
PRE-PRINT (IEEE Transactions on Audio, Speech and Language Processing, Accepted January 2010) 
 

 

1

 

 
Abstract— Melody extraction algorithms for single-channel 

polyphonic music typically rely on the salience of the lead 
melodic instrument, considered here to be the singing voice. 
However the simultaneous presence of one or more pitched 
instruments in the polyphony can cause such a predominant-F0 
tracker to switch between tracking the pitch of the voice and that 
of an instrument of comparable strength, resulting in reduced 
voice-pitch detection accuracy. We propose a system that, in 
addition to biasing the salience measure in favor of singing voice 
characteristics, acknowledges that the voice may not dominate 
the polyphony at all instants and therefore tracks an additional 
pitch to better deal with the potential presence of locally 
dominant pitched accompaniment. A feature based on the 
temporal instability of voice harmonics is used to finally identify 
the voice pitch. The proposed system is evaluated on test data 
that is representative of polyphonic music with strong pitched 
accompaniment. Results show that the proposed system is indeed 
able to recover melodic information lost to its single-pitch 
tracking counterpart, and also outperforms another state-of-the-
art melody extraction system designed for polyphonic music. 
 

Index Terms— Fundamental frequency estimation, music 
information retrieval, music transcription, predominant pitch 
detection 

I. INTRODUCTION 

UTOMATIC melody extraction from polyphonic music 
is an area of research that has received considerable 

attention in the past decade. A rough definition of the melody 
of a song is the monophonic pitch sequence that a listener 
might reproduce if asked to hum a segment of polyphonic 
music [1]. This pitch sequence is usually manifested as the 
fundamental frequency (F0) contour of the lead musical 
instrument in the polyphonic mixture (often called the 
predominant F0). Since the lead instrument for several genres 
of music, especially popular music, is the human singing 
voice, the focus of this paper is on voice pitch contour 
extraction in polyphony. 

Poliner et al. [1] provide a comprehensive review of state-
of-the-art in melody extraction. The majority of melody 
extraction algorithms reviewed by them adopt the 
“understanding-without-separation” paradigm as described by 
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Scheirer [2] and by-and-large adhere to a standard framework 
as depicted in Fig.1. Here, a short-time, usually spectral, 
signal representation is extracted from the input polyphonic 
audio signal. This is then input to a multi-F0 extraction block 
whose goal is to detect candidate F0s and associated salience 
values. The melody identification stage attempts to identify a 
trajectory through the F0 candidate-time space that best 
represents the melody of the song. The voicing detection 
block identifies whether the melody is active or silent at each 
time instant. There also exist melody extraction algorithms 
that do not follow the above paradigm such as those that 
attempt to first segregate the melodic source and then track the 
pitch of the extracted “monophonic” source [3], [4]. 

 
Fig. 1. Block diagram of a typical melody extraction system 

 
Both problems, viz. melodic pitch detection and voicing 

detection, continue to be far from solved for use in practical 
automatic music transcription systems operating on large 
datasets across music of various genres and styles. However 
the applicability of available algorithms can be extended 
considerably by employing semi-automatic approaches 
tailored for specific applications [5]. For instance, the manual 
marking of vocal segment (sung phrase) boundaries is much 
easier than manual detection of the frame-by-frame voice 
pitch. Therefore a semi-automatic melody extraction 
framework that exhibits a highly accurate automatic voice 
pitch tracker for polyphony and allows user control for vocal 
segment detection can be a valuable transcription tool. 
Consequently in the present work, we have chosen to 
primarily focus on accurate vocal-pitch tracking (first three 
blocks of Fig. 1) without touching upon voicing detection. 

A major cause of errors in vocal-pitch tracking for state-of-
the-art polyphonic melody extraction systems is the presence 
of strong, pitched accompaniment [6]–[9]. In this paper we 
propose a new system for vocal melody extraction that 
demonstrates increased robustness to pitched accompaniment 
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when compared to another state-of-the-art melody extraction 
system. Our system utilizes a spectral harmonic-matching 
pitch detection algorithm (PDA) followed by a dynamic 
programming-based (DP) optimal path finding technique that 
tracks pitch within certain melodic smoothness constraints. 
The major contribution of this paper is in the design of a 
system that demonstrates superior voice-pitch tracking 
accuracy in polyphonic music particularly when pitched 
accompaniment is strong. The novel aspects of the system 
include the separation of the F0 candidate selection and 
salience computation steps, the joint tracking of two F0 
contours by a DP algorithm with a harmonic-relationship 
constraint on F0 pairing and the final identification of the 
voice pitch contour from the dual-F0 tracking output using a 
voice-feature that exploits the temporal instability (in 
frequency) of voice harmonics.  

Our melody extraction system does not use machine 
learning-based algorithmic modules as is done in many other 
systems [10], [11]. The performance of such systems is highly 
dependent on the diversity and characteristics of the training 
data available. In contrast our system provides a limited set of 
parameters that may be tuned, if needed, based on higher level 
knowledge of the signal properties. This also allows for easy 
integration into a semi-automatic melody extraction 
framework. 

Fig. 2 shows a detailed block diagram of the proposed 
system of which the three main modules are the computation 
of a suitable signal representation, multi-F0 extraction and 
melody identification. Sections II, III and IV describe each of 
these stages. In the design of each stage we attempt to exploit 
characteristics specific to the singing voice and increase 
robustness to pitched accompaniment. The F0 candidate 
salience measure used in our multi-F0 extraction module is 
more dependent on the frequency extent of harmonics rather 
than their strengths. The melody identification module 
contains novel enhancements to an existing dynamic 
programming-based framework that involve harmonically 
constrained F0 candidate pairing and the simultaneous 
tracking of these F0 candidate pairs. The subsequent selection 
of the voice pitch is done using a new feature based on voice-
harmonic instability. Section V comparatively evaluates the 
performance of our system with another state-of-the-art 
system on different music datasets. The last section presents 
the conclusions. 

II. SIGNAL REPRESENTATION 

It is well known that the frequency-domain analysis of a 
pitched musical note results in a set of harmonics at near-
integer multiples of an F0. In order to enhance the pitched 
content of the polyphonic audio, in this module we extract a 
sparse signal representation in the form of a set of harmonic 
frequencies and amplitudes. 

A. Sinusoid Identification by Main-lobe Matching 

For a stationary periodic sound, sinusoidal components in 
the magnitude spectrum will have a well defined frequency  

 
 

Fig. 2. Block diagram of proposed system 

 
representation i.e. the transform of the analysis window used 
to compute the Fourier transform. In order to detect sinusoids 
from the short-time magnitude spectrum of a signal we use a 
measure of closeness of a local spectral peak’s shape to the 
ideal sinusoidal peak, as proposed by Griffin and Lim [12]. 
This criterion is defined as the mean square difference 
between the local spectrum and the window main lobe. 

The above main-lobe matching method for sinusoid 
identification has been chosen over computationally simpler 
methods, such as fixed amplitude thresholding [13] and 
amplitude-envelope based thresholding [14], keeping the 
polyphonic context of the audio in mind. The detection of 
harmonics of the melodic F0 is critical to the overall 
performance of the melody extraction system. The use of 
amplitude thresholding methods may miss these harmonics in 
the vicinity of strong, interfering harmonics from pitched 
accompaniment. On the other hand, even relatively weak 
sinusoidal components will be detected by the chosen method. 
In the results of separate unreported experiments the 
performance of the three methods (fixed amplitude 
thresholding, amplitude-envelope based thresholding and 
main-lobe matching) was compared using mixtures of 
simulated voice and pitched interference signals.  Different 
signal conditions such as steady and varying voice pitch, 
different strengths and different numbers of interference 
harmonics were experimented with. It was found that the best 
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trade-off between correctly detected sinusoids and false 
alarms was consistently obtained using the main-lobe 
matching technique. 

B. Implementation 

First, we compute a high-resolution, discrete Fourier 
transform SW(ω) of a 40 ms long Hamming windowed signal 
frame. Then all 3-point local maxima are detected in the 
windowed magnitude spectrum |SW(ω)|. We only consider the 
spectral content below 5 kHz since significant voice 
harmonics are not usually found above this limit. Next, an 
error value for the mth local maximum is computed as [12] 
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where |EW(ω)| is the pre-computed Hamming window 
spectrum centered at the mth local peak frequency, [am, bm] is 
the frequency interval over the width of the window main lobe 
in the neighborhood of the mth peak. For a 40 ms long 
Hamming window, the width of the window main-lobe is 100 
Hz. |Am| is a scaling factor that will minimize εm and is given 
by  
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Now a normalized sinusoidality measure (S) is defined as 
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Those peaks for which S lies above a given threshold are 
labeled as sinusoidal components. Although a strict threshold 
on sinusoidality (S) was originally proposed (0.8) [12], we use 
a more relaxed threshold (0.6) in order to detect melodic F0 
harmonics that may be distorted due to voice-pitch 
modulations, such as vibrato, while still maintaining a high 
side-lobe rejection. The sinusoid frequency and amplitude 
estimates are further refined using parabolic interpolation. 

III. MULTI-F0 EXTRACTION 

The goal of this module is to reliably detect potential F0 
candidates in each frame with their associated salience values, 
given the sinusoid frequencies and amplitudes output by the 
previous module. In the present context, there are two 
requirements of the multi-F0 extraction module: 1. the voice-
F0 candidate should be reliably detected; 2. the salience of the 
voice-F0 candidate should be relatively high compared to 
those of instrument-F0 candidates. Our approach to F0 
candidate identification and salience computation is described 
next, followed by the implementation details of the complete 

multi-F0 extraction module. 

A. F0 Candidate Identification  

As described by de Cheveigné [15], multi-F0 estimation 
approaches that adopt an iterative “estimate-cancel-estimate” 
mechanism or jointly estimate multiple F0s in a single step are 
superior to the simple extension of a single-F0 algorithm to 
estimate multiple F0s e.g. identifying the largest and second 
largest peak in an autocorrelation function (ACF). Both the 
iterative and the joint estimation approaches are of 
significantly higher computational complexity than the last 
category i.e. a single voice (monophonic) algorithm applied to 
find multiple F0s. 

 Our multi-F0 extraction module, which falls under the last 
category, is able to reliably extract voice-F0 candidates (as 
will be shown in Section V.C.) without having to resort to the 
iterative or joint estimation approaches. This is achieved by 
the distinct separation of the F0 candidate identification and 
salience computation parts as follows. Rather than computing 
a salience function over a range of trial F0 and then picking 
F0 candidates as the locations of maxima of this function, we 
first identify potential candidates by an independent method 
that selects all integer sub-multiples of well-formed detected 
sinusoids and only compute the salience function at these 
candidates. This ensures that the voice-F0 candidate will be 
selected (and therefore actively considered in the next stage of 
melody identification) even if a single well-formed higher 
harmonic of the voice-F0 is detected. 

B. F0 Candidate Salience Computation 

The salience of an F0 candidate (hypothesized pitch) can be 
computed using a pitch detection algorithm (PDA). Most 
PDAs can be classified as spectral (spectral pattern matching) 
or temporal (maximization of a correlation-type function). 
These approaches have been shown to be equivalent i.e. 
minimizing the squared error between the actual windowed 
signal spectrum and an idealized harmonic spectrum is 
analytically equivalent to maximizing an autocorrelation 
function of the windowed signal [12], [16]. The above PDAs 
fall under the “harmonic sieve” category [15]. The resulting 
salience functions put strong emphasis on the high amplitude 
portions of the spectrum, and thus are sensitive to the presence 
of interference containing strong harmonics. 

Recent multi-F0 extraction systems, including those 
proposed by Tolonen & Karjailenen [17], Li & Wang [18] and 
Klapuri [8], have used a spectro-temporal approach to F0 
candidate estimation. This involves the computation of 
independent correlation functions on multiple frequency 
channels (such as a multi-band ACF), usually motivated by an 
auditory model. Although this may overcome the high 
amplitude interference problem by allowing the weight of 
each channel to be adjusted to compensate for amplitude 
mismatches between spectral regions, such an approach 
requires suitable decisions to be made on the frequency bands 
and associated channel weighting. Such decisions may again 
be dependent on the nature of accompanying instruments. 
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 Our choice of salience function is the Two Way Mismatch 
(TWM) error, as described originally by Maher & Beauchamp 
[19] which, to the best of our knowledge, has not been 
previously explored in the context of melody extraction from 
polyphony. The TWM PDA qualifies as a spectral method for 
pitch detection. However it is different from the “pattern 
matching” methods (i.e. those that minimize the squared error 
or maximize the correlation between the actual and idealized 
spectra) in that it minimizes an unconventional spectral 
mismatch error which is a particular combination of an 
individual partial’s frequency deviation from the ideal 
harmonic location and its relative strength. As described by 
Maher & Beauchamp [19], this error function was designed to 
be sensitive to the deviation of measured partials/sinusoids 
from ideal harmonic locations. Relative amplitudes of partials 
too are used in the error function but play a significant role 
only when the aforementioned frequency deviations are small 
(see Section II.A. in [19]). Unlike the multi-band ACF, the 
TWM error computation does not require decisions on bands 
and weighting but is primarily dependent on the number of 
predicted harmonics (N) for a given F0. The choice of N 
depends on the known or assumed spectral characteristics of 
the signal source. We have tuned N for biasing the error 
function in favor of spectrally rich musical sources, such as 
the singing voice, by predicting harmonics upto 5 kHz (a 
previously used upper spectral limit for dominant harmonics 
of typical melody lines [7]). Although other parameters are 
used in the computation of the TWM error function for 
monophonic signals [19], these are unchanged in our 
implementation. 

We have previously confirmed, using simulated and real 
signals, that in the presence of strong, spectrally sparse, tonal 
interferences, the melodic (voice-F0) candidate was indeed 
detected with significantly higher salience on using the TWM 
PDA as compared to other harmonic matching or correlation-
based PDAs [20], [21]. This was attributed to the dependence 
of TWM error values on the frequency extent of harmonics as 
opposed to the strengths of the harmonics (which is the case 
with most ‘harmonic-sieve’ based methods [15].) This has the 
advantage that F0s belonging to the spectrally-rich singing 
voice (having gentler roll-off than common pitched 
accompanying instruments such as the piano and the flute 
[22]), are characterized by lower TWM errors i.e. better 
salience. 

C. Implementation 

Probable F0 candidates are first identified as sub-multiples 
of the frequencies of well-formed sinusoids i.e. those having a 
sinusoidality (S) greater than 0.8. Candidates that do not lie 
within the F0 search range (from 80 to 500 Hz) are ignored.  

For each of the above detected F0 candidates, the 
corresponding salience is computed as the normalized Two-
Way Mismatch (TWM) error [19]. The TWM error ErrTWM, 
for a given trial F0 f, is a weighted sum of two errors, the 
predicted-to-measured error Errp→m and the measured-to-
predicted error Errm→p, as shown below. 
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where N and M are the number of predicted and measured 
harmonics respectively and ρ is a weighting factor. Errp→m is 
based on the mismatch between each harmonic in the 
predicted sequence and the nearest measured partial while 
Errm→p is based on the mismatch between each partial in the 
measured sequence and the nearest predicted harmonic. Both 
of these share the same form. Errp→m is defined below. 
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where fn and an are the frequency and magnitude of a single 
predicted harmonic. Δfn is the difference, in Hz, between this 
harmonic and its nearest neighbor in the list of measured 
partials. Amax is the magnitude of the strongest measured 
partial. Thus an amplitude weighted penalty is applied to a 
normalized frequency error between measured and predicted 
partials for the given trial F0. p, q, and r are independent 
parameters. Note that here we use a value ρ = 0.1. This gives 
lesser weight to Errm→p and leads to ErrTWM being almost the 
same as Errp→m, since Errm→p for single-F0 values will be 
comparatively unreliable in the presence of harmonics of 
another pitched source. 

Finally, F0 candidates are sorted in ascending order of 
ErrTWM and weaker candidates (having higher ErrTWM) that lie 
in the close neighborhood (25 cents) of a stronger candidate 
are erased. This is done so as to include only the most relevant 
F0 candidates in the final list since the candidate identification 
process will typically result in a large number of F0 
candidates clustered around (sub) multiples of the F0s of 
pitched sound sources. Only the top 10 candidates and their 
corresponding normalized ErrTWM values are chosen for 
further processing.  

IV. MELODY IDENTIFICATION 

In the melody identification module most algorithms utilize 
F0 salience values from the multi-F0 extraction module, and 
impose smoothness constraints to identify the melodic 
trajectory. Two approaches have been widely used. The first 
involves finding an optimal path through the F0 space over 
time by dynamically combining F0 salience values (also called 
measurement cost) and smoothness constraints (also called 
smoothness cost) using methods either based on the Viterbi 
algorithm [23] or dynamic programming (DP) [24], [25]. The 
second approach applies variants of the partial tracking (PT) 
algorithm, used in classical sinusoidal modeling [13], to 
forming multiple F0 trajectories/contours through the F0 
candidate space over time. The final melodic contour is 
usually chosen as that trajectory with the greatest accumulated 
salience/energy. 

In our melody identification module we use the DP 
framework. The use of DP in melody extraction is attractive 
since it finds the optimal path by combining trajectory 



PRE-PRINT (IEEE Transactions on Audio, Speech and Language Processing, Accepted January 2010) 
 

 

5

forming and melodic contour identification in one 
computationally-efficient, global framework i.e. a black box 
that outputs a single F0 contour given suitably defined local 
and smoothness costs. PT, on the other hand, first forms 
trajectories using local frequency proximity and subsequently 
identifies melodic tracks or fragments. Here multiple 
trajectories may be formed through different musical 
instrument F0 contours and their (sub) multiples leading to a 
densely populated track space [6].  

We next describe the application of DP in our melody 
identification module (referred to as single-F0 tracking). 
Situations in which this module is expected to suffer from 
irrecoverable degradations are then identified. Enhancements, 
in terms of dual-F0 tracking, within the DP framework are 
then described that may enable the retrieval of previously 
inaccessible melodic information. Finally we describe a voice-
pitch identification framework that uses a novel feature that 
enables the identification of the voice pitch from the dual-F0 
tracking output by detecting the temporal frequency-instability 
in the voice harmonics. Both the single- and dual-F0 tracking 
approaches are shown in the melody identification stage of 
Fig. 2. 

A. Application of DP in Single-F0 Tracking 

The application of DP for single-F0 tracking in our melody 
identification module is quite straightforward. The local 
measurement cost for each pitch candidate is given by the 
normalized TWM error of the F0 candidates obtained in the 
multi-F0 extraction stage. The smoothness cost must reflect 
the characteristics of typical voice pitch transitions and is 
designed based on the following musical considerations. Since 
musical pitches are known to be logarithmically related, such 
a cost must be symmetric in log-space. Smaller pitch 
transitions must be assigned a near zero penalty since these 
are especially common over short durations (such as the time 
between consecutive analysis time instants). Improbable, very 
large pitch transitions can all be penalized by a fixed ceiling 
value. We found that a Gaussian cost function (W) described 
in log-space satisfies the above requirements and is defined as 
follows. 

    22 2log ' log

2( , ') 1

p p

W p p e 
 

         (6) 

where p and p' are the F0 candidates in the previous and 
current frames. A value of σ = 0.1 results in a function that 
assigns very low penalties to pitch transitions below 2 
semitones. Larger rates of pitch transition (in the 10 ms frame 
interval chosen in this work) are improbable even during rapid 
singing pitch modulations and are penalized accordingly. 

The pitch tracking accuracy of the system with the single-F0 
tracking approach to melody identification was an entry in the 
audio melody extraction task at the 2008 & 2009 Music 
Information Retrieval Evaluation eXchanges (MIREX)1. It 
 

1 These annually held evaluations provide a framework for formally 
assessing different Music Information Retrieval (MIR) related systems for a 
wide variety of tasks, including melody extraction, on common test data-sets. 

was found to demonstrate high pitch accuracy, especially for 
the vocal music datasets. Particular instances of pitch error 
have been identified where the output melodic contour 
switches between voice and instrument F0s. This occurs when 
some accompanying instrument in the polyphony is 
comparable in salience to the voice. 

B. Shortcoming of Single-F0 Tracking 

The above melodic identification module may output an 
(partially) incorrect melody when either the measurement 
and/or the smoothness costs are in favor of the accompanying 
instrument F0 rather than the melodic F0. The bias in 
measurement cost occurs when an accompanying, pitched 
instrument has a salience comparable to that of the voice. This 
may cause the output pitch contour to incorrectly identify 
accompanying instrument F0 contour segments as the melody 
(An example of such an occurrence is seen in Fig. 4(a)) 

Smoothness costs are normally biased towards musical 
instruments which are capable of producing sustained, stable-
pitch notes. It is well known that the human voice suffers from 
natural, involuntary pitch instability called jitter in speech and 
flutter in singing [26]. Further in singing, pitch instability is 
much more emphasized in the form of voluntary, large, pitch 
modulations that occur during embellishments and ornaments 
such as vibrato. So the presence of stable-pitch instruments, 
such as most keyed instruments e.g. the piano and accordion 
(especially when the voice pitch is undergoing rapid and large 
modulations) could also lead to incorrect identification of the 
melodic fragments. Such errors are more likely to occur when 
the F0s of the voice and instrument intersect since at the point 
of intersection, the F0 candidates for both sources are one and 
the same with a single salience. 

In cases of incorrect melodic identification for PT based 
approaches, the recovery of the actual melodic tracks may still 
be possible based on the assumption that correct melodic 
fragments have been formed but not identified. DP, on the 
other hand, is forced to output only a single, possibly 
‘confused’, contour with no mechanism for recovering the 
correct melodic F0s.  This information may be retrieved if DP 
is extended to tracking multiple F0 contours simultaneously.  

C. Dual-F0 Tracking 

Here we describe an enhancement to the DP formulation that 
simultaneously tracks two F0 contours (hereafter referred to as 
dual-F0 tracking) with the aim to better deal with 
accompanying pitched instruments. We restrict ourselves to 
tracking only two pitches simultaneously on the realistic 
assumption that in vocal music, there is at most only one 
instrument which is more dominant than the voice at any time 
[18].  

The closest previous related work is that of Every and 
Jackson [27] who had designed a DP framework to 
simultaneously track the pitches of multiple speakers. The 
singing/music scenario is very different from speech. The 
design of the measurement and smoothness cost functions 
therefore require completely different considerations. We use 
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the joint TWM error as the measurement cost of the F0 
candidate pair. We have also used a novel harmonic 
relationship constraint to avoid the tracking of an F0 candidate 
and it’s multiple since this would defeat the purpose of using 
DP to track the F0 of multiple distinct sources. 

1)  Implementation 

We extend our previously described single-F0 tracking DP 
algorithm to track ordered F0 pairs called nodes. The 
additional F0 members of the node help to better deal with the 
accompanying pitched instrument(s). If we consider all 
possible pairs of F0 candidates the combinatory space 
becomes very large (Number of permutations of F0 pairs 
formed from 10 F0 candidates is 10P2 = 90) and tracking will 
be computationally intensive. More importantly, we may end 
up tracking an F0 and its (sub)-multiples rather than two F0s 
from separate musical sources. Our method to overcome this 
is to explicitly prohibit the pairing of harmonically related F0s 
during node generation. Specifically, two local F0 candidates 
(f1 and f2) will be paired only if  

 1 2 2min . ; . ,low high
k

f k f T k f F F                 (7) 

where k.f2 represents all possible multiples and sub-multiples 
of f2, T is the harmonic relationship threshold and Flow and 
Fhigh are the lower and upper limit on the F0 search range. 
Using a low threshold (T) of 5 cents does not allow F0s to be 
paired with their multiples but allows pairing of two distinct 
source F0s that are playing an octave apart, which typically 
suffer from slight detuning especially if one of the F0 sources 
is the singing voice [28].  

The measurement cost of a node is defined as the jointly 
computed TWM error of its constituent F0 candidates [29]. In 
the interest of computational efficiency the joint TWM error 
for two F0 candidates, f1 and f2, is computed as shown below 

1 2 1, 2
1 2

1 2

( ) ( ) ( )
( , ) p m p m m p

TWM

Err f Err f Err f f
Err f f

N N M
           (8) 

where N1 and N2 are the number of predicted partials for f1 and 
f2 resp. and M is the number of measured partials. The first 
two terms in (8) will have the same values as during the 
single-F0 TWM error computation in (4). Only the last term 
i.e. the mismatch between all measured partials and the 
predicted partials of both F0s (f1 and f2), has to be computed. 
Note that here we use a larger value of ρ (0.25) than before. 
This is done so as to reduce octave errors by increasing the 
weight of Errm→p thereby ensuring that ErrTWM for the true F0 
pair is lower than that of the pair that contains either of their 
respective (sub)-multiples.  

The smoothness costs between nodes are computed as the 
sum of smoothness costs between the constituent F0 
candidates, given previously in (6). A globally optimum path 
is finally computed through the node-time space using the DP 
algorithm. Two pitch contours are available in this minimum 
cost node-path. 

D. Voice-pitch Identification 

The melody identification module is required to output a 
single-F0 contour from the dual-F0 DP stage as the final 
melodic contour.  One possible approach to solving the above 
problem would be to adopt a source discrimination approach, 
as proposed by Marolt [30] which attempts the unsupervised 
clustering of melodic fragments using timbral features. In such 
an approach the selection of the final contour after clustering 
is still unresolved. 

 Recent experiments have validated the voice-instrument 
discriminative ability of a feature that is indicative of the 
relative instability of the voice pitch as compared to keyed 
instrument notes [31]. (The relative difference in the harmonic 
instability of voice harmonics as compared to most keyed 
instrument harmonics was previously mentioned in Section 
IV.B.) This feature is called Sinusoidal Track Harmonic 
Energy [STHE]. A detailed description of the feature 
implementation can be found in [31]. Here we provide a brief 
description of the feature computation within a framework 
used to choose the final voice-F0 contour.  

Although melodic smoothness constraints are imposed in 
the dual-F0 tracking system, each of the output contours 
cannot be expected to faithfully track the F0 of the same 
source across silence regions in singing or instrument playing. 
Therefore choosing one of the two output contours as the final 
output is unreliable. Rather we rely on the continuity of these 
contours over short, non-overlapping windows and make 
voice-F0 segment decisions for each of these ‘fragments’.  

1) Implementation 

Each of the dual-F0 output contours is divided into short-
time (200 ms long) non-overlapping F0 fragments. We then 
identify sinusoids (from the output of the signal representation 
module described in Section II) that are in the 100 cent 
neighborhood of the multiples of the F0 within each fragment 
(with an upper limit on the vicinity fixed at half the main lobe 
width i.e. 50 Hz). Using these sinusoids we build harmonic 
sinusoidal models for each of these F0 fragments using the 
partial tracking algorithm described by Serra [32]. The linking 
cost between sinusoids and constructed partial tracks is based 
purely on frequency proximity of sinusoids and is fixed at 200 
cents. For each of these sinusoidal models we next prune/erase 
tracks whose standard deviations in frequency are below a 
specified threshold (here 2 Hz), indicating stability in 
frequency. The total energy of the residual signal within the 
analysis window is then indicative of the presence of vocal 
harmonics. The fragment with the higher energy is therefore 
selected as the final voice-F0 fragment.   

V. EXPERIMENTAL EVALUATION 

In this section, we present an experimental evaluation of 
our single- and dual-F0 tracking algorithms, hereafter referred 
to as the TWMDP system, as compared to another state-of-
the-art singing voice melody extraction system on three 
different sets of polyphonic vocal music. This other algorithm 
is the one proposed by Li & Wang [18], hereafter referred to 
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as the LIWANG system, who have made their program code 
available on the internet.  

The LIWANG system initially processes the signal using an 
auditory model and correlation-based periodicity analysis, 
following which different observation likelihoods are defined 
for the cases of 0, 1 and 2 (jointly estimated) F0s. A hidden 
Markov model (HMM) is then employed to model, both, the 
continuity of F0 tracks and also the jump probabilities 
between the state spaces of 0, 1 or 2 F0s. The 2-pitch 
hypothesis is introduced to deal with the interference from 
concurrent pitched sounds.  When 2 pitches are output the first 
F0 is labeled as the predominant (voice) pitch [18]. The 
LIWANG system has been previously shown to be superior to 
those of Rynnanen & Klapuri [33], Klapuri [34] and Wu, 
Wang & Brown [35], for detecting the pitch of the singing 
voice in polyphonic audio. It should be noted that, unlike the 
TWMDP system, the LIWANG system also makes a voicing 
decision. 

A. Data Description 

The durations of each of the three datasets used in this 
evaluation are shown in Table I. Here total duration refers to 
the length of the entire audio, and vocal duration refers to the 
duration for which voiced utterances are present. All the audio 
clips in each of the datasets are sampled at 16 kHz with 16-bit 
resolution.  

The first dataset, provided by Li & Wang, consists of the 
same audio examples as used by them for the evaluation of 
their predominant F0 extraction system in [18]. This set 
consists of 25 clips from 10 songs that include both male and 
female singers. 5 of these songs belong to the rock genre and 
the other 5 belong to the country music genre. The clean vocal 
and accompaniment tracks of these songs were extracted from 
karaoke CDs using de-multiplexing software [18].  

The second dataset consists of a subset (13 clips) from the 
MIR-1k database [36]. The accompaniment in the MIR 1-K 
dataset is again extracted from karaoke CDs of Chinese pop 
songs. The time-aligned vocal tracks have been recorded 
separately by amateur singers. These 13 clips have been 
selected based on the presence of strong pitched 
accompanying instruments such as acoustic guitar, piano, 
harmonica and accordion. Again this dataset includes both 
male and female singers. 

Table I. Description and durations of each of the testing datasets 

DATASET DESCRIPTION 
VOCAL 

(SEC) 
TOTAL 

(SEC) 

1 Li  & Wang data 55.4 97.5 

2 
Examples from MIR-1k dataset 

with loud pitched accompaniment 
61.8 98.1 

3 
Examples from MIREX’08 data 

(Indian classical music) 
91.2 99.2 

TOTAL 208.4 294.8 

 

The third dataset consists of excerpts from two North 
Indian classical vocal performances, sung by a male and 
female respectively. These also form part of the MIREX’08 
dataset, which was provided by us. These performances 
consist of the voice, tonal percussion, a drone and a secondary 
melodic instrument called the harmonium, very similar to the 
accordion. The harmonium accompaniment is meant to 
reinforce the melody sung by the singer. Since, in this genre 
of music, each vocal performance is a complete improvisation 
without the presence of a musical score, the instrumentalist 
attempts to follow the singer’s pitch, resulting in frequent F0 
collisions. The individual monophonic tracks of different 
instruments were obtained by ensuring acoustic isolation 
between the instrument-performing artists by spreading them 
out on the same stage with considerable distance between 
them. 

For all datasets, the ground-truth voice pitch was computed 
from the clean vocal tracks using an independent PDA , here 
the YIN PDA [37], known to be very accurate for 
monophonic signals, followed by DP-based post-processing 
and manual correction of octave and voicing errors.  

B. Experimental Setup 

In the following evaluation, we first compare the 
performance of the TWMDP single-F0 tracking melody 
extraction system with the LIWANG system using the first 
dataset. The mixed voice and accompaniment tracks used in 
this experiment, at Signal-to-Accompaniment Ratios (SARs) 
of 10, 5, 0 & -5 dB, were obtained directly from Li & Wang. 
Next we compare the performance of the TWMDP single and 
dual-F0 tracking systems for all three datasets. The second 
and third datasets however are particularly representative of 
the kind of polyphonic scenario where the TWMDP dual-F0 
tracker is expected to show significant improvement. The 
voice and accompaniment in these cases are mixed at SARs 
where both the voice melody and instrument pitch are clearly 
audible. This results in SARs of 10dB and 0 dB for the second 
and third datasets respectively. Almost none of the clips in 
first dataset contain strong pitched accompaniment.  

A fixed set of parameters for the TWMDP system is used 
for the entire experiment (shown in Table II). Also, code 
provided to us by Li & Wang for the LIWANG system is 
compiled without making any modifications. In the interest of 
fairness the same F0 search range (80-500 Hz) as used by the 
LIWANG system is also used by the TWMDP system. Both 
systems provide a pitch estimate every 10 ms. 

The multi-F0 extraction module of the TWMDP system 
(described in Sections II & III) is separately evaluated in 
terms of percentage presence of the ground-truth voice pitches 
in the F0 output candidate list. Percentage presence is defined 
as the percentage of voiced frames that an F0 candidate is 
found within 50 cents of the ground truth voice-F0.  

For the evaluation of the complete single- and dual-F0 
melody extraction systems, the metrics used are pitch 
accuracy (PA) and chroma accuracy (CA) [1]. PA is defined 
as the percentage of voiced frames for which the pitch has 
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been correctly detected i.e. within 50 cents of a ground-truth 
pitch. CA is the same as PA except that octave errors are 
forgiven. Only valid ground-truth values i.e. frames in which 
a voiced utterance is present, are used for evaluation. These 
evaluation metrics are computed with the output of the 
TWMDP single- and dual-F0 tracking systems as well as with 
the output of the LIWANG system. 

For dual-F0 tracking evaluation two sets of metrics are 
computed. The first is a measure of whether the correct 
(vocal) pitch at a given instant is tracked by at least one of the 
two contours, and is called the Either-Or accuracy. This metric 
is an indicator of melodic recovery by the dual-F0 tracking 
system. The second set of metrics is computed on the final 
single contour output after vocal pitch identification. 
Comparison between these two sets of metrics will be 
indicative of the reliability of the system for vocal pitch 
identification. 

Table II. TWMDP System parameters 

PARAMETER VALUE 

Frame length 40 ms 

Hop 10 ms 

F0 search range 80 – 500 Hz 

Upper limit on spectral content 5000 Hz 

Single-F0 TWM param. (p, q, r & ρ) 0.5, 1.4, 0.5 & 0.1 

Dual-F0 TWM param. (p, q, r & ρ) 0.5, 1.4, 0.5 & 0.25 

Std. dev. of smoothness cost (σ) 0.1 

Harmonic relationship threshold 5 cents 

 

Table III. Percentage presence of ground-truth voice- F0 in F0 candidate list 
output by multi-F0 extraction module for each of the three datasets 

DATASET 
PERCENTAGE PRESENCE OF VOICE-F0 (%) 

TOP 5 CANDIDATES TOP 10 CANDIDATES 

1 92.9 95.4 

2 88.5 95.1 

3 90.0 94.1 

Table IV. Pitch accuracies (PA & CA) of TWMDP single- and dual-F0 
tracking systems for all datasets. The percentage improvement over the 
LIWANG system is given in parentheses. 

 
 

TWMDP   (% IMPROVEMENT OVER LIWANG) 

DATASET 
 

SINGLE-F0 
DUAL-F0 

EITHER-OR FINAL  

1 
PA (%) 88.5   (8.3) 89.3   (0.9) 84.1   (2.9) 

CA (%) 90.2   (6.4) 92.0   (1.1) 88.8   (3.9) 

2 
PA (%) 57.0   (24.5) 74.2   (-6.8) 69.1   (50.9) 

CA (%) 61.1   (14.2) 81.2  (-5.3) 74.1   (38.5) 

3 
PA (%) 66.0   (11.3) 85.7  (30.2) 73.9   (24.6) 

CA (%) 66.5   (9.7) 87.1  (18.0) 76.3   (25.9) 

C. Results  

Results for the evaluation of the multi-F0 extraction part of 
the TWMDP system for all three datasets appear in Table III. 
For dataset 1, we have used the 0 dB mix. The percentage 
presence of the voice-F0 is computed in the top 5 and top 10 
candidates respectively, as output by the multi-F0 extraction 
system. It can be seen that the voice-F0 is present in the top 10 
candidates about 95 % of the time thus supporting the choice 
of TWM error for use in the salience function. 
 Figs. 3(a) and 3(b) compare the performance of the 
LIWANG system with the TWMDP single-F0 tracking system 
for different SAR mixes of dataset 1 in terms of pitch and 
chroma accuracy respectively. The TWMDP system is clearly 
superior to the LIWANG system. The relative difference in 
accuracies increases as the SARs worsen. 

Finally, Table IV compares the performance of the 
LIWANG, TWMDP single- and dual-F0 tracking systems. 
Here too we have used the 0 dB mix for dataset 1. The 
percentage improvements of the TWMDP single- and dual-F0 
tracking systems over the LIWANG system (treated as a 
baseline) are provided in parentheses. It should be noted that 
the accuracies of the LIWANG system under the ‘single-F0’ 
and ‘dual-F0 final’ headings are the same, since their vocal 
pitch identification mechanism just labels the first F0 of the 
two output F0s (if any) as the predominant F0. Again here we 
can see that the TWMDP single-F0 accuracies are 
significantly higher than the LIWANG accuracies. For 
datasets 2 & 3, in which a strong pitched accompaniment was 
often present, the use of the dual-F0 approach in the TWMDP 
system results in further significant improvement over the 
single-F0 system.  

D. Discussion 

1) Melodic F0 Recovery for TWMDP 

From the results in Table IV it is observed that for all 
datasets the Either-Or pitch accuracy of the TWMDP dual-F0 
tracking system is higher than that of the single-F0 system 
indicating that some of the melodic contour information, lost 
by the latter, has been recovered. Errors in the output of the 
single-F0 tracking system were observed when some pitched 
accompanying instrument in the polyphony is of comparable 
strength to the singing voice. At these locations the single-F0 
pitch contour very often tracks the pitch of the accompanying 
instrument rather than the singing voice. The dual-F0 tracking 
approach alleviates the bias in the single-F0 system 
measurement cost towards such locally dominant pitched 
accompaniment by including another pitch trajectory in the 
tracking framework, which deals with the instrument F0, 
thereby allowing the continuous tracking of the voice-F0. The 
dual-F0 tracking approach also aids melodic recovery around 
F0 collisions between the voice-F0 and an instrument-F0 
because of the faster resumption of tracking the voice-F0 
around the collision by any one of the two contours in the 
dual-F0 system output 

The Either-Or accuracy for datasets 2 & 3 is significantly 
higher than the single-F0 tracking accuracies but this is not the 
case for dataset 1 where the difference is much smaller. As  
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Fig.3. (a) Pitch and (b) Chroma accuracies for LIWANG and TWMDP Single-
F0 tracking systems for Dataset 1 at SARs of 10, 5, 0 & - 5 dB. 

 
mentioned before the presence of strong pitched 
accompaniment in dataset 1 was rare. This indicates that the 
dual-F0 tracking approach is particularly beneficial for music 
in which strong, pitched accompaniment is present but may 
not provide much added benefit otherwise. 

An example of melodic recovery by the dual-F0 tracking 
approach is shown in Fig. 4. This figure shows the ground 
truth pitch contour (thin) along with the F0-contours output by 
the single-F0 (thick), in Fig. 4(a), and dual-F0 (thick and 
dashed), in Fig. 4(b), tracking systems for an excerpt of an 
audio clip from dataset 2. The F0s are plotted in an octave 
scale using a reference frequency of 110 Hz. The ground truth 
pitch is offset vertically by –0.2 octaves for clarity. It can be 
seen that the single-F0 contour switches over from tracking 
the voice pitch to an instrument pitch (here acoustic guitar) 
around 6 sec. However one of the contours output by the dual-
F0 tracking is able to track the voice-pitch in this region since 
the other contour is actively tracking the guitar pitch in this 
region. 

It is possible that the simultaneous tracking of more than 2 
F0s may lead to even better melodic recovery. However such 
an approach is not expected to result in as significant an 

improvement in voice-pitch tracking accuracy as the 
improvement resulting in the transition from single- to dual-
F0 tracking. This hypothesis is based on our premise that in 
vocal music the voice is already the ‘dominant’ sound source. 
On occasion, an accompanying instrument may be more 
locally dominant than the voice however we feel that the 
chances that two pitched instruments are simultaneously of 
higher salience than the voice are relatively small. 

2) Comparison of TWMDP and LIWANG Algorithms 

From Fig. 3 and Table IV it is seen that the TWMDP 
algorithm consistently, and in most cases significantly, 
outperforms the LIWANG algorithm. The relatively lower 
performance of the LIWANG system could be for various 
reasons. One of these could be their multi-F0 extraction 
module, which applies a correlation-based periodicity analysis 
on an auditory model-based signal representation. Such multi-
F0 extraction methods require that voice harmonics are 
dominant in at least one channel to ensure reliable voice-F0 
detection, though not necessarily high salience. Previous 
studies indicate that such multi-F0 extraction algorithms often 
get confused in two-sound mixtures, especially if both sounds 
have several strong partials in the pass-band [8], [38], and 
may not even detect a weaker sound F0 [17]. Another cause of 
inaccurate pitch output of the LIWANG algorithm is the 
limited frequency resolution, especially at higher pitches, 
caused by the use of integer-valued lags. 
 Although the LIWANG system incorporates a 2-pitch 
hypothesis in its implementation (as described previously) and 
therefore has potential for increased robustness to pitched 
interference, its final performance for datasets 2 & 3, which 
are representative of such accompaniment, is significantly 
lower than that of the TWMDP dual-F0 tracking system. This 
is due to multiple reasons. For dataset 2 the lower final 
accuracy of this system is due to a lack of a sophisticated 
vocal pitch identification stage. The Either-Or accuracies for 
this dataset are higher than those of the TWMDP system 
indicating that the voice pitch is indeed present in one of the 
two output pitches but is not the dominant pitch and so is not 
the final output. For dataset 3 it was observed that the 
LIWANG system tracks an F0 and it’s multiple rather than 
F0s from separate sources, which leads to lower Either-Or and 
final accuracies.  

3) Voice-pitch Identification 

The voice-pitch identification method used in the TWMDP 
dual-F0 tracking system does lead to increased accuracies 
when compared to the single-F0 tracking system. However, 
the final accuracies are still below the Either-Or accuracies. 
This indicates that some errors are being made and there is 
potential for further improvement in voice pitch identification. 
Currently we are using only a single temporal feature for 
voice pitch identification. We could, in the future, additionally 
exploit the temporal smoothness of timbral features such as 
MFCCs. 
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Fig.4. Example of melodic recovery using the dual-F0 tracking approach for 
an excerpt of an audio clip from dataset 2. Ground truth voice-pitch (thin) are 
offset vertically for clarity by  –0.2 octave, (a) single-F0 output (thick) and (b) 
dual-F0 output (thick and dashed). Single-F0 output switches from tracking 
voice to instrument pitch a little before 6 sec. Dual-F0 contours track both, the 
voice and instrument pitch in this region. 

4) Errors due to F0 Collisions 

Collisions between voice and instrument pitches often 
causes the dual-F0 tracking output contours to switch between 
tracking the voice and instrument pitch contours. This is 
explained as follows. Around the collision, one of the 
contours tracks a spurious F0 candidate. If this contour is the 
one that was previously tracking the instrument pitch then a 
contour that was tracking the voice pitch may now switch over 
to tracking the smoother instrument pitch. This will cause 
discontinuities in both the contours which will result in non-
homogenous fragment formation during the voice-pitch 
identification process, which in turn degrades the voice-pitch 
identification performance. This is indicated by the larger 
differences between the Either-Or and final accuracies of the 
dual-F0 tracking system for dataset 3, which is replete with F0 
collisions, as compared to dataset 2. Further, even melodic 
recovery may be negatively affected since the resumption of 
voice-pitch tracking may be delayed after a collision. 

The use of predictive models of F0 contours, similar to 
those used for sinusoidal modeling in polyphony [39], may be 
investigated to ensure F0 continuity of the contours output by 
the dual-F0 tracking system across F0 collisions. To avoid the 
negative effects of spurious candidate tracking at the exact F0 
collision location care would have to be taken to ensure that 
both contours be assigned the same F0 value at that location. 

VI. CONCLUSIONS 

In this work we have investigated voice pitch contour 
extraction in polyphonic music with a focus on improving 
pitch accuracy in the presence of strong pitched 
accompaniment. The major contribution of this paper is the 
combination of some novel and some existing methods in the 

design of an ultimately novel system that demonstrates 
superior voice-pitch tracking accuracy in polyphonic music 
especially in the presence of strong pitched accompaniment. 
The novel aspects involve the separation of the F0 candidate 
selection and salience computation into two distinct steps, the 
joint tracking of two F0 contours by the DP algorithm with a 
harmonic-relationship constraint on F0 pairing and the final 
identification of the voice pitch contour from the dual-F0 
tracking output using a voice-feature that exploits the 
temporal instability (in frequency) of voice harmonics. The 
existing methods involve the use of a main-lobe matching 
method for the identification of sinusoids from the short-time 
magnitude spectrum of a signal and the TWM error as the F0 
candidate salience measure. Both of these methods however 
have not previously been used in the context of melody 
(voice-pitch) extraction from polyphonic music. We have 
justified our choice of these methods both analytically and 
experimentally.  

On evaluation using datasets with strong pitched 
accompaniment, it was found that the single-F0 tracking 
system made pitch tracking errors caused by the output pitch 
contour switching between tracking the voice and instrument 
pitches. The dual-F0 tracking approach, which dynamically 
tracks F0-candidate pairs generated by imposing specific 
harmonic relation-related constraints and then identifies the 
voice-pitch from these pairs, retrieves significant quantities of 
voice pitches. For this same test data it is also shown that the 
performance of the proposed single- and dual-F0 tracking 
algorithms is significantly better than another contemporary 
system specifically designed for detecting the pitch of the 
singing voice in polyphonic music. It is also shown that our 
multi-F0 extraction system reliably detects the voice-F0 in 
polyphony without having to adopt computationally complex 
iterative or joint F0 estimation approaches. Representative 
examples from the evaluation datasets used in this article and 
the corresponding synthesized pitch contours are available at 
http://www.ee.iitb.ac.in/daplab/DualF0TrackingResults   
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