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Abstract
This paper demonstrates the superiority of energy-based 
features derived from the knowledge of predominant-pitch, for 
singing voice detection in polyphonic music over commonly 
used spectral features. However, such energy-based features 
tend to misclassify loud, pitched instruments. To provide 
robustness to such accompaniment we exploit the relative 
instability of the pitch contour of the singing voice by 
attenuating harmonic spectral content belonging to stable-pitch 
instruments, using sinusoidal modeling. The obtained feature 
shows high classification accuracy when applied to north 
Indian classical music data and is also found suitable for 
automatic detection of vocal-instrumental boundaries required 
for smoothing the frame-level classifier decisions. 
Index Terms: audio segmentation, voice detection 

1. Introduction
The automatic identification of audio segments that contain the 
singing voice is required for several Music Information 
Retrieval (MIR) applications such as melody extraction, artist 
identification and voice separation. The last decade has 
witnessed a significant increase in research interest in the 
Singing Voice Detection (SVD) problem. SVD is usually 
viewed as an audio classification problem where features that 
distinguish vocal regions from purely instrumental regions in 
music are fed to a classifier previously trained on manually 
labeled data.  
      Various classifiers, such as Gaussian mixture models 
(GMM) [1], support vector machines (SVM) [2] and multi-
layer perceptrons (MLP) [3]) have been used in previous 
studies related to SVD but, as Berenzweig, Ellis and Lawrence 
note, “the methods of statistical pattern recognition can only 
realize their full power when real-world data are first distilled 
to their most relevant and essential form” [3]. This emphasizes 
the importance of the design and selection of features that 
demonstrate the ability to discriminate between singing voice 
and accompanying instruments. Commonly used features in 
previous SVD related studies, such as MFCCs [3]-[5], attempt 
to capture the timbral aspects of musical sounds. However, it 
is well known that the singing voice occupies a large and 
diverse timbre-space (due to the continuous variation of vocal 
tract characteristics with articulation of different phones and 
also due to variations in vocal tract dimensions across different 
singers), which may not be completely captured by such 
features. In this study, rather than timbre, we focus on the 
energy of the voice, based on the premise that in vocal 
performances, the voice, when present, is the dominant sound 
source. In order to extract the energy of the dominant sound 
source we utilize the pitch estimate as provided by a 
predominant pitch detection algorithm. 
      Singing also differs from several musical instruments in its 
expressivity, which is partially manifested as the instability of 
its pitch contour. In western singing, especially operatic 
singing, voice pitch instability is marked by the widespread 
use of vibrato, a periodic, sinusoidal modulation of phonation 
frequency during sustained notes [6]. Within non-western 

forms of music, specifically Indian classical music, voice pitch 
inflections and ornamentation are extensively used as they 
serve important aesthetic and musicological functions. Even 
when pitch modulations are not intended during singing, 
involuntary pitch instability in the human voice is always 
present (called jitter in speech literature and flutter in singing) 
[7]. On the other hand, the pitch contours of several 
accompanying musical instruments, especially keyed 
instruments, are usually very stable and incapable of 
producing pitch modulation1.  
       There has been limited previous work on applying pitch 
instability to SVD. Shenoy, Wu and Wang [8] exploit pitch 
instability in an indirect way by applying a bank of inverse 
comb filters to suppress the spectral content (harmonics) of 
stable-pitch instruments. The residual signal is then expected 
to be the singing voice since its harmonics will only be 
partially attenuated due to its pitch instability. An adaptive 
threshold, applied to the energy of the residual signal, is used 
to make a frame-level vocal/non-vocal decision. The choice of 
delays used in the design of the inverse comb filters is driven 
by a musical key detection stage prior to filtering. This stage 
extracts the key (used interchangeably with tonic), of the song 
based on a rule-based analysis of detected chords (triads) 
against the chords present in the major and minor keys. Nwe 
and Li [9] made use of a bank of band-pass filters to explicitly 
capture the extent of vibrato within individual harmonics upto 
16 kHz. The centre frequencies of these band-pass filters were 
fixed at the known note frequencies, assuming an equally 
tempered scale with a tuning frequency of 440 Hz. Both of the 
above approaches have been designed specifically for western 
music and are not applicable to non-western forms of music in 
which pitch simultaneity (chords) is rarely present and the 
tonic (tuning frequency) is not standardized. 
      We consider the case of SVD in north Indian classical 
vocal music (NICM). The typical accompaniment consists of 
tonal percussion, a drone and, in some cases, a secondary 
melodic instrument (SMI). The SMI is usually a keyed 
instrument called the harmonium (akin to the accordion) and 
displays significant spectral harmonic content upto around 5 
kHz, similar to the voice. None of the accompanying 
instruments exhibits continuous pitch modulation. 
     In the next section two harmonic energy based features, one 
of which attempts to exploit temporal pitch instability to 
discriminate the singing voice from accompanying 
instruments, are described. Section 3 comparatively evaluates 
the frame-level classification performance of the proposed 
features versus other feature sets (MFCCs, Spectral features 
[10]) using a Gaussian Mixture Model (GMM) classifier. 
Frame-level decisions of a statistical classifier for SVD are 
known to be noisy due to the local variability in the underlying 
signal [4], [5]. Post-processing by smoothing between known 
or detected boundaries typically improves the frame-level 

                                                                 
 
1 While certain wind instruments, such as the piccolo and 
oboe, can produce vibrato and fretless stringed instruments, 
such as the violin, can produce similar pitch modulations as 
the human voice, these are not considered in this study. 
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accuracy significantly. In Section 4 we investigate the 
suitability of the proposed pitch-based features for automatic 
boundary detection. Classification accuracies after post-
processing using detected boundaries are then computed. The 
last section presents conclusions and future study directions.  

2. Pitch-based Feature Extraction 
The computation of the two pitch-based features, described in 
this section, requires the predominant pitch and local spectral 
information. The predominant pitch (voice pitch during sung 
phrases) is estimated by a harmonic-matching melody 
extraction algorithm known to have high accuracy for vocals 
in polyphony including the typical NICM setting [11]. During 
instrumental segments the melody extractor will by-and-large 
output the pitch of the secondary melodic instrument (SMI), if 
present, or the drone, which is continuously present. The 
spectral information refers to the local sinusoid frequencies 
and amplitudes. These are computed by applying a main-lobe 
shape matching criterion to the magnitude spectrum, computed 
using an 8192 point FFT (sampling frequency of 22.05 kHz) 
from a Hamming windowed signal of 40 ms duration, and 
further refined using parabolic interpolation. Both the 
predominant pitch estimate and the spectral information are 
computed at frame intervals of 10 ms. 

2.1. Normalized harmonic energy (NHE) 

NHE is based on detecting the singing voice by the energy of 
the predominant pitch source. First, the harmonic energy (HE), 
defined as the sum of the energies of individual harmonics 
(multiples of the pitch) in the frequency region up to 5 kHz, is 
computed as 

 � � 2

1

N

i
i

HE X f
�

� �  (1) 

where |X[fi]| is the magnitude of the closest detected sinusoid, 
with frequency fi, within a 50 cent neighborhood of the 
expected location of the ith harmonic. N is the total number of 
expected harmonics below 5 kHz for the estimated pitch. A 
value of 5 kHz is used since significant voice harmonics are 
rarely found above this limit. The HE is normalized by its 
maximum attained value over a single musical performance. 

2.2. Sinusoidal track harmonic energy (STHE) 

The NHE feature may fail if a pitched instrument between 
vocal segments has comparable loudness to the voice. Hence 
an additional attribute, namely the temporal instability of voice 
harmonics as compared to the harmonics of a keyed 
instrument, is considered. This is clearly visible in Figure 1(a), 
which displays the spectrogram of a mixture of harmonium 
(present throughout) and an Indian classical vocal phrase 
(starting at 1.2 sec). In order to capture this difference we 
perform the frame-level energy computation after applying a 
modified partial tracking algorithm, originally used for 
sinusoidal modeling [12], and a novel track pruning criterion. 

2.2.1. Predominant pitch based partial tracking 
We adopt an approach similar to Serra’s, in which partial 
tracking is improved by biasing trajectory formation towards 
expected harmonic locations based on a pitch detection stage 
[13]. Specifically, tracks are now indexed by harmonic number 
and only sinusoids in the 50-cent vicinity of local harmonic 
frequency estimates (computed from local predominant pitch) 
can be assigned to the corresponding track. A two semitone 
threshold is applied on track continuation i.e. a track will ‘die’ 
if there does not exist any sinusoid within 2 semitones of the 
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Figure 1: (a) Spectrogram of harmonium-voice mixture 
(b) Sinusoidal tracks before and (c) after SD pruning 
with a 2 Hz threshold. 

 
last tracked frequency. In order to resolve competition 
between multiple sinusoids for being linked to a given track, a 
novel cost function that takes into account the frequency and 
amplitude proximity, as opposed to the originally proposed 
cost function that only uses frequency proximity [12], is then 
used. The amplitude is also given consideration in the tracking 
decision as, without this, the high amplitude peaks, which 
correspond to genuine partials, may be completely missed in 
favor of other relatively low amplitude peaks. Specifically the 
kth sinusoid in frame n with frequency k

n�  and amplitude k
nA  

will be linked to a track, whose last tracked sinusoidal 
frequency and amplitude are 1

m
n� �  and 1

m
nA �  resp., if it 

minimizes a cost (J) given by   

1 1( )* log( / )k m k m
n n n nJ A� � � �� � A   (2) 

      Figure 1(b) displays the result of partial tracking for the 
harmonium-voice mixture, whose spectrogram is shown in 
Figure 1(a). Spurious tracks i.e. shorter than 60 ms, are first 
deleted. Both the (clearly stable) harmonium and voice tracks 
are well formed. However, some tracks formed at collisions 
between the voice and harmonium harmonics can be observed 
to approximately follow the latter.  

2.2.2. Standard deviation based track pruning 
In order to attenuate stable instrument tracks, we use a novel 
track pruning criteria based on standard deviation (SD). We 
would like to prune tracks whose SDs are below some 
threshold (indicating that they belong to a stable-pitch 
instrument). Computing the SD for individual tracks, however, 
assumes that the entire track belongs to a single sound source. 
The intersection of harmonics of different sound sources may 
result in different segments of the same sinusoidal track 
belonging to different sources. In such cases, regions of tracks 
that actually belong to stable-pitch instruments may escape 
pruning since the SD of the entire track may be greater than 
the threshold. To avoid such an occurrence, the SD is 
computed over short non-overlapping track segments of length 
200 ms and only track segments whose SD is below a 
particular threshold (here 2 Hz) are pruned. Figure 1(c) shows 
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the result of this pruning. The harmonium tracks have been 
erased but the majority of the voice tracks survive.  
      From the pruned sinusoidal model of the audio signal, the 
proposed feature, called sinusoidal track harmonic energy 
(STHE), is computed as the frame-level energy of all surviving 
sinusoids. As with NHE, the STHE is normalized by its 
maximum attained value over a single musical performance. 

3. Singing voice detection experiment 
In this section both the NHE and STHE features are evaluated 
against previously used features for SVD within the same 
classification framework on the same set of NICM data. 

3.1. Description of training and testing data 

A typical NICM performance gradually progresses from slow 
to fast tempo resulting in the variation of signal characteristics 
over the performance. With this in mind, the training data 
contains excerpts from the start, middle and end of polyphonic 
recordings of seven different north Indian classical vocal 
performances spanning 23 minutes in total. Three of the 
performers were female and four were male. Accompanying 
instruments consist of the drone, percussion and an SMI.  
      Although the accompanying instruments in NICM are 
usually soft relative to the voice, occasionally the SMI levels 
are found to be comparable to the voice. In order to evaluate 
the features for these two scenarios we use two different 
datasets. The first set (testing dataset 1) comprises of two 
songs, sung by a male and female, which are similar to the 
training dataset. The second dataset (testing dataset 2) contains 
multi-track data, obtained from live Indian classical vocal 
performances, down-mixed such that the signal-to-
accompaniment ratio of the voice relative to the SMI 
(harmonium) is low (5 dB). Ground truth vocal and 
instrumental frames are manually marked in the training and 
testing data. Statistics of the two test datasets are given in 
Table 1. It can be observed that the vocal segments comprise 
about 75-80 % of the total duration. The frame-rate over the 
durations shown in Table 1 is 100/sec. 

3.2. Feature sets 

Four different feature sets were extracted, for comparative 
evaluation, from the previously mentioned audio data. The 
first of these (FS1) comprised the mel-frequency cepstral 
coefficients (MFCCs). The second feature set (FS2) consisted 
of spectral features. The optimal number of MFCC 
coefficients and the best combination of spectral features were 
determined using a 10-fold cross validation (CV) experiment 
on the training data. From this experiment it was found that the 
first 13 MFCC coefficients and a combination of 7 spectral 
features (spectral flatness, spectral roll-off, spectral centroid, 
sub-band flux, spectral spread, sub-band energy and sub-band 
energy ratio) each exhibited the best performance in their 
respective categories. The third and fourth feature sets (FS3 
and FS4) contain the NHE and STHE features respectively.  

3.3. Results

All feature sets extracted from the training data were used to 
train individual GMMs consisting of 4 mixtures per class. This 
number was again arrived at using a 10-fold CV experiment. 
Classification performance is quantified in terms of the vocal 
and instrumental accuracies (recalls) individually. Recall is 
defined as the ratio of the number of correctly detected frames 
to the total number of labeled frames for a particular class. 
 
 
 

Table 1: Statistics of vocal (V) and instrumental (I) 
segments for testing datasets 1 and 2 

Testing  
dataset 1 

Testing  
dataset 2 Statistic 

V I V I 
Number 75 80 39 43 

Avg. duration (sec) 4.4 1.3 5.6 1.2 
Total duration (sec) 326.0 106.5 219.9 50.4 

Table 2: Frame-level vocal (V) and instrumental (I) 
classification results for testing datasets 1 and 2 for 
all feature sets (FS1-FS4) 

Testing dataset 1 Testing dataset 2 Feature 
set V (%) I (%) V (%) I (%) 
FS1 92.17 56.14 91.61 40.91 
FS2 92.38 66.29 87.53 57.40 
FS3 89.21 92.09 86.60 45.22 
FS4 83.45 90.24 85.62 86.34 

Table 3: Vocal (V) and instrumental (I) classification 
results after post-processing for testing datasets 1 and 
2 for all feature sets (FS1-FS4) 

Testing dataset 1 Testing dataset 2 Feature 
set V (%) I (%) V (%) I (%) 
FS1 97.31 60.70 98.52 31.19 
FS2 96.59 69.31 93.44 53.65 
FS3 93.41 96.08 92.18 41.24 
FS4 89.11 93.63 91.28 81.41 

 
 
      Results comparing the performance of each of the feature 
sets, in terms of frame-level classification accuracies for 
testing datasets 1 and 2 are presented in Table 2. For testing 
dataset 1, FS3 and FS4 show very high instrument 
classification accuracies and significantly outperform FS1 and 
FS2. FS4 shows a significantly lower vocal accuracy than FS1 
– FS3. This can be attributed to the low frequency harmonics 
of some steady pitch vocal sounds, which contain most of the 
energy, but do not survive the SD-based pruning. This could 
lead to misclassification of these segments as instrumental. For 
testing dataset 2, the instrumental classification accuracy of 
FS4 is far superior to all the other feature sets. FS3, which 
showed high values for instrument accuracy for testing dataset 
1, now exhibits degraded performance. This is attributed to the 
strong presence of the harmonium. 
      As mentioned before, the performance of both NHE and 
STHE requires that the voice pitch be detected by the melody 
extractor. However, it can be argued that the voice is not 
always the pre-dominant sound source. This, in fact, often 
occurs for testing dataset 2, when the melody extractor output 
the SMI pitch even though the voice is simultaneously present. 
In this case we computed these features using the ground truth 
predominant pitches obtained from the clean voice and 
harmonium signals (available in the multi-track data). Recent 
enhancements to the melody extractor [14] have shown 
significantly improved robustness to co-occurring SMI, but are 
yet to be incorporated in the above feature extraction system.  
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4. Post-processing
In this section we investigate whether smoothing the frame-
level classifier decisions over homogenous segments of audio 
will result in an improvement in classification accuracy. The 
boundaries of these segments are automatically detected by the 
use of the STHE feature in an audio segmentation framework. 

4.1. Boundary detection algorithm 

We use the framework for audio novelty detection as proposed 
by Foote [15]. The goal of this method is to generate a novelty 
function, which will have strong peaks at actual boundaries. 
The inputs to the novelty function generator will typically be 
features, which show sharp, but relatively stable, changes at 
V�I boundary locations. From these a similarity matrix, a 2-
dimensional representation of how similar each frame is to 
every other frame, is computed. The novelty function is 
generated by convolving the similarity matrix with a 2-d 
Gaussian difference kernel along the diagonal. Peaks in the 
novelty function above a global threshold correspond to 
significant changes in the audio content and are picked as 
potential segment boundaries. We then prune detected 
boundaries using a minimum segment duration criterion i.e. if 
two boundaries are closer than the duration threshold then the 
one with the lower novelty score is discarded. 
      For the input to the boundary detector, we consider only 
the STHE feature since the frame-level classification results of 
Section 3.3 show that it demonstrates high classification 
accuracy even in the presence of strong SMI. The optimal 
values i.e. ones that give the best trade-off between true 
boundaries and false alarms, of the difference kernel duration, 
the novelty function threshold and the min. segment duration 
are empirically found to be 500 ms, 0.15 and 200 ms resp.  

4.2. Results

The performance of the boundary detector is evaluated based 
on whether it helps improve classification accuracy of any of 
the feature sets. Grouping of frame-level classification labels 
can be done either by combining log likelihoods or majority 
voting [5]. We have found that both methods lead to very 
similar results and have only shown results for the majority 
voting process here. Table 3 shows the classification 
accuracies after grouping frame-level labels over automatically 
detected boundaries for testing datasets 1 and 2.  
      For testing data set 1, it can be observed that the vocal and 
instrumental classification accuracies of all feature sets show a 
significant increase after post-processing. For testing dataset 2 
all feature sets show a significant increase in vocal 
classification accuracy after grouping but a drop in 
instrumental accuracy.  

5. Conclusions
In this study, two predominant pitch-based features (NHE and 
STHE) were evaluated against commonly used features 
(MFCCs and spectral features) for singing voice detection in 
north Indian classical music (NICM). The STHE specifically 
attempts to use the temporal characteristic of vocal pitch 
instability to discriminate between the voice and keyed (stable-
pitch) accompanying instruments. The NHE and STHE were 
found to outperform the local spectral features when evaluated 
on typical NICM performances. Further, the STHE was also 
found to be robust to the presence of a loud secondary melodic 
instrument with spectral content similar to the voice. The 
STHE feature was then used in an automatic audio novelty 
detection framework to generate segment boundaries for use in 

smoothing the frame-level classification labels to achieve high 
vocal detection accuracies with low false alarm rates. 
     It is observed that the gains in classification accuracy with 
the pitch-based energy features come solely from better 
performance on instrument recall. In fact they appear to do 
slightly worse on voice recall. Further it can also be argued 
that the voice is not always the dominant sound source, which 
questions the use of purely energy features. It was also 
observed, in separate experiments not reported here, that 
grouping the frame-level classification decisions, using the 
STHE feature, over manually marked boundaries results in 
near perfect vocal and instrumental classification accuracies. 
This indicates that the frame-level classification is indeed 
reliable and there is scope for improvement in the boundary 
detection algorithm. Consequently we intend to investigate a 
hybrid approach, where timbral and energy features are 
suitably combined, for classification and boundary detection. 
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