speakers of Marathi, but had studied in schools with En-
glish as the language of instruction since Grade 1. The chil-
dren, selected for their satisfactory word recognition ability
based on a preliminary reading test, displayed various levels
of prosodic fluency in terms of phrasing and prominence. The
different kinds of prosody observed ranged from adult-like vari-
ation to the hyper-articulation of every word on one extreme and
a rhythmic sing-song style at the other extreme. Although we
did not carry out comprehension testing, it seemed obvious on
listening that the latter two types of readers had relatively poor
comprehension of the text.

Due to the required manual annotation, we picked a limited
set of 6 speakers for the current study with data characteristics
as shown in Table 1. The total speech duration for each speaker
ranged from 160 sec to 570 sec with a single story reading ses-
sion averaging 37 sec. We picked the top 3 speakers in Table
1 based on their larger data duration for the speaker-specific
observations reported later. Of the 3 speakers, two had good
phrasing in terms of grouping of words and sentence ending
cues, while the third had poor phrasing and a rhythmic style of
reading with alternating stress unrelated to the text syntax.

Table 1: Details of speakers in our dataset

Sr.
No.

Initials No. of Stories
(Words)

Speaking
Rate

Phrasing

1 AB 15 (1511) Normal Good
2 HS 10 (1047) Fast Good
3 VR 9 (893) Slow Poor
4 PP 5 (550) Fast Poor
5 PR 5 (521) Fast Good
6 SH 5 (508) Normal Good

Manual labeling of prominence is known to be difficult, so
much so that some previous works have relied on part-of-speech
measures to obtain the reference markings [6]. This is not an
available option in our work since we certainly cannot rely on
lexical or syntactic cues with our inexpert speakers. In fact, the
possible conflicting cues from the top-down expectancies and
bottom-up signal cues make the manual labeling task particu-
larly challenging. We had 3 raters, all of whom rated all the
data in Table 1. All three raters were fluent speakers of Indian
English (only one of them had formally taught the language),
but had not been exposed to prosody labeling before.

The raters were provided each story recital with the actual
text transcript, but with all punctuation marks and capitaliza-
tion removed to facilitate unbiased listening. They were asked
to mark words which are perceived to be intentionally empha-
sized by the speaker. The raters also marked phrase boundaries
but this is not used in the current work. Repeated listening dur-
ing annotation was permitted. The raters found the boundary
marking task easier and were seen to be more consistent with
each other as compared to the prominence marking task. We

observed that each individual rater marked 20% to 30% of the
total words (5030), uttered across the 6 speakers, as prominent.
Table 2 shows the percentage of words that received a given
number of votes for prominence (out of a maximum possible of
3 votes). We also assign a gradient level of prominence to each
word depending on the number of votes of prominence based
on the consideration that prominence is not strictly binary but
rather offers a few more linguistic distinctions [27],[28],[29].
Further, to obtain categorical ground-truth for the classification
experiments, we consider a word as prominent if it receives one
or more votes (similar to a strategy used in [12]). From Table 2,
we see that this corresponds to about 45% of the total words.

Table 2: Percentage distribution of words in terms of number of
prominence votes obtained from three raters

Prominence votes 0 1 2 3
Percentage of words 54.6 22.8 13.8 8.8

We compute the pair-wise inter-rater agreement in terms
of Cohen’s kappa [30]. The average agreement is found to be
0.36 as shown in Table 3, where we also report average inter-
rater agreement separately for each of the 3 larger data speak-
ers in Table 1. The lowest kappa is obtained on the rhythmic-
style speaker while the other two obtain close to fair agreement
(κ >= 0.4).

The manual comparison of the labels across raters for the
same recital revealed that very often the marked words were
shifted one place indicating that while the region of prominence
in an utterance was clear, the precise word was ambiguous lead-
ing to different choices across raters. Compensating for this am-
biguity improved the average inter-rater agreement from kappa
of 0.36 to a substantially better 0.64. This could also possibly
indicate the frequent use of “prosodic words” by the speakers
where a function word is prosodically attached to an adjacent
content word [31].

Table 3: Average of pairwise inter-rater Cohen’s kappa agree-
ment for three raters. Overall value is across all six speakers

Speakers All AB HS VR
Kappa 0.36 0.39 0.45 0.35

3. Acoustic-Prosodic Feature Extraction
A perception of prominence arises from surprise or unusual-
ness in the local prosodic attributes in a region of the utterance.
Thus word-level acoustic measures with suitable temporal con-
text can potentially serve as features in a word prominence clas-
sifier. Further, normalizations for more global influences such
as speaking rate, recording volume and F0 range are required.

Features derived from each of the different prosodic at-
tribute classes, viz. duration, F0, energy and spectral shape, are
computed for each word in the transcript-aligned audio record-
ing. Since the speakers have good word decoding ability, the
transcript corresponds closely with the presented text. The
ocassional missed word is manually deleted. The forced align-
ment of the audio at the phone level is achieved with a state-of-
the-art Automatic Speech Recognition (ASR) system. The ASR
system uses an Indian English pronunciation dictionary and is
trained on bilingual children reading English and Hindi texts,
amounting to 5 hours of speech, to obtain 47 acoustic models
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of the phones and silence fillers expected in the English speech
of native Hindi or Marathi speakers. The system uses hybrid
DNN-HMM acoustic models configured as described in [32].

3.1. Duration

The relative syllable duration is considered a relevant cue to
word prominence [6],[11],[33]. A word is perceived as promi-
nent when one of its syllables is elongated over the rest. Given
the phone level alignment of the text, we obtain the duration
of every syllable and number of syllables contained in a word
using a manually constructed pronunciation dictionary. The av-
erage syllable duration in the word and duration of the longest
and the shortest syllables in the word are calculated. The mea-
sured durations are normalized by average speech rate (num-
ber of syllables per second after deleting the pauses between
words) across the story audio recording. The silence duration
(in seconds) just preceding and following the word are also
computed [11].

3.2. F0

F0 (in Hz) is computed at every 10 ms hop using the autocorre-
lation method in Praat [34] with the required post-processing to
reduce the number of octave jumps and voiced-unvoiced tran-
sitions. The raw F0 values are linearly interpolated across the
detected unvoiced frames, and further converted to the logarith-
mic scale of semitones or cents with a reference frequency of
50 Hz. Both raw and logarithmic F0 have been found useful in
past work [28],[29]. We apply min-max normalization to [0,1]
range on each of the F0 contours [16] across the story audio
recording.

For a given word, the six statistical values, viz. mean, me-
dian, minimum, maximum, standard deviation and span (max-
imum - minimum) [11],[16],[35] are calculated for each of the
two F0 contours over the word duration. The absolute differ-
ences in each of the statistical values between the current word
and it’s two neighbours are also computed in order to incorpo-
rate the immediately local temporal context.

3.3. F0 Contour Shape

Five Gaussian likelihood features correspond to correlation be-
tween interpolated F0 contour of current word and Gaussian
shaped signal of same length with standard deviation 0.2, 0.5,
1.0, 2.0 and 5.0 [6]. Four likelihood features correspond to cor-
relation between the raw F0 contour of current word and a sig-
nal of same length with rising, falling, peak, and valley shape
respectively. The peak and valley points in these reference con-
tours are decided by the peak and valley points in the word F0
contour. Similar features are also computed for the F0 contour
over a 3-word (previous, current and successive word) interval.

3.4. Energy and Spectral Shape

Short-time spectra are obtained using a 20 ms Hamming win-
dow at 10 ms hop across the audio recording. The short-time
full-band energy and energy in four distinct frequency bands,
0-0.5K (band 1), 0.5-1K (band 2), 1-2K (band 3), 2-4K (band
4) are computed and min-max normalised across the record-
ing [11]. Further spectral tilt, implemented as the Mel Fre-
quency Cepstral Coefficient of index 1 [16], is computed for
each frame and min-max normalized. It represents the domi-
nance of high frequencies over low frequencies in the signal.

Relative spectral energy in each band (energy in band di-
vided by total energy) are used as features. Six statistical val-

ues, viz. mean, median, minimum, maximum, standard devia-
tion and span [16], are computed across the word segment on
the frame-level energy, spectral tilt and each of the four spectral
band energy contours. The absolute difference in these statisti-
cal values of current word with previous and successive words
are also computed to incorporate local temporal context.

We eventually have 111 features for every word; this set is
subjected to feature selection as described in the next section.

Table 4: Reduced feature set based on importance scores

Attribute
class

Description

Duration Average, minimum and maximum syllable
duration in word normalized by average
speech rate (syllables per second) across story
audio; Silence duration after the word (in sec)

F0 Span and standard deviation of F0 in semi-
tone, maximum and median of F0; Differ-
ence between maximum, standard deviation
and span of F0 values of current word and ad-
jacent words; Difference between mean and
median of current word and successive word,
difference between min of current and previ-
ous word

F0
contour
shape

Likelihood in the form of correlation of F0
contour shape with peak and valley contours
and Gaussian contours of same length and
variance 0.2, 1.0, 5.0; Correlation of 3-word
(+/-1 word) F0 contour shape with peak and
valley contours and Gaussian contour with
variance 5.0

Energy
and
spectral
shape

Minimum and span of energy, band3 energy,
standard deviation, span and median of band1
energy, span and median of band3 and 4, min-
imum of band4; Maximum, standard devia-
tion, span and median of spectral tilt, dif-
ference between mean and standard deviation
values of spectral tilt of current and successive
word

4. Classification Experiments
Given the large number of potential acoustic-prosodic features,
as reviewed in the previous section, we choose a random for-
est classifier due to the associated Gini feature importance [36]
of tree-based methods that can help determine the most rele-

Table 5: Precision-recall values (%) for prominent word detec-
tion obtained with the reduced feature sets in a random forest
classifier, and Pearson correlation (with p < 0.0001) of linear
regression output with gradient level prominence

Features Precision Recall Correlation (r)
Duration 62.4 66.6 0.42
F0 64.5 68.5 0.42
F0 contour
shape

56.2 60.6 0.19

Energy and
spectral shape

64.6 68.6 0.43

All features 68.4 72.1 0.53
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Table 6: Top six features with feature importance score (in %) for overall data and for 3 individual speakers

All speakers AB HS VR
maxsyldurnorm (14.9) F0semitonespan (15.4) F0max (13.2) maxsyldurnorm (30)
F0semitonespan (9.7) maxsyldurnorm (5.7) maxsyldurnorm (9.8) stdF0diffafter (4.3)

F0max (4.6) F0semitonestd (3.4) F0semitonespan (8.5) wordgaussian5.0 (4.2)
energyspan (3.4) F0max (3.4) spectralband4span (4.6) F0semitonespan (3.4)

spectralband4span (4.6) spectralband4span (3.4) energyspan (3.2) energymin (2.6)
stdF0diffAfter (3.1) avgTiltdiffafter (3.1) peaklikelihood (3.1) spectralband4median(2.5)

vant features [11],[33],[37],[38]. The classifier is implemented
using scikit-learn toolkit [39] in Python. Within each prosodic
attribute category (i.e. duration, F0, F0 contour shape, and en-
ergy and spectrum shape) classification is performed on the 6-
speaker data corpus of Table 1 using 5-fold cross-validation.
Feature importance scores are obtained and only features with
scores greater than 4% are retained to represent the specific
prosodic attribute. The reduced set of 42 features, as shown
in Table 4, is used in the binary classification of words which,
as described in Sec. 2, are ground-truth labeled as prominent if
any one of the raters assigned prominence. Further, the same
set of features is used in the linear regresssion based prediction
of prominence level of a word as determined by the number of
raters labeling it as prominent.

Table 5 shows the classification results in terms of preci-
sion and recall of prominent words. It also shows the Pearson
correlation coefficient between the predicted and ground-truth
levels of prominence. We see the different performances ob-
tained with features restricted to each single attribute category,
as well as the overall superior performance obtained with the
full set of features across all categories. We observe a positive
correlation between the predictor output and the assigned word
prominence levels.

Table 6 shows the top-ranked 6 features in terms of impor-
tance scores as obtained from the classifier using 5-fold cross
validation on the full dataset, and then again separately on the
data of each of the 3 larger data speakers of Table 1. On the
all speakers dataset, we see that duration and F0 cues appear to
have comparable importance in cuing prominence. Energy and
spectral shape are also represented although with lower impor-
tance. However, the variability across the 3 speakers in terms
of feature importance is notable. While speakers AB and HS
share most of the top ranked features, the case is quite different
for speaker VR. We recall that AB and HS have good phrasing
skills and hence are more likely to show adult-like prominence.
These two speakers use maximum syllable duration and a small
set of F0 features (span and maximum chiefly) with the latter
contributing more than the former. In the case of VR, there is a
single highly dominant feature, namely maximum syllable du-
ration. F0 cues play a relatively weak role. As noted in Sec. 2,
this speaker has a reading style that sounds rhythmic; we can
now relate this perception to a regular stressing pattern achieved
by varying syllable duration and not much more.

5. Discussion and Conclusion
In this work, we considered the manual annotation, followed by
the automatic detection, of prominent words in children’s oral
reading of short stories. With prosodic fluency serving as an im-
portant indicator of comprehension, a study of prominence can
benefit methods used for reading assessment in school literacy
programs. On a dataset of 5000 words by 6 middle school stu-
dents of different prosodic proficiencies, but good word recog-

nition skill, we studied the consistency in manual annotation
for prominence by 3 naive raters who are good Indian English
speakers. The raters marked on average 25 percent of the words
prominent in the binary labeling task. While pair-wise inter-
rater agreement (Cohen’s kappa) for prominence marking task
on adult speech corpora is usually reported to be in the range
0.57 to 0.88 [11],[40],[41], the average agreement in our case,
however, is comparatively low, κ = 0.36 with slighly bet-
ter agreement on the utterances by children with better phras-
ing. From the annotations, we observe that although the raters
don’t agree on the precise words, they still agree on the regions
of prominence. By extending prominence labeling to adjacent
words, a larger agreement, κ = 0.65 was obtained. This could
be attributed to the formation of prosodic words or, possibly,
to ambiguous phonetic realizations of prominence by our poor
readers and inconsistencies with structural cues in our data. We
eventually considered a word prominent if any rater marked
it so, and also assigned a gradient level based on fraction of
prominence ratings obtained across the 3 raters.

A large set of acoustic-prosodic features was considered for
automatic detection of discrete prominence as well as of the
gradient level in our dataset. Syllable duration and F0 cues ap-
pear to contribute most but the relative importances show a high
speaker dependence. Prominent words were detected with pre-
cision=68% and recall=71%; we obtain a correlation of 0.53
between predicted and actual gradient levels. Precision-recall
values in the range 64% to 87% have been reported for promi-
nence estimation task in case of adult corpora [11],[12],[22],
[26]. The correlation of prominence levels to duration, pitch
and intensity are reported to be in the range 0.3 to 0.7 [28],[29].
The dataset used in this work is clearly very limited and mean-
ingful comparisons with the aforementioned studies demand a
much larger speaker set and larger set of raters exploiting more
efficient mechanisms such as rapid rating for prosody [29].

Some interesting speaker-dependent characteristics were
observed. A speaker with a rhythmic cadence was found to rely
entirely on duration variation suggesting that specific prosody
deficits may be identifiable through specific signal character-
istics. Given that phrase boundary cues have been found to
replace pitch accent cues in focused words in Indian English
dialects [31], the acoustic correlates of phrase boundaries and
the interaction of phrasing and prominence are also topics for
future work. Finally, it is the prediction of goodness of reading
rendition that is important. Such a system would use the pro-
posed work with acoustic-prosodic features selected based on
matching subjective ratings of goodness at the sentence level.
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