
GENERATING COHERENT DRUM ACCOMPANIMENT WITH FILLS
AND IMPROVISATIONS

Rishabh Dahale 1 Vaibhav Talwadker1 Preeti Rao1 Prateek Verma 2

1 Department of Electrical Engineering, Indian Institute of Technology Bombay, India
2 Stanford University

dahalerishabh1@iitb.ac.in, talwadkerv@gmail.com, prao@ee.iitb.ac.in, prateekv@stanford.edu

ABSTRACT

Creating a complex work of art like music necessi-
tates profound creativity. With recent advancements in
deep learning and powerful models such as transform-
ers, there has been huge progress in automatic music
generation. In an accompaniment generation context,
creating a coherent drum pattern with apposite fills and
improvisations at proper locations in a song is a chal-
lenging task even for an experienced drummer. Drum
beats tend to follow a repetitive pattern through stan-
zas with fills/improvisation at section boundaries. In
this work, we tackle the task of drum pattern gener-
ation conditioned on the accompanying music played
by four melodic instruments – Piano, Guitar, Bass, and
Strings. We use the transformer sequence to sequence
model to generate a basic drum pattern conditioned
on the melodic accompaniment to find that improvisa-
tion is largely absent, attributed possibly to its expect-
edly relatively low representation in the training data.
We propose a novelty function to capture the extent of
improvisation in a bar relative to its neighbors. We
train a model to predict improvisation locations from
the melodic accompaniment tracks. Finally, we use a
novel BERT-inspired in-filling architecture, to learn the
structure of both the drums and melody to in-fill ele-
ments of improvised music.

1. INTRODUCTION

Songs in popular music genres like rock are typically split
into different sections such as the verse, bridge, and cho-
rus. While the primary task of a drummer is to play in time,
it is also important for the drummer to be consistent with
the song structure. Traditionally fills, or short groups of
notes, are played as the song transitions from one section
to another (say, verse to chorus). Thus, it can serve as an
indicator to the audience as well as the band, of an upcom-
ing transition in the song. The duration of fills generally
tends to be only a few beats long, no more than the length

© Rishabh Dahale, Vaibhav Talwadker, Preeti Rao and Pra-
teek Verma. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Rishabh Dahale, Vaibhav
Talwadker, Preeti Rao and Prateek Verma, “Generating Coherent Drum
Accompaniment with Fills and Improvisations”, in Proc. of the 23rd Int.
Society for Music Information Retrieval Conf., Bengaluru, India, 2022.

of a bar. Even though they are rare events in a drum track,
fills are an important part of the overall aesthetics. Beyond
signaling transitions, drum fills can also be played in sec-
tions where the accompanying instrumentation is sparse.

Motivated by the above, we improve the quality of the
generated drum tracks from seq-to-seq models by incorpo-
rating fills/improvisations towards our overall goal of ac-
companiment generation. This is achieved via the follow-
ing three distinct stages:

1. Basic Drum Pattern Generation: Using a seq-to-
seq model to generate a drumbeat as the accompaniment
to given melodic instrument tracks of guitar, bass, strings,
and piano (i.e. the Melodic Accompaniment - MA).

2. Improvisation Location Detection: Detecting ex-
plicitly the position of improvisation from the MA using a
self-similarity function and mini BERT model.

3. Generating Improvised Bars: Generating the fills
in the previously detected bars.

Our main contributions are: (i) We show that traditional
attention-based transformer architectures fail to capture the
“improvisation" due to implicit data imbalance. (ii) We
also show that the sampling-based approaches fail to pro-
duce a variation of pattern at the right location. To mitigate
this, we learn to predict where to improvise directly from
the melody tracks using powerful self-attention-based ar-
chitectures. (iii) We propose a novel in-filling approach,
inspired by BERT that can look at the context of drums and
the context of melody and use it to generate the improvised
bars. (iv) We demonstrate an MLP-based synthesis module
for drum improvisation generation from a latent code. For
simplicity we have ignored the dynamic (velocities) in the
generated drum patterns of this work.

2. RELATED WORKS

Since the introduction of the Transformer architecture [1],
there has been a growing interest in this model for sequen-
tial task modeling like in NLP and music generation. The
architecture uses an attention mechanism to learn long-
term patterns and can easily surpass dilated convolutional-
based methods such as WaveNet [2]. They achieve state-
of-the-art performance in a variety of natural language
problems [3], music/audio understanding [4] and gener-
ation tasks [5, 6]. However, for generative models, the
decoding strategy still remains an open question. Even
though high-quality models can be obtained by the use of
likelihood as the training objective, likelihood maximiza-

Figure 1. System Overview - Pipeline used for training (left half) of each individual module; combined pipeline (right half)
for the evaluation phase.

tion methods like beam search lead to degeneration [7].
To solve this issue, many researchers use sampling-based
methods like temperature sampling, top-k sampling, and
nucleus sampling [7–9]. Despite all of the success of se-
quential modeling recently, there still exist many issues
that are relevant to our current work such as understand-
ing rare words or sparsely occurring events of interest [10].
Another major problem is the presence of biases in the gen-
erated output, as they mimic the distribution present in the
training datasets [11]. These issues are ubiquitous across
datasets and modalities and are implicit in our task due to
the low representation of improvised bars. We here show
how these constraints and biases affect the quality of drum
generation, and the steps we take to mitigate them.

Conditioned drum beat generation is an important sub-
task of music generation. Wei et al. [12] observed that the
polyphonic melody self-similarity matrix (SSM) is struc-
turally similar to the drum SSM. They used this to predict
the drum SSM from the melody SSM and used this inter-
mediate representation to generate the drumbeat. While
they used the audio form of the melody as the input, the
symbolic domain also offers opportunities for similar re-
search. An example is the work of [13] using symbolic
representation of the drum track to predict locations and
generate improvisations for the drum track. In this work,
we address drum generation conditioned on a melodic ac-
companiment track, bringing considerably more complex-
ity to the problem.

In the symbolic domain, systems use a discretized rep-
resentation such as MIDI tag and pianoroll representations
that capture the essential information at the semantic level.
Pianoroll is a score-like matrix representing a piece of
music. Note pitch and time are represented by the ver-
tical and horizontal axes, respectively. The velocities of
the notes are represented by the values. The time is gen-
erally quantized on a sub-beat level and each instrument
track is represented by a separate pianoroll matrix. Dong
et al. [14] used this representation along with CNN-based
GAN model for music generation. Another popular sym-
bolic domain representation is the MIDI tag representation
which we refer to as the “serialized grid representation".
In this method, the input is represented by a sequence of
MIDI-like tags. Huang et al. [6] used this MIDI tag rep-
resentation with modified transformer architecture to gen-
erate long-duration piano music. Several modifications
have also been proposed to this representation. Huang et

al. [15] proposed a revamped MIDI (REMI) which intro-
duced DURATION, BAR and POSITION tags to improve
the quaity of generated music. Ren et al. [16] further mod-
ified this representation to include multi-track representa-
tion by introducing TRACK tag and used the Transformer-
XL model to generate multitrack songs. Nuttall et al. [17]
modified the MIDI tags of nine percussion instruments to
represent notes being played by a triplet of pitch, velocity,
and start time, and used it with the Transformer-XL model
to sequentially generate the drum pattern. Thorn et al. [18]
demonstrated three experiments with the Transformer-XL
model with varying input and output representation and
control. In two of the experiments, they tried to control
the drum machine while in the third experiment they tried
to generate the drum pattern directly.

While the Transformer-XL model facilitates the gen-
eration of longer duration (musical) sequences, they still
suffer from the same issues of biases in dealing with the
implicit data-imbalance that exists in the training dataset
[19, 20]. As the specific focus of this work is to find ways
to capture the rare events in the generated output, i.e., fills
and improvisations, we consider only the necessary con-
text for an improvised bar in the form of 11 bar segments
of the songs.

3. DATASET

In this work, we use the Lakh Pianoroll Dataset (LPD-5
cleansed) [14], derived from the Lakh Midi Dataset [21]
which is a collection of 21,425 multitrack pianorolls files
consisting of following tracks: Piano, Guitar, Bass, Strings
and Percussion. All the songs in this dataset are of 4/4-time
signature i.e., all the songs contain 4 beats in a bar and the
dimensionality of each bar in this dataset is 128 (pitch) x
96 (time steps) i.e. each beat is divided into 24 parts. Our
input, which we call melodic accompaniment (MA), con-
sists of notes played by the 4 melodic instruments and out-
put is a percussion instrument pattern conditioned on the
input which we call the percussion accompaniment (PA).

Evaluation of generative music systems faces harder
challenges than that of image generation systems [22]. We
expect our system to replicate the rhythmic consistency
and diversity of the dataset. Any drum beat generation
system must have correct onset locations in a beat. If the
onsets are not properly matched, it appears as if the drums
are lagging/leading the melody. We show that our model is
able learn this by capturing the onset location distribution.

To compare generated samples with original drums in the
dataset, we use the following metric: Instrument Count -
Number of distinct percussion instruments used in a bar.
To evaluate our outputs in terms of rhythmic consistency,
we use the following objective metric: Percussion pattern
consistency in consecutive bars.

4. METHOD

The overview of the proposed system is shown in Figure 1.
Details of each of the models are provided in subsequent
sections. Our models are trained for 300 epochs with
Adam optimization [23] starting with a learning rate of 1e-
4 and decaying it till 1e-6. All the setup was carried out
using the Tensorflow [24] framework. The following two
modules are being used in all the models:
1. Embedding Module: As the pianoroll matrices are
highly sparse, we pass them through 2 layers with 1024
and 128 ReLU [25] activated dense layers to capture the
inter instrument and inter pitch dependencies. For the de-
coder branch of Basic Drum Pattern Generation model, we
use 128 dimensional token embedding layer.
2. Position Encoder: We concatenate the sinusoidal posi-
tional representations [1] with the 128 dimensional vectors
and use a dense layer to project them back in 128 dimen-
sion space.

4.1 Data Processing & Representation

To compress the input and output representation in our
work, we perform the following preprocessing steps: (i)
trim the track for start and end silence bars; (ii) resam-
ple the beats to 8 parts per beat, making each bar 32
timesteps long; (iii) keep only active MIDI pitches in all
melodic instruments, i.e. MIDI 21 to MIDI 83 (notes A0
to B5); (iv) combine similar instruments in the MIDI rep-
resentation of the percussion track. For example, under
the snare drum, MIDI 38, which corresponds to acoustic
snare, and MIDI 40, which corresponds to electric snare,
are clubbed together; (v) choose only 16 percussion instru-
ments as they capture 85.3% of all the percussion instru-
ment strokes: snare drum, open hi-hat, close hi-hat, kick
drum, ride cymbal, crash cymbal, low-floor tom, high-floor
tom, high tom, hi-mid tom, low tom, cowbell, pedal hi-
hat, tambourine, cabasa, and maracas; (vi) to decrease the
amount of training parameters, we binarize the percussion
track for seq-2-seq models and exclude velocities; (vii)
split the song in non-overlapping contiguous 11 bar sam-
ples. The finer grids are superior for representing drum
audio and fills [26]. We however opt for a quantized repre-
sentation, capturing most of the significant musical events,
allowing us to model longer duration dependencies by the
compressed representation. It will be interesting to com-
pare various representations as a future work.

We use a modified version of pianoroll representation
for MA representation. We concatenate the pianorolls
(Figure 2a) of different instruments instead of adding them
to different channels [14]. As our input is quantized to 8
parts per beat, we represent each 1

8

th part of the beat by
a 256-dimensional vector split amongst the 4 melodic in-

struments. The first dimension of this 64-dimension vector
is the silence state. This is a binary state representing if the
instrument under consideration is silent. The rest of the 63
dimensions contain the velocities of the MIDI notes 21-83
being played.

Figure 2. Data representation methods used in this work

For the PA, we adopt a mixed representation. For our
Basic Drum Pattern Generation model, which is a trans-
former seq-2-seq model, we take advantage of the lan-
guage modeling tasks and use a serialized grid representa-
tion (Figure 2b). In this representation, only the active per-
cussion instruments which are being played are unfolded
into a sequence of tokens. We add a silence state token
and shift by one token making a total of 18 tokens for the
percussion track. For the final model, the improvisation
generation model, we give the MA and masked basic PA
pattern as the inputs. We use the pianoroll representation
for the PA representation for this model (Figure 2c) as only
a fixed number of timesteps needs to be masked in this rep-
resentation.

4.2 Train-Test Splits and Data Augmentation

We split the 21,425 songs in LPD-5 into 16,832 songs for
training and 4,593 songs for the validation set. As the num-
ber of songs is limited, we use the validation set as the test
set. We apply the following data augmentation strategies
(inspired by sensor dropout methods in robotics [27]) to
all of our models’ inputs to increase the robustness in the
training process:

1. Random instrument masking: We randomly mask
one of the instruments in MA for 40% of the samples in
every epoch. This 40% is equally split between the four
melodic instruments. Musically this implies that one of
the instruments has stopped playing. This encourages the
model to consider all the instruments in the MA while
making a prediction.

2. Random timestep masking: We randomly mask
20% of the timesteps in every sample. Musically this leads
to a small disruption in the rhythm of the song which helps
in better generalization of the model.

For the improvised bar generation model, which takes
in the MA and masked PA as inputs, (section 4.5), we use
the following additional augmentation methods:

1. Input masking: We randomly drop one of the inputs
(MA or PA) to the model in 20% of the input samples. This

ensures that the model is not dependent on only one input
for improvisation generation.

2. Drum noise: In the evaluation phase, the drum in-
puts are taken from the output of the basic drum pattern
generation model. As this process could be prone to er-
rors, we simulate this by adding the random noise to the
drum samples while training. The random noise can either
add new drum strokes or remove some old strokes. Our
analysis showed that the PA has a very low density in the
pianoroll format (average ≈ 5%). Hence we perturb the
PA density by a maximum of 1%

4.3 Basic Drum Pattern Generation

Figure 3. (a) Sequence to sequence model, used for basic
drum pattern generation; (b) Improvisation Location De-
tection Model

We use the Transformer encoder-decoder model [1] to
generate a basic drum pattern (Figure 3a). This is done by
giving the MA as the input to the encoder and the shifted
PA tokens to the decoder branch. Both the inputs are first
passed through the embedding module followed by the po-
sition encoder. The embedded inputs are passed through
2 layers of encoder/decoder module with 128 dimensional
latent space and 8 attention heads. At the output, we have
18 neurons corresponding to the 16 drum instruments, si-
lence token, and shift token.

4.3.1 Sub-module Evaluation

We evaluate the above model with the negative log-
likelihood (NLL) values over the train and the validation
set. As the model outputs a distribution over the 18 out-
put tokens, there are multiple ways to decode it. We test
the greedy method of decoding, where the token with the
maximum probability is selected at every step and simple
sampling method. The model is trained using categorical
cross-entropy loss, achieved a NLL of 0.108 and 0.112 on
the train and validation split, respectively.

4.4 Improvisation Location Detection

4.4.1 Novelty Function

Figure 4. Novelty Function plot for a given drum track
In order to extract locations in the MA that warrant a

fill, we propose the following method:
1. We use a 11-bar drum sample to calculate the Nov-

elty value of center bar. The 5 bars on it’s left and right
are the context bar. The novelty value of a bar is calculated
as the average weighted dissimilarity over all the context
bars. We use the following equation to calculate the dis-
similarity between 2 bars:

||bari − barj ||1 × k

||bari||1 + ||barj ||1
(1)

We utilize the hanning window to represent the weighting
parameter k.

2. This calculation is done for all the bars across a track,
except the first and the last 5 bars due to the lack of context
bars. From Figure 4 it can be seen that the novelty func-
tion peaks at the bar with a drum fill. These bars are then
extracted using a peak picking mechanism.

3. To generate the dataset for our task, we pick the bars
with a local maxima as the positive samples. To filter out
minor deviations, e.g., bar 18 in Figure 4, we put a thresh-
old of 0.1 on the peaks height difference from its neigh-
bours. Maximum of 10% of total bars in a song with these
characteristics are selected as the positive samples. Same
number of bars from the rest of the non peak regions are
selected as negative samples.

4.4.2 Model Architecture

We use a 2 layer BERT [28] (Figure 3b) to detect the lo-
cation of improvisations. The input to this model is an
11-bar MA and the prediction is done for the middle bar.
The MA is passed through an embedding layer followed
by the positional encoder. The embedded inputs are then
passed through 2 layers of transformer encoder with 64 di-
mension latent space and 12 attention heads, followed by
1024 neurons. These are finally passed to a 2 dimensional
softmax activated dense layer which acts as a classification
module. The above model is trained using Huber loss [29],
as it is robust to outliers and less sensitive to noise.

4.4.3 Sub-module Evaluation

We monitored the accuracy, precision, and recall of the
model in terms of detecting the improvised bars where the

target is the original drum track. The final results can be
found in Table 1. As the dataset is split equally between
positive and negative samples, we have balanced precision
and recall values.

Precision Recall Accuracy F1 Score
Train 92.3 92.3 92.3 92.3
Val 79.1 79.4 79.3 79.2

Table 1. Performance of the Improvisation Location De-
tection model. All the values are in %.

4.5 Improvisation Generation

Figure 5. Improvised Bar Generation Model
The final step in our system is the generation of impro-

vised bars. To achieve this we use the architecture shown
in Figure 5. We provide 11 bar MA and PA as the in-
put to the model. During the training phase, the PA is
the original percussion track, whereas, during the evalu-
ation/generation phase, the percussion track generated by
our first stage model (section 4.3) is used. The 6th bar in
the percussion sample (middle bar) is the target bar and is
masked while giving as the input.
We generate a summary vector of both the MA and the PA
inputs. Both are first passed through an embedding layer
followed by a position encoder module. This is then passed
through 2 layers of transformer encoders with 128 dimen-
sional latent space and 8 attention heads. Even though
larger/bigger models could potentially lead to better re-
sults, we have used the resources at our disposal. We note
that any further improved performance will only apply to
in-fill detection and synthesis.

We add skip connections to ease the flow of gradients
[30]. To generate the summary vector for each input, we
use a global averaging technique. These two vectors are
concatenated and passed through a decoder structure which
looks at the concatenated vector to generate the improvised
drum bar. We test the following decoder architectures with
our model:

1. MLP: A 3-layer dense network with 2048-2048-512
neurons is used. The final layer is sigmoid activated. The
outputs are reshaped to 32 (timesteps) × 16 (percussion
instruments) to get the improvised bar.

2. MLP mixer: MLP mixers [31] are simple alterna-
tives to convolution and self-attention. They are based on
multi-layered perceptrons applied across either temporal
dimension or feature dimension.

3. Conv1d: A simple conv1d architecture with blocks
of 2 layers of conv1d followed by upsampling.

We did not opt for an auto-regressive architecture, as
this work does not assume causality, and we incorporate
the right context as well as melody for the fill synthesis.
There have been other works for improvisation synthesis,
e.g. [32], also using the left and right context, even if only
using drums

4.5.1 Sub-module Evaluation

We treat the prediction of the improvised bars as a regres-
sion problem. We similarly train it with Huber loss as it is
less sensitive to outliers. We do not use cross-entropy loss
for generation firstly purely as a design choice, and intu-
itively each of the time step token in the prediction within
a bar lack probabilistic interpretation. We monitor and re-
port the accuracy, precision, and recall of the models. As
the distribution of 0s and 1s is not uniform in the predicted
sample, F1 score provides a better insight in the perfor-
mance of the models. From Table 2 it can be seen that a
simple 3 layered MLP decoder is able to perform better
than the complex MLP mixer and Conv1D architecture.

Precision Recall Accuracy F1 Score

MLP
Train 98.8 93.2 86.3 95.9
Val 82.9 70.3 79.0 76.0

MLP
Mixer

Train 97.5 45.0 88.7 61.6
Val 83.5 42.1 86.0 56.0

Conv1D
Train 55.2 70.6 86.2 61.7
Val 53.1 70.3 86.1 60.5

Table 2. Results for various decoders used in the Impro-
vised Bar Generation model (all the values are in %)

5. EVALUATION

To evaluate the quality of the generated PA pattern of the
proposed system, we conduct both objective and subjec-
tive tests 1 with: O: Original MIDI drum patterns from the
dataset; P1: The basic drum pattern generated by our Ba-
sic Drum Pattern Generation model (section 4.3); P2: The
final drum pattern with fills and improvisations generated
by the complete system.

We screen the generated samples to eliminate those with
more than 4 silent bars and those where the variation of bar
density is high as measured by the standard deviation of the
bar density. After applying the mentioned filtering to 8192
P1 drum samples generated by simple sampling method,
we are left with 3762 samples for further evaluation.

1 Note:Additional objective evaluation methods are reported in the
supplementary document https://bit.ly/2022ismirsupp

https://bit.ly/2022ismirsupp

Figure 6. (a) Distribution of onset position in a bar (b)
Distribution of Percussion Pattern Consistency

A basic requirement that any drum pattern generation
system must fulfill is the rhythmic positioning of onsets.
Generally, in a bar of rock music, the first beat (downbeat)
and the third beat have similar instrumentation, featuring a
hi-hat and kick drum onset. Beats 2 and 4, commonly re-
ferred to as the backbeat, include a hi-hat and snare drum
onset. While the quarter notes are accented across the bar,
8th notes are accented within the beat interval. Figure 6a
shows the onset distribution present in the bar of both O
and P1 samples. We can observe that most of the drum pat-
terns are 8th note patterns and we find a larger proportion
of onsets at the accented locations within a beat interval.
This is particularly intriguing because the model is given
no explicit downbeat or subdivision information yet is still
able to emphasis the subdivisions required for an 8th note
pattern.

We also do a one-to-one comparison of the P1 outputs
against their target drum pattern to understand how closely
the patterns match with the original drum sample based on
the following metric:
Instrument Count (IC) is defined as the total number of
distinct instruments used in a bar. To see whether our
model is able to replicate the behavior of multi-instrument
dependency, we calculate the deviation of IC in the gen-
erated sample with reference to the original target drum
track for the same MA. We observe that in 75.8% of the
drum bars, we are able to replicate the IC, while in 99.3%
of the bars our model was off by at most 1 instrument.

Another important aspect that needs to be considered
while generating drum patterns is to have a rhythmic (pat-
tern) consistency across bars. We evaluate this aspects of
the generated drum pattern using the following metric:
Pattern Consistency: For consecutive bar pair, we cal-
culate the distance between the drum patterns using (1)
keeping k = 1. The distribution of the bar distances is
shown in Figure 6b. We can see that the generated drum
bars are more or less similar to each other with some mi-
nor deviations due to the sampling decoding method. The
overlapping area of the two distributions is 80.4%.

Next, on the improvised O and P2 bars, we used the
following evaluation methods to see how well our models
captured the fills/improvisations:
Onset Position: Figure 7a shows the distribution of onset
location of percussion instruments across the improvised
bars. We observe a slightly higher proportion of 16th note
patterns in the improvised O bars as compared to onset dis-

Figure 7. Improvised bars: Distribution of (a) onset loca-
tion (b) change in instrument count (w.r.t. previous bar)

tribution across the non-improvised bars seen in Figure 6a.
We can see that P2 system is largely able to capture this
behavior as well.
Instrument Count (IC) Change: Generally during a
fill/improvisation, some additional instrument are being in-
troduced. IC change is measures as the change in IC of im-
provised bar compared to its previous bar. Figure 7b shows
the distribution of IC change. The overlapping area of the
two distributions is 87.9%, This shows that our model was
able to capture the general trend of IC change.

Additionally, to evaluate the perceptual quality of the
generated outputs, we present the generated samples to
trained musicians. We created 3 pairs i.e. O & P1; P1 &
P2; O & P2 for each MA-PA track and presented them to
two guitarists and a multi-instrumentalist with experience
ranging from 5 to 10 years. They were asked to provide
detailed comments on the drum pattern in terms of timing,
appropriateness of fills and coherence of the PA with MA.
A common comment from the musicians was regarding the
monotonicity in P1 track. As a result when the O & P1 pair
was presented, majority of the times O was preferred, but
when P1 & P2 were presented, musicians were found to
appreciate the fills as it provided a lively feel to the PA.

6. CONCLUSION AND FUTURE WORK

We have successfully shown a method to produce coherent
drums accompaniment with improvised bars by condition-
ing on a given melodic accompaniment. A novel BERT
inspired infilling architecture is proposed, along with self-
supervised improvisation locator. By learning, where and
how to improvise, our evaluations indicate improved gen-
eration quality. Thus with a two step approach, we mit-
igate the biases intrinsic with data-imbalance, and short-
comings that exists with current machine learning archi-
tectures. The system can further be improved by learn-
ing optimal sampling techniques, which still remains an
open problem. As a future work, we could improve the
detection performance by employing larger and deeper ar-
chitectures. This work highlights a serious drawback of
traditional language-based generators, which have shown
promise in a lot of different fields, yet they fail to capture
subtle musical signals, where they are often sparsely oc-
curring in otherwise repetitive and common patterns.

7. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in neural infor-
mation processing systems, vol. 30, 2017.

[2] P. Verma and C. Chafe, “A generative model for raw
audio using transformer architectures,” arXiv preprint
arXiv:2106.16036, 2021.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell et al., “Language models are few-shot
learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] P. Verma and J. Berger, “Audio transformers:
Transformer architectures for large scale audio un-
derstanding. adieu convolutions,” arXiv preprint
arXiv:2105.00335, 2021.

[5] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,
and I. Sutskever, “Jukebox: A generative model for
music,” arXiv preprint arXiv:2005.00341, 2020.

[6] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoff-
man, M. Dinculescu, and D. Eck, “Music transformer,”
arXiv preprint arXiv:1809.04281, 2018.

[7] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi,
“The curious case of neural text degeneration,” arXiv
preprint arXiv:1904.09751, 2019.

[8] J. Ficler and Y. Goldberg, “Controlling linguistic style
aspects in neural language generation,” arXiv preprint
arXiv:1707.02633, 2017.

[9] A. Fan, M. Lewis, and Y. Dauphin, “Hier-
archical neural story generation,” arXiv preprint
arXiv:1805.04833, 2018.

[10] T. Schick and H. Schütze, “Rare words: A major prob-
lem for contextualized embeddings and how to fix it by
attentive mimicking,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 8766–8774.

[11] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng,
“The woman worked as a babysitter: On biases in lan-
guage generation,” arXiv preprint arXiv:1909.01326,
2019.

[12] I.-C. Wei, C.-W. Wu, and L. Su, “Generating struc-
tured drum pattern using variational autoencoder and
self-similarity matrix.” in ISMIR, 2019, pp. 847–854.

[13] F. Tamagnan and Y.-H. Yang, “Drum fills detection and
generation,” in International Symposium on Computer
Music Multidisciplinary Research. Springer, 2019,
pp. 91–99.

[14] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“Musegan: Multi-track sequential generative adversar-
ial networks for symbolic music generation and accom-
paniment,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[15] Y.-S. Huang and Y.-H. Yang, “Pop music transformer:
Beat-based modeling and generation of expressive pop
piano compositions,” in Proceedings of the 28th ACM
International Conference on Multimedia, 2020, pp.
1180–1188.

[16] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,
“Popmag: Pop music accompaniment generation,” in
Proceedings of the 28th ACM International Conference
on Multimedia, 2020, pp. 1198–1206.

[17] T. Nuttall, B. Haki, and S. Jorda, “Transformer neural
networks for automated rhythm generation,” 2021.

[18] O. Thörn, “Ai drummer-using learning to enhancearti
cial drummer creativity,” 2020.

[19] A. Caliskan, J. J. Bryson, and A. Narayanan, “Seman-
tics derived automatically from language corpora con-
tain human-like biases,” Science, vol. 356, no. 6334,
pp. 183–186, 2017.

[20] P.-S. Huang, H. Zhang, R. Jiang, R. Stanforth, J. Welbl,
J. Rae, V. Maini, D. Yogatama, and P. Kohli, “Reducing
sentiment bias in language models via counterfactual
evaluation,” arXiv preprint arXiv:1911.03064, 2019.

[21] C. Raffel, Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching. Columbia University, 2016.

[22] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, “Deep learn-
ing techniques for music generation–a survey,” arXiv
preprint arXiv:1709.01620, 2017.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard
et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} symposium on operat-
ing systems design and implementation ({OSDI} 16),
2016, pp. 265–283.

[25] A. F. Agarap, “Deep learning using rectified linear
units (relu),” arXiv preprint arXiv:1803.08375, 2018.

[26] J. Gillick, J. Yang, C.-E. Cella, and D. Bamman,
“Drumroll please: Modeling multi-scale rhythmic ges-
tures with flexible grids,” Transactions of the Interna-
tional Society for Music Information Retrieval, vol. 4,
no. 1, 2021.

[27] G.-H. Liu, A. Siravuru, S. Prabhakar, M. Veloso, and
G. Kantor, “Multi-modal deep reinforcement learning
with a novel sensor-based dropout.”

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional trans-
formers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[29] P. J. Huber, “Robust estimation of a location parame-
ter,” in Breakthroughs in statistics. Springer, 1992,
pp. 492–518.

[30] L. Pepino, P. Riera, and L. Ferrer, “Emotion recog-
nition from speech using wav2vec 2.0 embeddings,”
arXiv preprint arXiv:2104.03502, 2021.

[31] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer,
X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Key-
sers, J. Uszkoreit et al., “Mlp-mixer: An all-mlp ar-
chitecture for vision,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[32] J. Gillick, A. Roberts, J. Engel, D. Eck, and D. Bam-
man, “Learning to groove with inverse sequence trans-
formations,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2269–2279.

[33] L.-C. Yang and A. Lerch, “On the evaluation of gener-
ative models in music,” Neural Computing and Appli-
cations, vol. 32, no. 9, pp. 4773–4784, 2020.

	1. Introduction
	2. Related Works
	3. Dataset
	4. Method
	4.1. Data Processing & Representation
	4.2. Train-Test Splits and Data Augmentation
	4.3. Basic Drum Pattern Generation
	4.3.1. Sub-module Evaluation

	4.4. Improvisation Location Detection
	4.4.1. Novelty Function
	4.4.2. Model Architecture
	4.4.3. Sub-module Evaluation

	4.5. Improvisation Generation
	4.5.1. Sub-module Evaluation

	5. Evaluation
	6. Conclusion and Future Work
	7. References

