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Abstract. Retrieval performance in query-by-humming (QBH) tegss
depends crucially on the accurate note segmentatiwh labeling of user
queries. To facilitate note segmentation, quenjgmgften restricted to the
easily detected syllable “ta”, which is not necefsathe syllable most
preferred by users. In this work, new acoustic Uest based on the signal
energy distribution as obtained from the singingception and production
points of view are investigated. Performance evaloa on a manually labeled
database of syllabic humming show that a speciid-mand energy combined
with a biphasic detection function achieves highraxi detection and low false
alarm rates on the sonorant consonant syllablds/ldaand /na/. The resulting
onset detector is incorporated in the signal-psingsfront-end of an available
QBH system (hitherto constrained to ta-syllablerigseonly). QBH retrieval
performance results are reported on a large dashsser queries.

Keywords: query-by-humming syllabic humming, music transcription, note
onset detection, note segmentation.

1 Introduction

Query-by-humming (QBH) is an important example ofdia content retrieval by
acoustic query. Users query the system by hummimgy @r more phrases of the
desired song, typically in a neutral syllable (élg”). The use of a neutral syllable
facilitates the singing of the tune with typicalbne syllable per note. Important
acoustic features of the query are those relatébetdune or melodic pitch contour.
The signal processing front-end of the QBH systenscribes the vocal query into a
sequence of note pitches and durations (inter-ansetvals) to be matched against
previously stored transcriptions of database mekdi

An important sub-task of query transcription is enobnset detection. The
performance of note onset detection influences ¢sequent note labeling
processes, directly impacting the retrieval perfmoe of the QBH system. In fact,
Prechelt and Typke [1] state that the most diffiqubblem is segmenting notes, and
recommend that the user mark each note with a bheek. To facilitate accurate note
segmentation, several recent QBH system implenientahave restricted the user
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query syllable to /ta/ or similar unvoiced phong [2], [3], [4]. The articulation of
the unvoiced plosive /ta/ involves a complete dlesof the oral tract followed by a
burst release before the onset of voicing for thecseding vowel. The silence
interval during the closure clearly demarcates s)atethe signal amplitude envelope.
While this reduces the burden on the signal pracgdsont-end of the QBH system,
surveys on user behavior [5] have shown that comymaeferred syllables include
lla/, Ina/ and /da/, which typically do not exhibibrupt changes in signal power for
continuous singing.

While note onset detection from musical audio dghas attracted much research
interest recently, it turns out that no single rodtltan address the entire variety of
audio signals due to the intrinsically variableunatof the onset of sound events [6],
[7]. In particular, not much work has been donelieitly on vocal onsets. In the
present work, we adopt the approach of detectirg@bs in acoustic features related
to syllable articulation. The hummed signal isanaatenation of sung consonants
and vowels making up the sequence of syllable-neitssthe consonants marking the
note transitions and the vowel onsets aligning hth rhythmic beat. There has been
much research directed at segmenting continuouschpéto isolated syllables,
typically as a by-product of statistical speechogmition. However knowledge-based
approaches such as the use of acoustic-phonetiordsamay be expected to be
adequate for the segmentation of syllabic hummipgrtafrom being far less
computationally demanding. They could also be etque¢o be more robust across
singers and styles. In any case, the differencesee® speech and singing, in terms
of variety of articulation and intonation, warranseparate study on the usefulness of
these approaches to sung syllable segmentationrdamons described earlier, we
restrict our study to the syllables /da/, /la/ dnd/. Such sonorant consonants are
acoustically most similar to vowels, among the mowel phonemes, and therefore
among the most difficult to segment. Apart from thieove “speech production”
oriented viewpoint, we also consider a perceptivenbed feature, namely the
loudness.

Several recent articles propose tracking of sigmargy in separate frequency
bands, typically motivated by auditory filter bankand-level energy changes (or
loudness changes) are then heuristically combioetktected note onsets [7], [8]. In
the present work, this approach is adapted to pleeific problem of vocal onsets
based on the knowledge of syllable articulationtuess. Further, the note onset
detection method is incorporated into the signalcessing front-end of an existing
(ta-query constrained) QBH system for Indian filmigic [2], and results on retrieval
performance are presented.

It may be remarked that the use of pitch tracksatss been widely considered for
note segmentation. Problems, however, include theereation that passing notes
often do not stand out in the pitch track but ratlemly because of syllable
articulation. Apart from this, there can be intethggtch modulation during the note
(common, for example, in Indian music styles). Timbust detection of note
boundaries from alternate timbre (spectral) infdioma would actually help to
increase the accuracy of note labeling for melodgresentation by the proper
averaging of pitch estimates obtained across thedwration.

The next section presents energy-based methodsylfabic note onset detection.
Sec. 3 describes the experimental evaluation ofotieet detection methods with
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respect to manually labeled onsets. The best peirfigr onset detector is then
incorporated in the transcription module of TANSEM, available QBH system, and
retrieval results are reported in Section 4. Fpadl discussion of the results is
presented in Sec. 5 followed by the conclusiorSen. 6.

2 Detection of Syllabic Note Onsets

The detection of syllabic note onsets involves ifigda measure that reflects the
acoustic signal change associated with a vowel tpress®l reliably detecting and
localizing rapid changes. Acoustic features aremded at fixed time intervals from
the input signal, and the change occurring in gture at a given time instant is
measured by a detection function computed from rapesison of feature values in
the neighborhood. Finally the locations of peaksthe detection function whose
amplitudes cross a threshold are used to signattdet note onset instants.

Acoustic features could range from simple signargy to the complete short-
term signal spectrum. Motivated by auditory pericept changes in perceived
loudness have been used to detect note onsets A8]different approach is to
explicitly exploit the characteristics of syllaiemming and apply acoustic-phonetic
knowledge related to speech production to its seggtien. Apart from finding a
measure that captures signal characteristics & onsets, it is important to find
methods to reliably detect prominent changes acalilee them accurately in time.

2.1 Acoustic Features

Since the syllables do not display obvious charigethe signal power envelope,
simple energy based detection is not expected t& ¥ap onset detection. Perceived
loudness, on the other hand, is influenced by signargy as well as the signal
spectrum. We compare the use of the loudness &atith an acoustic-phonetic
knowledge motivatedband energy to distinguish consonants from vow8isth
energy and loudness are derived from the short-Emeier spectrum, Xk], for the
frame n. The feature sequence is extracted at 10 ms aigefrom the short-term
spectral analysis of the input signal using a 2Hasyming window.

Different loudness models have been applied foe motset detection. These are
essentially equivalent to obtaining bark-band fik@ergies from the signal spectrum,
and applying to the energies the equal loudnes®gogorrection [9],[10]. Next the
band-level specific loudness in sones is derivesinguthe nonlinear conversion of
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L.[i] is the perceived loudness in the critical banénd 0ji] is the loudness in
phons in band ifor the frame n . For each band the loudness @ampfs limited to be
within the range 2-90 dB. The total loudness isamlgtd by summing the,[i], the
specific loudness in each band, as in Eq. (2). fbtel loudness is treated as the
acoustic feature for note detection.

= 3 bl @

An alternate approach is speech production basieding acoustic features to
distinguish sonorant consonants from vowels has b@eimportant research problem
in speech science. Hermes [11] proposed vowel odsé&tction in speech by
measuring increases in “vowel strength” in termstlmé amplitude of spectral
envelope peaks in the mid-frequency region (500029z) which typically spans the
first two formants of the vowel. The abrupt vocehct motion leading from the
consonant into the vowel involves the rapid movenanformants leading to an
abrupt increase in amplitude in regions of the tstesm spectrum. In the work of
Espy-Wilson [12], non-syllabic speech sounds (i@nsonants) have been
distinguished from syllabic (i.e. vowels) by thesabce of significant energy in the
frequency bands (640,2800 Hz) and (2000, 3000 H#. band energies are found to
take on low values specifically for semi-vowelssala and voiced stops. Of course,
although the difference in mid-frequency energymeein the consonants and vowels
is, on the average, much greater than the energggehwithin vowels, sometimes
there is considerable overlap between their digiohs. Motivated by the above
acoustic-phonetic studies, the mid-freque@nd energy is used as an acoustic
feature to distinguish consonants from vowels. e Bab-band energy is calculated
from the STFT ( X[k] ) of the iI" frame of data as given by

N/2 )
E[n]:kzl(|xn[k]|w[k]) . €)

where WI[K] is a band-limiting filter response withity gain in the frequency
region corresponding to (640, 2800 Hz) and falloffylinearly to zero gain over a
frequency region of 100 Hz on either sitle.is the DFT size. The logarithmic energy
is considered as the feature as given by

F[n] =10logo( { 1) . 4

The use of thdog ensures that relative changes are consideredr rdthe the
absolute changes in energy [8]. This normalizatisnconsistent with hearing
perception, where the perceived change in inteissjtyoportional to the intensity.

2.2 Detection Functions

Temporal changes in the feature sequence are éstini@ a detection function (DF)
based on the computed change or difference in¢bastic feature with time. Peaks
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(local maxima) of the DF would then occur duringnitions at the instants of most
rapid change. Ideally the DF should capture thesapoant-vowel transitions while
minimizing spurious peaks that may arise due toaimbwel and intra-consonantal
fluctuations in the features. Another desirable pprty is the accurate time-
localization of the onsets. A DF that incorporatese smoothing before differencing
will ensure that localized fluctuations in the f@&t occurring within phone regions
are suppressed to an extent but also lead to taeléning and lowering of valid onset
peaks. The functional form of the DF dictates ¢raff achieved between the
accuracy of detection of valid onsets and the sggion of false alarms. Widely
used is the rectified first-difference function givby
- -1]) <
DFIN] :{ . if (FIn] = FIn-1]) 0. -

F[n] - Fn-1], else

While the above detection functions consider dhly pair of adjacent frames,
multi-frame smoothing and differencing has the pti& of being less susceptible to
rapid local fluctuations in the feature that ar¢ mdated to the larger note transition.
A suitable function, motivated by the short-ternajizhtion characteristic of human
hearing, is the biphasic filter [11]. Fig.1 shoagplot of the biphasic filter impulse
response (comprised of Gaussian shaped componémdgferent widths). In the
present work, we also consider a time-scaled (factor of 2) version of the biphasic
function to obtain the more localized “compressigthésic” of Fig.1.
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Fig. 1. Biphasic filter function with parameters from B¢) of [11] shown with dots; with
modified parameters leading to the compressed fehown with crosses. The discrete points
indicate the 10 ms frame-level values.

The selected discrete-time biphasic filter functisnconvolved with the feature
sequence to obtain the detection function (DF),ctvhis then searched for local
maxima. A suitable thresholding of the peak amgétiis then used to estimate the
valid note onsets. Phrase boundaries give risavalid detections due to the silence
to consonant transition, which are duly suppreskgdpost-processing based on
silence detection.
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In the next section, we evaluate the onset deteqg@formance of the loudness
and sub-band energy features in combination wiith ez the proposed detection
functions, namely, the first difference and thehiigic filter functions.

3 Evaluation of Note Onset Detection

3.1 Data Collection and Preparation

Humming for each syllable type (/la/, /da/, andYweas recorded from six singers (of
which only three had had formal musical trainingere were 47 song segments in
each syllable providing a total of 2513 notes. benming was recorded with a good
quality microphone and PC sound card at 22.05 kihiapting frequency with 16-bit
resolution. The songs were selected from populieinmovie music [2]. The singers
were given no specific instructions except to huomf memory the song phrases,
whose lyrics were provided if needed, in each efdyllables /da/, /la/, and /na/.

The songs included a variety of melody and rhyttatigons. Each singer utilized
at least one complete octave of his/her pitch raktmual labeling of the onsets was
carried out using the gating technique [11], byeliéng to segments of duration
increasing in 5 ms steps until an onset is justeieed. A vowel onset is then marked
at the center of the data frame containing the fingjor peak in the pitch cycle,
immediately after the perceived onset. In totareéheere over 2500 valid onsets in
the recorded data distributed equally across thebdys Selected audio samples are
available at [13].

3.2 Experiment

For a given combination of feature and detectiancfion, the note onset detection
performance was obtained by an examination ohallpeaks of the DF as returned by
the algorithm after classifying these into validdamvalid detections based on
comparison with manually marked onset instantseAkps treated as a valid onset if
it is the strongest peak within +/- 20 ms (2 frajnefsa manually marked note onset.
Statistical distributions of the amplitudes of tfaid onsets and invalid onsets (i.e. all
remaining DF peaks) were obtained. Performancees{#Y in terms of percentage of
true positives (i.e. correct onset detections ingato the total number of actual
onsets) versus percentage of false positives direneous detections relative to the
number of detected onsets) were traced out bynguyie threshold in steps over a
wide range.

Fig. 2. shows performance curves in the portiothefoperating region of practical
importance to a QBH system. A curve that is highad more towards the left
indicates superior performance in terms of theetrafl between hit rate and false
alarms. For each curve, the optimal operating péitdsest point to the top-left
corner) is noted, and the results are displayebBaisle 1. The full-band energy/first
difference curve lies to the far right in the deégit region. We see that the
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loudnessffirst difference does significantly bettétowever the sub-band energy
feature is significantly superior to either indiogt that the selected mid-frequency
band energy is indeed a good differentiator of uswand sonorant consonants in
sung syllables, consistent with its behavior inegbesegmentation [12]. The biphasic
filter function and its compressed form both effecttemporal smoothing of the
feature which is expected to level out highly lazadl perturbations in the detection
function as might occur in the intra-phone regiofi$is explains the superior
performance of the biphasic filter based detectieer the first difference in terms of
reduced false positives for a given percentageuefpositives.
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Fig.2. Performance comparison of onset detection metfadthe data set comprising of 2513
note onsets.

The biphasic filter based method though falls sleérachieving full detection at
any threshold due to the flattening out of poténtimv peaks corresponding to
genuine onsets. The better overall performancéeitbmpressed biphasic filter over
the unmodified form can be explained by the constatadurations for /I/ and /n/
which average around 100 ms but can be as low as20n the fast (i.e. short
duration) notes. The shorter negative lobe widtlthef compressed biphasic function
better preserves the consonantal feature evolittisach cases.
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Table 1 . Onset detection results. Columns show the ptagenof true positives (TP%) and
percentage of false positives (FP%) for each methiatdined at its optimal fixed threshold
(/da/ + Nla/ + Inal mixture: 2513 onsets)

Method TP% FP%
Full-band energy first difference 77.4 29.0
Loudness with first difference 87.2 11.6
Sub-band energy first difference 97.1 4.8
Sub-band energy biphasic filter 97.5 1.9
Loudness with biphasic filter 91.9 6.2
Sub-band energy compressed biphasic filter 98.9 15
Loudness with compressed biphasic filter 394. 5.8

4 Retrieval Performancein QBH System

The evaluation results of the last section indich## the sub-band energy combined
with the compressed biphasic detection functiorieaes the best performance of the
methods considered. Accordingly, this method wedscsed for note onset detection
in the signal processing front-end of TANSEN, a Q8ldtem, hitherto constrained to
accepting only ta-syllabic queries [2]. In thigtsen, we provide a brief overview of
TANSEN followed by the evaluation of the modifiegstem on a large database of
user queries.

4.1 TANSEN System Description

TANSEN is a QBH system for Hindi and regional filmusic, a genre that enjoys a
very wide appeal in India. Melody is the most distive element of such music, with
the tune of the song’s signature phrases beingntbst remembered attribute.
TANSEN represents the melody by a note-pitch irlestring, and then uses a string
matching algorithm to retrieve the best matchedlulge songs. The pitch interval
representation is invariant to key transpositiongd dherefore suitable for melody
representation [4].

A signal-processing front end locates note onsedsadfsets and computes a pitch
value in cents for each note thus extracted. Nogetodetection is accomplished by
the sub-band energy/biphasic detection functiorsef. 3. Note offsets are located
between every two note onsets (and at the endpbfase) based on the thresholding
of negative peaks in the detection function. A npiteh is assigned based on the
weighted averaging of pitch estimates computed btaadard correlation-based pitch
detection algorithm at 10 ms intervals across #gmented note duration. The note
pitch frequency values are then used to derivesélggience of pitch intervals between
every two consecutive notes. Pitch intervals arantised using a non-uniform
guantisation scheme designed to obtain a good-tideetween robustness to user
errors and retrieval accuracy. A normalized edgtatice based string matching
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algorithm with a suitably defined cost function fosertion, deletion and substitution
errors is used to retrieve a ranked list of matcbaags from the melody database.
Rhythm information in the form of note inter-onskfrations is not utilized currently.
At the present time, the TANSEN system databaséomn300 songs (selected from
popular Indian movie music) [13].

4.2 Retrieval Performance

A large data set of recorded user queries wasrgtxte This data set included the
hummed songs data described in Sec. 3.1 (47 sgmngeses of 2-3 phrases each) in
each of the syllables /la,na,da/ . The songs welected from among the 300 songs
of the reference database. In addition there wé&4 Igueries hummed using the
syllable /ta/ collected from 10 users in total. Tke#-query set covered all the 300
reference songs such that there were 3 or moreieguper reference song. The
humming was recorded with a good quality microphand PC sound card at 22.05
kHz sampling frequency with 16-bit resolution. Téiegers were given no specific
instructions except to hum from memory the songagds, whose lyrics were
provided if needed, in each of the syllables /da/, and /na/. The songs included a
variety of melody and rhythm patterns.

A standard information retrieval performance meastlte Mean Reciprocal Rank
(MRR) [14] was used to evaluate the performancthefQBH system with the new
note segmentation module incorporated. The MRRaghendividual query is the
reciprocal of the rank at which the correct respoissreturned. The mean of the
reciprocal ranks across the set of queries is défas the MRR for the system as
given below.

N 1
Zizlﬁ ©6)
MRR=— " .
N

wherer; denotes the"i position in the ranked list where the intendedrguwecurs
andN is the size of the query set. In case multiplengeare retrieved with identical
string match distances from the user query, anageerank is assigned to each of the
songs. For example, if 3 queries happen to be aimmim edit distance from the
reference, all three are assigned rank “2” anchthe assigned rank in the list is then
“4”. This ensures that the MRR captures the agbuetision-recall characteristics of
the system. Table 2 shows the MRR results obtained.

Table 2. QBH system MRR results across the different silanmming

Syllable #queries MRR % intop 10 ranks %rank 1
lta/ 1194 0.6044 75.5 50.6
/da/ 47 0.6229 745 53.2
Na/ 47 0.6447 80.9 55.3
/na/ 47 0.6469 76.6 59.6

Overall 1335 0.6079 75.7 51.2
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5 Discussion

We see from Table 2 that the intended query isadrnik top place more often than
not. We also note that the performance of the systéth the sonorant syllable
queries (/la/, /da/ and /na/) compares well witht thn the easy-to-segment /ta/ queries
indicating that proposed note onset detection dhguris robust.

Inaccuracies in QBH retrieval performance can afisen a number of possible
sources. Imperfect singing on the part of the wser cause notes to be missed or
inserted in the query. Note pitches may be off fitbeir intended values due to out-
of-tune singing or due to non-steady pitch overdbeation of the note. Even with a
perfectly rendered query, transcription errors dowarise from errors in note
segmentation. Missed detections of note onsetsfasd alarms lead to deletion and
insertion errors in the note pitch interval stridgpart from this, note pitch values
following a deleted note would be perturbed. From amalysis of the errors in
retrieval, it was observed that over 90% of therlyoranked queries were indeed
rendered inaccurately by the user in terms of ndédetion/insertion or gross
mismatches in note pitch. Of the remaining poordynked queries, most were
characterized by transcription errors arising fromproper note segmentation. We
next discuss the note onset detection errors @snelot from the experiments of Sec.
3.

Instances of missed detections as well as the falsiives obtained at the optimal
operating point (Table 2) were examined for the -lsabd energy-compressed
biphasic filter method. Missed detections werentbto be more likely to occur when
the signal intensity was low. Soft singing, witls iteduced vocal effort, leads to a
disproportionate drop in the mid-band energy ofwberel. Another source of missed
detections is the short duration notes arising friempo/rhythm constraints. The
singer stops short of fully articulating the vovehding to a drop in the difference of
mid-band energy at the consonant-vowel boundargthéy when the consonant (/I/
or /nf) is articulated slowly and clearly, as migjaippen when singing at a very slow
tempo, the feature discontinuity at the vowel onsédess sharp. This is similar to the
case of slowly uttered speech in which the tonglease after apical contact is slow
[12]. On the other hand, syllables that are st@sslue to coincidence with an
accented note in the musical score, show the sstagpectral discontinuities at the
vowel onset. This may be attributed to the rapidnémt transitions linked with the
firm apical contact and subsequent rapid releasth@ftongue tip. False positives
arise from rapid spectral changes occurring withdiwel or consonant segments
(intra-phone regions). These are observed to bedirwith intonation variations in
the singing such as loudness increases or strdof piodulations, which tend to
cause fluctuations in overall intensity, affectimdso the mid-frequency region.
Across the syllables, false positives were morelyiko arise from /da/ due to the
larger intra-consonantal variations in sub-bandgnéor /d/. This is explained by the
rapidly changing energy levels associated withttaasition through the stop closure
of the phone /d/.
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6 Conclusion

We have considered the problem of note onset dateat the context of user
query transcription for QBH systems where the epasedre typically rendered using
neutral syllables. The detection of syllabic nateeis involves finding a measure that
reflects the acoustic signal change associatedthtitonsonant-vowel transition, and
reliably detecting and localizing rapid changes. Tacilitate accurate note
segmentation, several recent QBH systems restrécuser queries to be sung in the
syllable “ta”, the acoustic characteristics of whidearly demarcate note boundaries
by means of a steep fall in signal energy. In gk, acoustic features based on the
signal energy distribution as obtained from theception and production points of
view were considered. Performance evaluations onaaually labeled database of
syllabic humming show that a particular mid-baneérgg combined with a biphasic
detection function achieves high correct detectod low false alarm rates on the
sonorant consonant syllables /da/, /la/ and /n&k Tesulting onset detector is
incorporated in the signal-processing front-endiofavailable QBH system (hitherto
constrained to ta-syllable queries only). QBH eafai performance results on a large
dataset of user queries confirm the efficiencyhefote segmentation algorithm.
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