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* Humans convey rich non-phonetic information during speech delivery
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Waveform-based feature extraction

linguistic and para-linguistic information
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Distribution of votes

» Goal: Predict oral reading
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- Evaluation: Pearson correlation coefficient for final prediction prominence (applicable for English)
. Loss' MSE * Sharing of low-level feature extractors reduces
* LR: 0.001, Batch Size: 64, Optimizer: Adam overfitting

* Loss = Convex combination of prominence MSE
and phrasing MSE loss
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Results No | MTL variant

1. Tuned Sinc (Without MTL) 0.721
2. Shared Sinc 0.727
3. Conditioned 0.727
4, Shared Sinc + Conditioned 0.740
5. Row 4 + A34 + A27 0.757
6. Row 5 + GloVe 0.813

1 -> 2/ 1-> 3: Marginal improvement
1 -> 4: Noticeable improvement due to combination
of sharing Sinc and conditioning
4 -> 5: Complementary info. in A34 and Wav
5 -> 6: Complementary info. in lexical and acoustic
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Shared Sinc closely follows

Sinc for boundary seems to be only capturing a
peak near 3500 Hz

By sharing Sinc, boundary predictions improve since
pitch and intensity are crucial for phrase boundary

Conclusion

* Constrained (Sinc) filters better than unconstrained
kernels which overfit on our task and dataset

» Conditioning on phrase boundary in the presence of
a shared Sinc layer boosts performance

 Significant complementary information in lexical
features such as word embeddings and POS tags
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