Structural Segmentation Of Dhrupad Vocal Bandish Audio

Based On Tempo

Rohit M. A., Vinutha T. P., Preeti Rao Dept. of Electrical Engineering, I.I.T. Bombay

Dhrupad Vocal Concert

Alap (unmetered) Bandish (metered) time ≈ 40 minutes ≈ 15 mins. Concert structure Time Refrain Refrain Bandish

Rhythmic Structure in the Bandish

- Metric tempo (m.t.) Underlying tempo of composition
 - Range: 30 85 BPM
- Surface tempo (s.t.) Rate of sung syllables or played strokes
 - Range: 30 960 BPM!
 - Generally an integer multiple of m.t. -1, 2, ..., 8, 16
- Surface tempo multiple (s.t.m.) = s.t. \div m.t.

A section – during which surface tempo of neither instrument changes

Tasks

- Track metric tempo and overall surface tempo across a concert
- Track the surface tempi of source separated vocals and pakhawaj and obtain section boundaries

System Overview

Methods

- 1. Source separation Spleeter 2 stems model [2]
- 2. Metric tempo estimation tempo-cnn with octave-error correction [3]
- 3. Surface tempo multiple estimation modified tempo-cnn

Layer	Dimensions
Input	40 x 400
(BN, Conv, ELU, DO) x3	16 x 1 x 5
AvgPool	5 x 1
BN, MF Conv, DO	12x {1x16, 1x32, 1x64, 1x96}
Concat, Conv	16 x 1 x 1
AvgPool	1 x 400
BN, DO, FC, Softmax	# output classes

Modifications to tempo-cnn:

- Use of more dropout
- Fewer multi-filter blocks with shorter filters
- AvgPool across time at the end

Dataset

- 14 concerts (Source: Dunya corpus [4], YouTube)
- 634 sections \rightarrow 1127 8-second chunks (training examples)
- Data augmentation using time-scaling and overlap between examples

Results

Takeaways

- Better results observed on pakhawaj and mixture audios
- Imperfect source separation and melismatic singing are challenges in vocals
- Confusions in s.t.m. due to accents on alternate beats
- Using metric tempo as conditioning could help resolve confusions in s.t.m. prediction

References

- [1] Clayton, M., Time in Indian Music, 2000
- https://github.com/deezer/spleeter
- https://github.com/hendriks73/tempo-cnn
- https://dunya.compmusic.upf.edu/

