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ABSTRACT

Low rate coders based on the harmonic-noise model are sensitive
to acoustic background noise at low SNRs due to the increase in
parameter errors from the analysis of noisy speech. We investi-
gate the use of spectral subtraction enhancement preprocessing on
the performance of the sinusoidal model based codec both by ob-
jective assessment of parameter errors and the subjective testing
of output speech quality and intelligibility. We find that while for
noisy speech enhancement, improving speech quality is often ac-
companied by a decrease in intelligibility, in the context of coding,
significant combined improvements are obtained when the speech
coder is combined with a speech enhancement preprocessor.

1. INTRODUCTION

Low bit rate codecs for narrowband speech are typically based on
compact signal models with characteristics tuned to clean speech
signals. As a consequence, the presence of acoustic background
noise usually degrades the performance of such speech codecs far
more than would be expected from a consideration of the input
noisy speech signal alone. A low signal-to-noise ratio at the input
can lead to errors in the estimates of model parameters. How these
affect the subjective quality of the reconstructed speech depends to
a great extent on the signal model, the specific parameters and the
parameter estimation algorithm. Low quality speech is stressful
and fatiguing over long listening durations, and is often accompa-
nied by reduced speech intelligibility. It is of interest therefore to
investigate methods to improve the performance in noise of com-
munications systems employing low rate speech codecs.

One obvious approach to improving the performance of the
codec is to apply some form of preprocessing to increase the speech
signal-to-noise ratio at the input to the codec. Such an approach
is simple in that it does not require any modification of the speech
coding algorithm itself. Recently, significant improvements have
been reported when specific speech coders were combined with a
speech enhancement preprocessor. Guilmin et al [1] showed that
Wiener filter-based noise preprocessing significantly improved the
output, in the presence of noise, of a low rate LPC vocoder both in
terms of parameter estimates and subjective quality. Earlier Kang
and Fransen [2] evaluated spectral subtraction enhancement for
LPC-processing of noisy speech and reported dramatic improve-
ments in subjective quality for speech corrupted with a variety of
background noise. Recently a number of different preprocessing
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schemes were examined for use with the Federal standard 2.4 kbps
MELP coder [3]. These studies indicate that the choice and opti-
mization of the speech enhancement preprocessor will be depen-
dent on the speech coding algorithm. Also, it has been noted [4]
that this optimization may actually be quite different from that re-
quired for simple listening (without coding) to noisy speech.

In this work we consider the class of speech coders based
on the sinusoidal model of speech representation. Typically, si-
nusoidal coders operating at low rates have a minimal parameter
model for encoding that is based on a mixed spectral represen-
tation. Bit-rates in the region of 2 kbps have been achieved by
sinusoidal-model based codecs such as the Sinusoidal Transform
Codec and the Multiband Excitation (MBE) codec [5],[6]. The
Harmonic plus Noise Model (HNM), recently popular in speech
synthesis applications [7], is closely related to the MBE and has
the potential to result in even lower bit rates due to a reduction
in transmitted information. The focus of this paper is a study of
the impact of a spectral subtraction-based speech enhancement
method on the performance of a sinusoidal-model based codec
(HNM codec) operating at low SNRs. The performance of such
a system may be expressed in terms of subjective measures such
as quality and intelligibility that reflect how the output signal is
perceived by listeners. The quality attribute is related to the pleas-
antness of the sound or how much effort is required on behalf of
the listeners in order to understand the message. Intelligibility, on
the other hand, is an objective measure of the amount of informa-
tion which can be extracted by listeners from the given signal. A
given signal may be of high quality but low intelligibility, and vice
versa. Hence, the two measures are relatively independent of each
other [8].

In the next section, we review the HNM speech representa-
tion and associated speech analysis method, and discuss its per-
formance for noisy speech. The spectral subtraction method of
speech enhancement is reviewed next followed by a study of its
performance as a preprocessor for the HNM based codec.

2. HNM SPEECH REPRESENTATION AND INFLUENCE
OF ADDITIVE NOISE

In the HNM speech representation (and its precursor, the MBE
model), voiced regions are modeled by harmonics of a fundamen-
tal frequency, and unvoiced regions by spectrally shaped random
noise. The parameters of the MBE speech model consist (for each
analysis frame) of the fundamental frequency, voicing decisions
(one for each group of 3 harmonics) and the harmonic magnitudes
[9]. The voicing information allows the mixing of the harmonic
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spectrum with a random noise spectrum in a frequency dependent
manner. The phase of harmonics is not transmitted but predicted
in most low rate coders. The HNM representation is identical to
the MBE, except that the multiband voicing vector is replaced by
a voicing “cut-off” band number, above which band the frequency
spectrum is taken to be unvoiced. While the quantisation of the
sinusoidal and noise parameters varies greatly among codecs de-
pending on the actual target bit rate, it turns out that the parameter
set, and associated analysis and synthesis procedures, are essen-
tially the same for all low rate sinusoidal coders. We therefore
confine ourselves to studying the effect of noise and of speech pre-
processing on a combination of only the main functional blocks,
namely analysis and synthesis modules (henceforth referred to as
the HNM speech codec). All our simulations are based on the
“white noise” sample file from the SPIB database [10].

2.1. HNM analysis algorithm

Similar to [9], we estimate the excitation and system parameters,
for each input frame of 20 ms duration, which minimize the dis-
tance between the original and synthetic speech spectra by an analysis-
by-synthesis (AbS) method. The error distance is first minimized
over the fundamental frequency and spectral amplitudes assum-
ing all voiced speech. Once these parameters are estimated, voic-
ing decisions are made based on the closeness of fit between the
original and synthetic spectrum for each group of harmonics. A
frequency-dependent threshold is applied to this normalized error
to get a voicing decision error for each band [6]. The multiband
voicing vector is then replaced by a single voicing cut-off band
number obtained by a suitable filtering of the binary decisions.

We see, therefore, that the synthesized speech quality of the
MBE/HNM speech coder depends greatly on the accuracy of the
pitch estimate since both spectral amplitudes and voicing decision
are based on AbS matching of a synthetic spectrum, based on the
estimated pitch, with the input spectrum. Gross pitch errors due to
the selection of pitch period multiples are minimized by a process
that favours lower submultiples of pitch. Dynamic pitch tracking is
used to improve pitch estimation in noise by reducing gross pitch
errors via imposing smoothness constraints on the estimated pitch
across frames. Several past and future frames are searched jointly
in order to find the pitch track with the minimum error [9]. In our
implementation we have used two frame look-back but a single
frame look-ahead in order to keep computational complexity low.

2.2. Influence of noise on pitch and voicing

We studied the influence of additive white noise at various SNRs
on the parameters obtained by HNM analysis of noisy speech. An
8 kHz sampled speech file consisting of the concatenation of 30
sentences uttered by 15 male and 15 female speakers was con-
structed using sentences from the TIMIT database [11] among oth-
ers. This file contained about 30 % silent frames (a typical tele-
phone conversation has 60% silence and non-speech sound) but
otherwise fully tested the system in terms of a wide range of voice
types and content. The SNR is computed according to ITU stan-
dard [12] based on the r.m.s. “active speech level” and r.m.s. noise
level. The active speech level is estimated by leaving out silence
and idle segments but including grammatical/structural pauses (i.e.
those within 300 ms). Reference parameters obtained from the
HNM analysis of the clean speech are used to determine parame-
ter errors that occur after the addition of noise. A pitch estimate

is deemed correct if its value does not differ from the reference by
more than 5% [1].

Figure 1 shows the behaviour of percentage pitch errors in
speech frames for speech in additive white noise at various SNRs.
We see that while the pitch tracker is useful in keeping down pitch
errors at high SNRs, the pitch estimate degrades gradually as SNR
decreases. The increase in pitch errors with decreasing SNR is also
borne out by informal listening. Another aspect of the perceived
speech quality that is evident from informal listening is the change
in the nature of the background noise as reproduced by the codec.
This is an important determinant of overall signal quality. While at
high SNRs, the output sound continues to be a good reproduction
of the input, there is a turning point below which the background
noise is marked by an annoying, intermittent buzziness resulting
in a significant overall quality degradation. On closer examina-
tion, this was found to be due to the occurrence of intermittent
pitch structure from a marked increase of unvoiced-to-voiced er-
rors in the non-speech (noise only) regions. Figure 1 also shows
the percentage of voicing errors in the non-speech frames versus
SNR. We note a sharp increase in % errors as SNR drops below 8
dB. This can be explained by the increased variance of the back-
ground noise at lower SNRs leading to larger fluctuations in the
normalized error between the estimated and synthesized spectra
computed during HNM analysis. That the percentage voicing er-
ror remains more or less constant below the “breakdown” SNR
may be explained by the fact that in the HNM analysis, the error
threshold itself is adapted according to the local signal energy [6].

3. SPECTRAL SUBTRACTION SPEECH
ENHANCEMENT

Spectral subtraction is a family of frequency-domain noise reduc-
tion techniques based on subtracting the estimated short-term am-
plitude spectrum of the noise from the short-term amplitude spec-
trum of noisy speech. Speech enhancement by spectral subtraction
consists essentially of the three processing steps: short-term spec-
tral analysis, noise suppression, and short-term spectral synthesis.
The spectral subtraction method of Berouti et al [13] is used in this
work. It is described by the following equation:
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where � and � are “subtraction factor” and “spectral floor”
respectively, and lie within the range � � ��� and � � � � ����
������,����� and ������ are spectral estimates of clean speech,
noisy speech and the noise respectively. � is varied from frame to
frame as:
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where SNR is the aposteriori speech-to-noise ratio, and �� is the
value of � at SNR = 0dB and � is a chosen constant. The noisy
speech and the noise power spectra are computed using DFTs with
75% overlapping, Hamming windowed frames of duration 30 ms.



The noise estimate is updated during non-speech periods [14]. The
enhanced speech is obtained by synthesis from the modified mag-
nitude spectra combined with the original estimated phases. Eq.
(1) represents a modified version of the basic spectral subtraction
method [15] in that an overestimate (determined by �) of the noise
spectrum is subtracted and the resultant spectral components are
prevented from going below a spectral floor (determined by �).

The enhanced speech is characterized by a speech quality that
can be described as speech distortion plus residual noise. The
residual noise consists of i) the remaining background noise which
has the same perceptual characteristics as the original noise, and ii)
musical tone artifacts due to the presence of random, short duration
peaks in the spectrum [13]. � trades off musical noise for back-
ground noise. Increasing �� leads to increasing oversubtraction of
the noise and therefore reduces both background and musical noise
but at high values, increasing distortion of speech is perceived due
to loss of speech spectral amplitudes.

4. PERFORMANCE EVALUATION OF THE SPECTRAL
SUBTRACTION PREPROCESSOR

In the speech coder preprocessing application of this paper, the
performance of the Spectral Enhancement System (SES) must be
judged by the output speech quality of the speech codec. It is pos-
sible that the SES is good in this context even if its own output
(the enhanced speech) is inferior in some sense to its input. There-
fore subjective tests were carried out to evaluate the performance
of the SES itself, the speech codec alone and the combination of
the two. Three different configurations of the SES were evalu-
ated: E1: �� � �� � � ����	; E2: �� � 	� � � �����; E3:
�� � 
� � � �����. Evaluation using additive white noise was
carried out at 3 low SNRs: -3 dB, 0 dB and 3 dB (SNRs computed
according to [12]). To fully test the system, and to avoid listener
familiarity with a specific noise sample, segments of the noise file
to be added to the sentences were chosen randomly.

4.1. Subjective tests

Subjective tests to evaluate the intelligibility and quality of spec-
trally enhanced noisy speech before and after sinusoidal modeling
were carried out. Intelligibility was measured using the Modified
Rhyme Test [16]. There are 50 sets of 6 single-syllable words
available to test consonant intelligibility. Vowel intelligibility was
included by adding one more set: had, hid, hod, hud, head, heed.
The listener hears one word from each set in the carrier phrase
“Would you write ...” And so on, 51 times. The 6 possible words
are presented on the test sheet. One speaker and six listeners were
used. Percentage correct responses are scored for each listener
and averaged across listeners. Although additional speakers would
have been desirable to get reliable measurements of intelligibil-
ity, in the present study only comparisons are of interest. Quality
rankings were carried out by means of A-B comparison tests [3]for
each SNR using a set of 10 different sentences spoken by 5 male
and 5 female speakers. Quality ranking was relative within each
SNR condition. On clean speech, we observed intelligibility to
be equal to 94% before coding and 91% after coding. Results for
noisy speech appear in Tables 1 and 2.

4.2. Objective evaluation

Parameters are estimated for noisy speech input to the codec with

SNR (dB) Configuration Subjective
tests

Quality Intelligibility
rank (%)

noisy 3 63
3 E2 2 54

E3 1 54
noisy 3 57

0 E1 2 51
E2 1 50

noisy 4 46
-3 E1 3 50

E2 2 54
E3 1 45

Table 1. Quality ranking and % intelligibility for spectral subtrac-
tion system with different configurations

Pitch Voicing
Qual. Int. % % Pitch % Vuv % Vuv

SNR Conf. rank % Pitch multi. err. corr. S.D.
(dB) corr. err. (non-sp.) (sp.) (dB)

frames frames

noisy 3 53 73 7 40 25 6.8
3 E2 2 54 76 3 10 31 5.5

E3 1 54 74 4 3 29 6.1
noisy 3 46 61 11 40 22 7.7

0 E1 2 52 71 4 41 29 4.9
E2 1 50 68 4 15 25 5.7

noisy 4 42 50 13 41 16 8.5
-3 E1 3 51 64 6 43 23 5.2

E2 2 51 60 6 17 20 5.8
E3 1 46 59 6 2 19 6.1

Table 2. Subjective and objective measures for HNM codec
speech output. (Int. : Intelligibility; multi. : Multiple; non-sp.
: Non-speech; sp. : Speech; err. : Error; corr. : Correct; S.D.: Log
Spectral Distortion)

and without enhancement preprocessing. The objective evaluation
was carried out using the set of 30 sentences described in Sec-
tion 2.2. White noise at each of the three SNRs was added to the
sentences. Reference analysis parameters were obtained by HNM
analysis of the clean speech. Parameter errors were determined for
the noisy speech by comparison with the reference parameters of
the corresponding frames.

The error measures were defined in a manner so that they
could be reasonably related to the subjective test measures. The
errors computed are: pitch (% correct), pitch multiples (% errors),
voicing errors (%) in non speech frames, (%) correct voicing (cut-
off frequency deviation � 500 Hz) in speech frames and log spec-
tral distortion (S.D.)(0-3kHz band) in speech frames where there
are no pitch errors. Once again, a “pitch error” occurs only when
the pitch frequency deviation is � 5 %.

5. DISCUSSION AND CONCLUSIONS

Examining only noisy speech data (Table 1) we see that for de-
creasing SNR, the intelligibility of noisy speech decreases first
gradually and then rapidly. This is in line also with the obser-
vations of [17]. We see that the subjective quality improves with
SES processing, with some configurations better than others. For
different SES parameter settings, different types of degradations
are perceived in the SES output. As expected, the musical noise is
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Fig. 1. % Pitch errors in speech frames, and % voicing errors in
non speech frames for HNM coded noisy speech

high in configuration E2 where � and � are low. We see that the
improvement in overall quality is accompanied by a decrease in in-
telligibility except at the very low SNR of -3 dB. At this SNR try-
ing to increase quality further by increasing � (E3), though, leads
to a large reduction in intelligibility due to the increased speech
distortion. Table 2 shows the subjective results of the codec out-
put with and without SES preprocessing. Table 2 indicates that
the subjective quality of noisy speech always improves with SES
processing. Comparing with Table 1, we see that the intelligibil-
ity of noisy speech drops sharply after coding (HNM analysis and
synthesis) at all SNRs. We note that while the codec reduces the
intelligibility of clean speech by only 3 points it degrades the in-
telligibility as well as quality of noisy speech much more. While
preprocessing has little impact on intelligibility at 3 dB SNR, it
improves the intelligibility at lower SNRs of 0 and -3 dB signifi-
cantly.

The objective error measures support the subjective data. That
is, we see from Table 2 that quality rankings correlate well with
pitch errors and background voicing errors; and that intelligibil-
ity losses can be explained by reduced correct percentage voicing
(elimination of an important acoustic cue) in speech frames and
by the increased average S.D. We note that preprocessing with E2
exhibits somewhat high voicing errors in the non-speech frames.
This may be attributed to the presence of musical noise.

In summary, for sinusoidal model based speech codecs at very
low SNRs, increased parameter errors (pitch and voicing) lead to
the gross degradation of speech quality. Speech enhancement pre-
processing based on spectral subtraction is a promising approach
to improving codec performance in white noise. This is reflected
in subjective tests as well as by appropriate error measures applied
to sinusoidal model parameters. Further work is needed to ver-
ify these conclusions for other types of noise background such as
moving vehicle and babble noises.
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