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Abstract. Retrieval performance in query-by-humming (QBH) systems 
depends crucially on the accurate note segmentation and labeling of user 
queries.  To facilitate note segmentation, querying is often restricted to the 
easily detected syllable “ta”, which is not necessarily the syllable most 
preferred by users. In this work, new acoustic features based on the signal 
energy distribution as obtained from the singing perception and production 
points of view are investigated. Performance evaluations on a manually labeled 
database of syllabic humming show that a specific mid-band energy combined 
with a biphasic detection function achieves high correct detection and low false 
alarm rates on the sonorant consonant syllables /da/, /la/ and /na/. The resulting 
onset detector is incorporated in the signal-processing front-end of an available 
QBH system (hitherto constrained to ta-syllable queries only). QBH retrieval 
performance results are reported on a large dataset of user queries.  

Keywords: query-by-humming, syllabic humming, music transcription, note 
onset detection, note segmentation. 

1   Introduction 

Query-by-humming (QBH) is an important example of audio content retrieval by 
acoustic query. Users query the system by humming one or more phrases of the 
desired song, typically in a neutral syllable (e.g. “la”).   The use of a neutral syllable 
facilitates the singing of the tune with typically one syllable per note. Important 
acoustic features of the query are those related to the tune or melodic pitch contour. 
The signal processing front-end of the QBH system transcribes the vocal query into a 
sequence of note pitches and durations (inter-onset intervals) to be matched against 
previously stored transcriptions of database melodies.  

An important sub-task of query transcription is note onset detection. The 
performance of note onset detection influences the subsequent note labeling 
processes, directly impacting the retrieval performance of the QBH system. In fact, 
Prechelt and Typke [1] state that the most difficult problem is segmenting notes, and 
recommend that the user mark each note with a short break. To facilitate accurate note 
segmentation, several recent QBH system implementations have restricted the user 
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query syllable to /ta/ or similar unvoiced phone [1], [2], [3], [4].  The articulation of 
the unvoiced plosive /ta/ involves a complete closure of the oral tract followed by a 
burst release before the onset of voicing for the succeeding vowel. The silence 
interval during the closure clearly demarcates notes in the signal amplitude envelope.  
While this reduces the burden on the signal processing front-end of the QBH system, 
surveys on user behavior [5] have shown that commonly preferred syllables include 
/la/, /na/ and /da/, which typically do not exhibit abrupt changes in signal power for 
continuous singing.  

While note onset detection from musical audio signals has attracted much research 
interest recently, it turns out that no single method can address the entire variety of 
audio signals due to the intrinsically variable nature of the onset of sound events [6], 
[7]. In particular, not much work has been done explicitly on vocal onsets. In the 
present work, we adopt the approach of detecting changes in acoustic features related 
to syllable articulation.  The hummed signal is a concatenation of sung consonants 
and vowels making up the sequence of syllable-notes with the consonants marking the 
note transitions and the vowel onsets aligning with the rhythmic beat. There has been 
much research directed at segmenting continuous speech into isolated syllables, 
typically as a by-product of statistical speech recognition. However knowledge-based 
approaches such as the use of acoustic-phonetic features may be expected to be 
adequate for the segmentation of syllabic humming apart from being far less 
computationally demanding. They could also be expected to be more robust across 
singers and styles. In any case, the differences between speech and singing, in terms 
of variety of articulation and intonation, warrant a separate study on the usefulness of 
these approaches to sung syllable segmentation. For reasons described earlier, we 
restrict our study to the syllables /da/, /la/ and /na/. Such sonorant consonants are 
acoustically most similar to vowels, among the non-vowel phonemes, and therefore 
among the most difficult to segment. Apart from the above “speech production” 
oriented viewpoint, we also consider a perception-oriented feature, namely the 
loudness. 

Several recent articles propose tracking of signal energy in separate frequency 
bands, typically motivated by auditory filter banks. Band-level energy changes (or 
loudness changes) are then heuristically combined to detected note onsets [7], [8]. In 
the present work, this approach is adapted to the specific problem of vocal onsets 
based on the knowledge of syllable articulation features. Further, the note onset 
detection method is incorporated into the signal processing front-end of an existing 
(ta-query constrained) QBH system for Indian film music [2], and results on retrieval 
performance are presented. 

It may be remarked that the use of pitch tracks has also been widely considered for 
note segmentation. Problems, however, include the observation that passing notes 
often do not stand out in the pitch track but rather only because of syllable 
articulation. Apart from this, there can be intended pitch modulation during the note 
(common, for example, in Indian music styles). The robust detection of note 
boundaries from alternate timbre (spectral) information would actually help to 
increase the accuracy of note labeling for melody representation by the proper 
averaging of pitch estimates obtained across the note duration. 

The next section presents energy-based methods for syllabic note onset detection. 
Sec. 3 describes the experimental evaluation of the onset detection methods with 
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respect to manually labeled onsets. The best performing onset detector is then 
incorporated in the transcription module of TANSEN, an available QBH system, and 
retrieval results are reported in Section 4. Finally, a discussion of the results is 
presented in Sec. 5 followed by the conclusions in Sec. 6.  

2   Detection of Syllabic Note Onsets 

The detection of syllabic note onsets involves finding a measure that reflects the 
acoustic signal change associated with a vowel onset, and reliably detecting and 
localizing rapid changes. Acoustic features are computed at fixed time intervals from 
the input signal, and the change occurring in the feature at a given time instant is 
measured by a detection function computed from a comparison of feature values in 
the neighborhood.  Finally the locations of peaks in the detection function whose 
amplitudes cross a threshold are used to signal detected note onset instants.  

Acoustic features could range from simple signal energy to the complete short-
term signal spectrum. Motivated by auditory perception, changes in perceived 
loudness have been used to detect note onsets [8].  A different approach is to 
explicitly exploit the characteristics of syllabic humming and apply acoustic-phonetic 
knowledge related to speech production to its segmentation. Apart from finding a 
measure that captures signal characteristics at note onsets, it is important to find 
methods to reliably detect prominent changes and localize them accurately in time. 

2.1   Acoustic Features 

Since the syllables do not display obvious changes in the signal power envelope, 
simple energy based detection is not expected to work for onset detection. Perceived 
loudness, on the other hand, is influenced by signal energy as well as the signal 
spectrum. We compare the use of the loudness feature with an acoustic-phonetic 
knowledge motivated band energy to distinguish consonants from vowels. Both 
energy and loudness are derived from the short-time Fourier spectrum, Xn[k],   for the 
frame n. The feature sequence is extracted at 10 ms intervals from the short-term 
spectral analysis of the input signal using a 20 ms Hamming window. 

Different loudness models have been applied for note onset detection. These are 
essentially equivalent to obtaining bark-band filter energies from the signal spectrum, 
and applying to the energies the equal loudness contour correction [9],[10]. Next the 
band-level specific loudness in sones is derived  using the nonlinear conversion of  
Eq. (1) 
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Ln[i] is the perceived loudness in the critical band i  and Dn[i] is the loudness in 
phons in band i  for the frame n . For each band the loudness in phons is limited to be 
within the range 2-90 dB. The total loudness is obtained by summing the Ln[i], the 
specific loudness in each band, as in Eq. (2). The total loudness is treated as the 
acoustic feature for note detection.  
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An alternate approach is speech production based. Finding acoustic features to 
distinguish sonorant consonants from vowels has been an important research problem 
in speech science. Hermes [11] proposed vowel onset detection in speech by 
measuring increases in “vowel strength” in terms of the amplitude of spectral 
envelope peaks in the mid-frequency region (500, 2500 Hz) which typically spans the 
first two formants of the vowel. The abrupt vocal tract motion leading from the 
consonant into the vowel involves the rapid movement of formants leading to an 
abrupt increase in amplitude in regions of the short-term spectrum. In the work of 
Espy-Wilson [12], non-syllabic speech sounds (i.e. consonants) have been 
distinguished from syllabic (i.e. vowels) by the absence of significant energy in the 
frequency bands (640,2800 Hz) and (2000, 3000 Hz). The band energies are found to 
take on low values specifically for semi-vowels, nasals and voiced stops. Of course, 
although the difference in mid-frequency energy between the consonants and vowels 
is, on the average, much greater than the energy change within vowels, sometimes 
there is considerable overlap between their distributions. Motivated by the above 
acoustic-phonetic studies, the mid-frequency band energy is used as an acoustic 
feature to distinguish consonants from vowels.   The sub-band energy is calculated 
from the STFT ( Xn[k]  ) of the nth frame of data as given by 
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where W[k] is a band-limiting filter response with unity gain in the frequency 
region corresponding to (640, 2800 Hz) and falling off linearly to zero gain over a 
frequency region of 100 Hz on either side. N  is the DFT size.  The logarithmic energy 
is considered as the feature as given by  

[ ] [ ]( )10F n 10log E n=  . (4) 

The use of the log ensures that relative changes are considered rather than the 
absolute changes in energy [8]. This normalization is consistent with hearing 
perception, where the perceived change in intensity is proportional to the intensity. 

2.2   Detection Functions 

Temporal changes in the feature sequence are estimated via a detection function (DF) 
based on the computed change or difference in the acoustic feature with time. Peaks 
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(local maxima) of the DF would then occur during transitions at the instants of most 
rapid change.  Ideally the DF should capture the consonant-vowel transitions while 
minimizing spurious peaks that may arise due to intra-vowel and intra-consonantal 
fluctuations in the features. Another desirable property is the accurate time-
localization of the onsets. A DF that incorporates some smoothing before differencing 
will ensure that localized fluctuations in the feature occurring within phone regions 
are suppressed to an extent but also lead to the broadening and lowering of valid onset 
peaks.  The functional form of the DF dictates trade-off achieved between the 
accuracy of detection of valid onsets and the suppression of false alarms.  Widely 
used is the rectified first-difference function given by 

( )0 , if F[n] F[n 1] 0
DF[n]

F[n] F[n 1] , else

 − − <= 
− −

. 
 

(5) 

 While the above detection functions consider only the pair of adjacent frames, 
multi-frame smoothing and differencing has the potential of being less susceptible to 
rapid local fluctuations in the feature that are not related to the larger note transition. 
A suitable function, motivated by the short-term adaptation characteristic of human 
hearing, is the biphasic filter [11].  Fig.1 shows a plot of the biphasic filter impulse 
response (comprised of Gaussian shaped components of different widths). In the 
present work, we also consider a time-scaled (by a factor of 2) version of the biphasic 
function to obtain the more localized “compressed biphasic” of Fig.1. 

   

 

Fig. 1. Biphasic filter function with parameters from Eq. (4) of [11] shown with dots; with 
modified parameters leading to the compressed form, shown with crosses. The discrete points 
indicate the 10 ms frame-level values. 

The selected discrete-time biphasic filter function is convolved with the feature 
sequence to obtain the detection function (DF), which is then searched for local 
maxima. A suitable thresholding of the peak amplitudes is then used to estimate the 
valid note onsets. Phrase boundaries give rise to invalid detections due to the silence 
to consonant transition, which are duly suppressed by post-processing based on 
silence detection. 
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In the next section, we evaluate the onset detection performance of the loudness 
and sub-band energy features in combination with each of the proposed detection 
functions, namely, the first difference and the biphasic filter functions.  

3   Evaluation of Note Onset Detection  

3.1 Data Collection and Preparation 

Humming for each syllable type (/la/, /da/, and /na/) was recorded from six singers (of 
which only three had had formal musical training). There were 47 song segments in 
each syllable providing a total of 2513 notes. The humming was recorded with a good 
quality microphone and PC sound card at 22.05 kHz sampling frequency with 16-bit 
resolution. The songs were selected from popular Indian movie music [2]. The singers 
were given no specific instructions except to hum from memory the song phrases, 
whose lyrics were provided if needed, in each of the syllables /da/, /la/, and /na/.   

The songs included a variety of melody and rhythm patterns. Each singer utilized 
at least one complete octave of his/her pitch range. Manual labeling of the onsets was 
carried out using the gating technique [11], by listening to segments of duration 
increasing in 5 ms steps until an onset is just perceived. A vowel onset is then marked 
at the center of the data frame containing the first major peak in the pitch cycle, 
immediately after the perceived onset. In total there were over 2500 valid onsets in 
the recorded data distributed equally across the syllables. Selected audio samples are 
available at [13]. 

3.2 Experiment 

For a given combination of feature and detection function, the note onset detection 
performance was obtained by an examination of all the peaks of the DF as returned by 
the algorithm after classifying these into valid and invalid detections based on 
comparison with manually marked onset instants. A peak is treated as a valid onset if 
it is the strongest peak within +/- 20 ms (2 frames) of a manually marked note onset. 
Statistical distributions of the amplitudes of the valid onsets and invalid onsets (i.e. all 
remaining DF peaks) were obtained. Performance curves [6] in terms of percentage of 
true positives (i.e. correct onset detections relative to the total number of actual 
onsets) versus percentage of false positives (i.e. erroneous detections relative to the 
number of detected onsets) were traced out by varying the threshold in steps over a 
wide range.   

Fig. 2. shows performance curves in the portion of the operating region of practical 
importance to a QBH system. A curve that is higher and more towards the left 
indicates superior performance in terms of the trade-off between hit rate and false 
alarms. For each curve, the optimal operating point (closest point to the top-left 
corner) is noted, and the results are displayed in Table 1.  The full-band energy/first 
difference curve lies to the far right in the depicted region. We see that the 

Proc. of Music-AI (International Workshop on Artificial Intelligence and Music) in IJCAI, 2007, Hyderabad, India.



loudness/first difference does significantly better. However the sub-band energy 
feature is significantly superior to either indicating that the selected mid-frequency 
band energy is indeed a good differentiator of vowels and sonorant consonants in 
sung syllables, consistent with its behavior in speech segmentation [12].  The biphasic 
filter function and its compressed form both effect a temporal smoothing of the 
feature which is expected to level out highly localized perturbations in the detection 
function as might occur in the intra-phone regions. This explains the superior 
performance of the biphasic filter based detection over the first difference in terms of 
reduced false positives for a given percentage of true positives.  

 

Fig.2.  Performance comparison of onset detection methods for the data set comprising of 2513 
note onsets. 

The biphasic filter based method though falls short of achieving full detection at 
any threshold due to the flattening out of potential low peaks corresponding to 
genuine onsets. The better overall performance of the compressed biphasic filter over 
the unmodified form can be explained by the consonantal durations for /l/ and /n/ 
which average around 100 ms but can be as low as 20 ms in the fast (i.e. short 
duration) notes. The shorter negative lobe width of the compressed biphasic function 
better preserves the consonantal feature evolution in such cases.   
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Table 1 . Onset detection results. Columns show the percentage of true positives (TP%) and 
percentage of false positives (FP%) for each method obtained at its optimal fixed threshold 
(/da/ + /la/ + /na/ mixture: 2513 onsets)  

 
 
 
 
 
 
 
 
 
 

4   Retrieval Performance in QBH System  

The evaluation results of the last section indicate that the sub-band energy combined 
with the compressed biphasic detection function achieves the best performance of the 
methods considered.  Accordingly, this method was selected for note onset detection 
in the signal processing front-end of TANSEN, a QBH system, hitherto constrained to 
accepting only ta-syllabic queries [2].  In this section, we provide a brief overview of 
TANSEN followed by the evaluation of the modified system on a large database of 
user queries.  

4.1 TANSEN System Description  

TANSEN is a QBH system for Hindi and regional film music, a genre that enjoys a 
very wide appeal in India. Melody is the most distinctive element of such music, with 
the tune of the song’s signature phrases being the most remembered attribute. 
TANSEN represents the melody by a note-pitch interval string, and then uses a string 
matching algorithm to retrieve the best matched database songs.  The pitch interval 
representation is invariant to key transposition, and therefore suitable for melody 
representation [4].  

A signal-processing front end locates note onsets and offsets and computes a pitch 
value in cents for each note thus extracted. Note onset detection is accomplished by 
the sub-band energy/biphasic detection function of Sec. 3. Note offsets are located 
between every two note onsets (and at the end of a phrase) based on the thresholding 
of negative peaks in the detection function. A note pitch is assigned based on the 
weighted averaging of pitch estimates computed by a standard correlation-based pitch 
detection algorithm at 10 ms intervals across the segmented note duration.  The note 
pitch frequency values are then used to derive the sequence of pitch intervals between 
every two consecutive notes. Pitch intervals are quantised using a non-uniform 
quantisation scheme designed to obtain a good trade-off between robustness to user 
errors and retrieval accuracy. A normalized edit distance based string matching 

Method          TP%          FP% 

Full-band energy first difference   77.4  29.0 
Loudness with first difference   87.2  11.6 
Sub-band energy first difference   97.1    4.8 
 
Sub-band energy biphasic filter   97.5    1.9 
Loudness with  biphasic filter   91.9    6.2 
Sub-band energy compressed biphasic filter 98.9    1.5 
Loudness with compressed biphasic filter        94.3                       5.8 
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algorithm with a suitably defined cost function for insertion, deletion and substitution 
errors is used to retrieve a ranked list of matched songs from the melody database. 
Rhythm information in the form of note inter-onset durations is not utilized currently. 
At the present time, the TANSEN system database contains 300 songs (selected from 
popular Indian movie music) [13].  

4.2  Retrieval Performance 

 A large data set of recorded user queries was generated.  This data set included the 
hummed songs data described in Sec. 3.1 (47 song segments of 2-3 phrases each) in 
each of the syllables /la,na,da/ .  The songs were selected from among the 300 songs 
of the reference database. In addition there were 1194 queries hummed using the 
syllable /ta/ collected from 10 users in total. The /ta/-query set covered all the 300 
reference songs such that there were 3 or more queries per reference song. The 
humming was recorded with a good quality microphone and PC sound card at 22.05 
kHz sampling frequency with 16-bit resolution. The singers were given no specific 
instructions except to hum from memory the song phrases, whose lyrics were 
provided if needed, in each of the syllables /da/, /la/, and /na/. The songs included a 
variety of melody and rhythm patterns.   

A standard information retrieval performance measure, the Mean Reciprocal Rank 
(MRR) [14] was used to evaluate the performance of the QBH system with the new 
note segmentation module incorporated. The MRR of each individual query is the 
reciprocal of the rank at which the correct response is returned. The mean of the 
reciprocal ranks across the set of queries is defined as the MRR for the system as 
given below. 

N
i 1

i

1
r

MRR
N

=
=
∑

  . 

 
(6) 

where ri denotes the ith position in the ranked list where the intended query occurs 
and N is the size of the query set. In case multiple items are retrieved with identical 
string match distances from the user query, an average rank is assigned to each of the 
songs. For example, if 3 queries happen to be at minimum edit distance from the 
reference, all three are assigned rank “2” and the next assigned rank in the list is then 
“4”.  This ensures that the MRR captures the actual precision-recall characteristics of 
the system. Table 2 shows the MRR results obtained. 

Table 2. QBH system MRR results across the different syllabic humming 

 

 

 
 
 

 Syllable  # queries   MRR   % in top 10 ranks          %rank 1 
 /ta/  1194  0.6044  75.5  50.6 
/da/      47  0.6229  74.5  53.2 
/la/      47  0.6447  80.9  55.3 
/na/      47  0.6469  76.6  59.6 
 

Overall  1335  0.6079  75.7  51.2 
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5   Discussion 

We see from Table 2 that the intended query is ranked in top place more often than 
not. We also note that the performance of the system with the sonorant syllable 
queries (/la/, /da/ and /na/) compares well with that on the easy-to-segment /ta/ queries 
indicating that proposed note onset detection algorithm is robust. 

Inaccuracies in QBH retrieval performance can arise from a number of possible 
sources. Imperfect singing on the part of the user can cause notes to be missed or 
inserted in the query. Note pitches may be off from their intended values due to out-
of-tune singing or due to non-steady pitch over the duration of the note. Even with a 
perfectly rendered query, transcription errors could arise from errors in note 
segmentation. Missed detections of note onsets and false alarms lead to deletion and 
insertion errors in the note pitch interval string. Apart from this, note pitch values 
following a deleted note would be perturbed. From an analysis of the errors in 
retrieval, it was observed that over 90% of the poorly ranked queries were indeed 
rendered inaccurately by the user in terms of note deletion/insertion or gross 
mismatches in note pitch. Of the remaining poorly ranked queries, most were 
characterized by transcription errors arising from improper note segmentation. We 
next discuss the note onset detection errors as obtained from the experiments of Sec. 
3.  

Instances of missed detections as well as the false positives obtained at the optimal 
operating point (Table 2) were examined for the sub-band energy-compressed 
biphasic filter method.  Missed detections were found to be more likely to occur when 
the signal intensity was low. Soft singing, with its reduced vocal effort, leads to a 
disproportionate drop in the mid-band energy of the vowel. Another source of missed 
detections is the short duration notes arising from tempo/rhythm constraints. The 
singer stops short of fully articulating the vowel leading to a drop in the difference of 
mid-band energy at the consonant-vowel boundary. Further, when the consonant (/l/ 
or /n/) is articulated slowly and clearly, as might happen when singing at a very slow 
tempo, the feature discontinuity at the vowel onset is less sharp. This is similar to the 
case of slowly uttered speech in which the tongue release after apical contact is slow 
[12].  On the other hand, syllables that are stressed, due to coincidence with an 
accented note in the musical score, show the sharpest spectral discontinuities at the 
vowel onset. This may be attributed to the rapid formant transitions linked with the 
firm apical contact and subsequent rapid release of the tongue tip. False positives 
arise from rapid spectral changes occurring within vowel or consonant segments 
(intra-phone regions). These are observed to be linked with intonation variations in 
the singing such as loudness increases or strong pitch modulations, which tend to 
cause fluctuations in overall intensity, affecting also the mid-frequency region.  
Across the syllables, false positives were more likely to arise from /da/ due to the 
larger intra-consonantal variations in sub-band energy for /d/. This is explained by the 
rapidly changing energy levels associated with the transition through the stop closure 
of the phone /d/. 
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6   Conclusion 

We have considered the problem of note onset detection in the context of user 
query transcription for QBH systems where the queries are typically rendered using 
neutral syllables. The detection of syllabic note onsets involves finding a measure that 
reflects the acoustic signal change associated with the consonant-vowel transition, and 
reliably detecting and localizing rapid changes. To facilitate accurate note 
segmentation, several recent QBH systems restrict the user queries to be sung in the 
syllable “ta”, the acoustic characteristics of which clearly demarcate note boundaries 
by means of a steep fall in signal energy.  In this work, acoustic features based on the 
signal energy distribution as obtained from the perception and production points of 
view were considered. Performance evaluations on a manually labeled database of 
syllabic humming show that a particular mid-band energy combined with a biphasic 
detection function achieves high correct detection and low false alarm rates on the 
sonorant consonant syllables /da/, /la/ and /na/. The resulting onset detector is 
incorporated in the signal-processing front-end of an available QBH system (hitherto 
constrained to ta-syllable queries only). QBH retrieval performance results on a large 
dataset of user queries confirm the efficiency of the note segmentation algorithm.   
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