Four-way Classification of Tabla Strokes with Models Adapted from Automatic Drum Transcription

Rohit M. A., Amitrajit Bhattacharjee, Preeti Rao

Dept. of Electrical Engineering
I.I.T. Bombay, India

The Tabla

- Pitched, percussive hand-drums
 - Bayan bass (F0 ∈ 80-100 Hz)
 - Dayan treble (F0 ∈ 200-400 Hz)
- In performance
 - Solo playing improvisation, compositions
 - Accompaniment cyclic stroke pattern (theka)

Tabla solo
https://youtu.be/ckE8GH5tI2A?t=4095

Bayan (Bass)

Dayan (Treble)

Percussion accompaniment https://youtu.be/oACbmNkih0I?t=103

Tabla Strokes and Categories

- Tabla strokes
 - 10-15 in number, identified by 'bols' (syllables like Na, Tin, Ghe, Dha, etc.)
 - May involve single drum or both simultaneously
 - Resonant (R) sustained, harmonic
 - Damped (D) transient, percussive

4 stroke categories

Category	Bass drum	Treble drum	Bols	
Resonant Bass (RB)	R	D / Nil	Ghe, Dhe, Dhi	
Resonant Treble (RT)	D / Nil	R	Na, Tin, Tun	
Resonant Both (B)	R	R	Dha, Dhin	
Damped (D)	D / Nil	D / Nil	Ti-Ta, Te-Re, Ke,	

Relevance of Stroke Categories

- Musicologically motivated
 - Mark salient positions in theka
 - Are tied to expressive tabla playing elements (loudness dynamics, pitch modulation) ^{2,3}

- Aiding computational musicology
 - Analysis of played strokes requires expensive manual labelling
 - Automatic stroke classification can enable corpus-level analysis

² M. Clayton, "Theory and practice of long-form non-isochronous metres," Music Theory Online 2020

³ A. Srinivasamurthy et al. "Aspects of tempo and rhythmic elaboration in hindustani music: A corpus study." Frontiers in Digital Humanities 2017

Existing Methods do not Generalize

- Previous work tabla bol classification
- Poor instrument-independent classification accuracies
 - Highly variable test set accuracies on unseen tabla (15 95% 4)
 - Lack of sufficient data with diversity in playing & instrument characteristics

Objectives

- 4-way tabla stroke classification system
 - Robust to instrument and playing-style changes
- Target classes
 - Damped (D)
 - Resonant Treble (RT)
 - Resonant Bass (RB)
 - Resonant Both (B)
- Target test scenario
 - Tabla accompaniment to Hindustani classical vocals

Approach

- 1. Build larger, diverse dataset
- 2. Design effective classification models
 - Exploit pre-trained models from western drums transcription
- 3. Explore novel data augmentation methods

Dataset

- New labelled dataset diverse in terms of
 - Instruments, players, tabla tuning, playing tempo

	# tablas	Duration	# strokes
Training ^{5,6}	10	76 min.	26,600
Testing ⁶	3	20 min.	4,470

- Stroke category distribution is not uniform
 - Most strokes of D, least of RB

⁵R. Gowriprasad and K. S. R. Murty, "Onset detection of tabla strokes using LP analysis". SPCOM 2020.

⁶ M. A. Rohit and P. Rao, "Automatic stroke classification of tabla accompaniment in hindustani vocal concert audio". JASI 2021

Data Collection and Annotation

- Testing set
 - Realistic tabla accompaniment to vocals (theka)
 - Recorded in isolation

- Training set
 - Tabla solo audios (kaida, tukda, tihai, etc.)
 - Split into 3 cross-validation folds (no tabla overlap)

Methods

- Classification CNN models inspired from western automatic drums transcription (ADT)
 - A. 3-way drums CNN with transfer learning
 - B. Bank of retrained 1-way CNNs
- 2. Data augmentation

Overview of CNN methods

- Input
 - Mel-spectrogram excerpt of 'C' channels x 'F' bins x 'T' frames
 - Channels are spectrograms computed at different resolutions
- Target
 - Binary value indicating presence of onset at frame T/2
- Output
 - Onset probability in [0,1]
 - Multi-label: single model, multiple outputs
 - 1-way: different models, one-versus-all binary output

A. 3-way CNN with Transfer Learning

- Pre-trained CNN drums transcription (ADT) models from *madmom* ⁷ fine-tuned on tabla data
 - Model originally trained on MIREX drums transcription dataset (about 3x our tabla dataset)
- Motivated by correspondence between drum types and tabla stroke categories

A. 3-way CNN with Transfer Learning

Evaluate against re-training same model architecture on tabla data

B. Bank of 1-way CNNs

- Bank of four 1-way CNNs
 - Allows optimizing model separately for each category
- We start with a baseline architecture from ADT 8
 - Hyperparameters tuned for each category to account for data imbalance
 - Include variations to input representation and model capacity
- Trained from scratch for each category
 - No pre-trained ADT model available
 - Drums dataset used for 3-way CNN also not public

Variant	Hyperparameter values
Baseline	C=3, T=15 (150 ms), k=1, m=7, N ₁ =16, N ₃ =128
context	T=21 (210 ms)
Mid-channel	C=1 (middle)
conv filters	$N_1 = 32$
dense units	$N_3 = 256$
conv filt. + ↑dense units	N_1 =32, N_3 =256
2x conv layers	k=2, m=3

Methods

- Classification CNN models inspired from western automatic drums transcription (ADT)
 - A. 3-way drums CNN with transfer learning
 - B. Bank of retrained 1-way CNNs
- 2. Data augmentation

Data Augmentation - Overview

- Diversity expected in tabla dataset
 - Instrument characteristics tuning, timbre, resonance & decay levels
 - Playing style tempo, expressive dynamics
 - **Recording conditions** spectral levels, balance, decay level
- We explore individual methods and combinations
 - Each method applied to time-domain training set audio, generates 4 variations
 - Evaluated using 1-way CNN models

Augmentation Methods From Literature

- Pitch-shifting (PS) & time-scaling (TS)
 - Capture tuning and tempo variations

- Attack remixing (AR)
 - Modify relative levels of signal attack and decay
 - Used previously in ADT 9

Audio-specific

Pitch Shifting (PS)

Time Scaling (TS)

Percussion-specific

Attack Remixing (AR)

Tabla-specific Methods — Spectral Filtering

- Spectral filtering commonly used in MIR ¹⁰
 - Filter applied over randomly chosen spectral bands
- Given specific bands of activity in tabla, we filter bass & treble regions
 - Capture recording conditions, resonance characteristics

Tabla-specific

Spectral Filtering (SF)

- We also identify and modify features that vary across instruments & not stroke categories
 - Perturbing attributes irrelevant to discrimination task shown to be effective for augmentation ¹¹
 - For our task, these can be instrument-specific low-level acoustic features

Finding instrument-dependent characteristics

- Tabla identification task using a random forest classifier
 - About 50 features used, represent various spectral and temporal characteristics ¹²
 - Training set has audio from 10 unique tabla-sets
 - Samples from each stroke category are used separately to fit RF models
- Resulting feature ranking highlights MFCC-1 as most important

Tabla-specific Methods — Stroke Remixing

- Expressive playing involves modifying relative stroke intensities
- Compound strokes differ in contribution of each drum

Tabla-specific

Stroke Remixing (SR)

- Decompose tabla audio into components of each stroke type
 - NMF with pre-initialized and fixed bases
- Remix at different levels to simulate playing dynamics

Results

- 1. Transfer learning with 3-way drums CNN models
- 2. Re-trained 1-way CNN models (bank of 4)
- 3. Data augmentation
- 4. Overall comparison

1. Adapted 3-way drums CNN

- Disjoint tuning of both conv and dense layers better than other fine-tuning approaches
- Higher mean f-score than re-trained model of same architecture

Cross-validation F-scores

Method	S	Mean			
	D	RT	RB	В	1,1cuii
Pre-trained (PT)	36.8	15.1	9.8	7.3	17.3
Re-trained	81.0	53.7	15.7	63.0	53.4
FT dense random init.	74.4	55.9	33.6	63.4	56.8
FT dense PT init.	71.7	54.8	29.4	60.9	54.2
Uniform FT all	76.3	59.7	29.5	65.3	57.7
Differential FT all	72.5	58.7	30.0	63.5	56.2
Disjoint FT all: dense rand. init.	77.2	57.4	33.0	65.9	58.3
Disjoint FT all: dense PT init.	74.8	66.4	34.7	66.5	60.6

2. Re-trained 1-way CNNs

- Separate hyperparameter tuning results in superior class-specific architectures
 - **D**: more dense layer units
 - RT: more conv layer filters
 - RB and B (data scarce): Baseline model

Cross-validation F-scores

Model	Stroke category					
Wiodei	D	RT	RB	В		
Baseline	84.6	83.2	46.5	83.8		
↑context	84.3	81.4	41.9	73.0		
Mid-channel	84.7	81.7	42.1	75.6		
↑conv filters	84.7	84.5	44.7	77.6		
†dense units	86.7	82.9	40.1	73.6		
↑conv filters+↑dense units	83.5	83.4	43.3	82.0		
2x conv layers	84.3	82.4	42.4	75.9		

3. Data augmentation

- Improves all cross-validation f-scores
- Combination of PS, TS, SF, SR gives highest f-scores except in RT

Cross-validation F-scores

Method	S	Mean			
11201100	D	RT	RB	В	1120011
No aug.	86.7	84.5	46.5	83.8	75.4
Pitch-shift	87.2	85.5	<u>51.2</u>	83.9	<u>76.9</u>
Time-scale	<u>88.2</u>	<u>85.0</u>	<u>50.2</u>	82.2	<u>76.4</u>
Attack-remix	84.3	84.2	48.1	81.3	74.5
SF-bass	84.5	80.9	40.4	79.9	71.4
SF-treble	85.8	81.7	48.7	76.0	73.0
SF-tilt	86.3	82.7	43.8	82.0	73.7
SF-all	<u>87.6</u>	84.6	<u>50.7</u>	<u>85.6</u>	<u>77.1</u>
SR-bass	86.0	<u>84.8</u>	43.3	83.6	74.4
SR-treble	86.1	<u>84.8</u>	39.4	79.0	72.3
SR-damp.	86.2	<u>85.3</u>	<u>50.1</u>	<u>86.5</u>	<u>77.0</u>
SR-all	<u>86.8</u>	<u>85.3</u>	48.1	<u>84.4</u>	76.2
Combined	88.5	84.2	53.6	87.9	78.5

Overall comparison — CV and Test

- Re-trained 1-way CNNs overall best-performing system (CV and test)
- Data augmentation further improves it, except in test set RB
- Fine-tuned drums CNN gives highest test set RB f-score

CV / test F-scores

Method		Mean			
	D	RT	RB	В	Wican
RF baseline 14	86.2 / 74.2	77.7 / 75.0	39.7 / 35.3	73.6 / 41.5	69.3 / 56.5
3-way drums CNN	74.8 / 65.4	66.4 / 77.4	34.7 / 47.5	66.5 / 56.8	60.6 / 61.8
1-way CNNs	86.0 / 79.5	84.5 / 84.1	46.5 / 38.0	83.8 / 69.0	75.4 / 67.6
+ Data-aug	88.5 / 83.3	85.5 / 84.3	53.6 / 34.1	87.9 / 80.1	78.9 / 70.4

Take-aways

- Addressed 4-way tabla stroke classification into musicologically relevant categories
- Introduced diverse, realistic dataset by building on existing ones
- Showed promising results using different approaches that can be brought together

Thank you for your attention! Questions?