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ABSTRACT 

I.I.T. Bombay, in collaboration with C.R.L., 
B.E.L., is working on developing a speech codec 
to provide communication quality speech at low 
bit rates. The codec is required to be robust to 
acoustic background noise and to channel errors. 
A sinusoidal coder based on the MBE 
(Multiband Excitation) model has been adopted 
as the basic speech representation due to its 
compact parameter set and the relatively robust, 
available parameter estimation algorithms. This 
paper reports a study on the influence of acoustic 
background noise on the performance of an 
MBE vocoder with the eventual goal of 
designing a suitable speech enhancement 
preprocessor for use in low SNR situations. 
 

1. INTRODUCTION 

For the compression of narrowband speech at bit 
rates below 4 kbps, the quality of hybrid 
waveform coders such as CELP drops 
dramatically. In this realm, “vocoders”, i.e. 
speech coders based not on waveform matching 
but rather on a purely parametric description of 
the signal (usually derived from a speech 
production model) have been adopted in various 
applications. Vocoders use the periodic 
characteristics of voiced speech and the noise-
like characteristics of unvoiced speech to achieve 
compact parametric representations of the speech 
signal. The most popular vocoders today are: 
harmonic coders (includes the Sinusoidal 
Transform coder and the Multiband Excitation 
coder), Prototype Waveform Interpolation  (PWI) 
coders and  LPC-based vocoders (includes Mixed 
Excitation LP) [1]. 
 
The above speech coders are typically based on 
compact, parametric signal models based on the 

speech production mechanism. That is, the 
design of the model, as well as the analysis and 
synthesis algorithms, are optimized for the 
characteristics of clean speech rather than for the 
matching of a general waveform. As a 
consequence, the presence of acoustic 
background noise leads to gross inaccuracies in 
the estimates of the parameters and therefore 
degrades the performance of such speech codecs 
far more severely than would be expected from a 
consideration of the input noisy speech signal 
alone. To what extent the parameter errors affect 
the subjective quality of the reconstructed speech 
output of the codec depends greatly on the signal 
model, the particular parameters and the 
parameter estimation algorithm.  
 
Low quality speech is stressful and fatiguing 
over long listening durations, and is often 
accompanied by reduced speech intelligibility. It 
is of interest therefore to investigate methods to 
improve the performance in noise of 
communications systems employing low rate 
speech codecs. One obvious approach to 
improving the performance of the codec is to 
apply some form of preprocessing to increase the 
speech signal-to-noise ratio at the input to the 
codec as depicted in Fig. 1.  Such an approach is 
simple and convenient in that it does not require 
any modification of the speech coding algorithm 
itself.   
 
Recently, significant improvements have been 
reported when specific speech coders were 
combined with a speech enhancement 
preprocessor. Guilmin et al [2] showed that 
Wiener filter-based noise preprocessing 
significantly improved the output, in the presence 
of noise, of a low rate LPC vocoder both in terms 
of parameter estimates and subjective quality. 
Earlier Kang and Fransen [3] evaluated spectral 
subtraction enhancement for LPC-processing of 
noisy speech and reported dramatic 



   

improvements in subjective quality for speech 
corrupted with a variety of background noise. 
Recently a number of different preprocessing 
schemes were examined for use with the Federal 
standard 2.4 kbps MELP coder [4]. These studies 
indicate that the choice and optimization of the 
speech enhancement preprocessor will be 
dependent on the speech coding algorithm. Also, 
it has been noted [5] that this optimization may 
actually be quite different from that required for 
simple listening (without coding) to noisy 
speech. As a first step therefore, it is necessary to 
study the noise performance of the speech coding 
algorithm at hand including the influence of 
noise on the parameters of the speech 
representation used. 
 
In our work we consider the class of speech 
coders based on the sinusoidal model of speech 
representation. Typically, sinusoidal coders 
operating at low rates have a minimal parameter 
model for encoding that is based on a mixed 
spectral representation. Bit-rates in the region of 
2 kbps have been achieved by sinusoidal-model 
based codecs such as the Sinusoidal Transform 
Codec and the Multiband Excitation (MBE) 
codec [6],[7]. The MBE vocoder has been shown 
to be robust to background noise at SNRs above 
5 dB [7]. The focus of this paper is a study of the 
impact of additive background noise on the 
performance of an  MBE speech codec operating 
at even lower SNRs.  
 
In the next section, we review the MBE speech 
representation and associated speech analysis 
method, and discuss its performance for noisy 
speech.  

2. THE MBE MODEL AND ANALYSIS 
ALGORITHM 

In the MBE speech representation, voiced 
regions are modeled by harmonics of a 
fundamental frequency, and unvoiced regions by 

spectrally shaped random noise. The parameters 
of the MBE speech model consist (for each 
analysis frame) of the fundamental frequency, 
voicing decisions (one for each group of 3 
harmonics) and the harmonic amplitudes [7]. The 
voicing information allows the mixing of the 
harmonic spectrum with a  
 
 
Fig. 1. Improving the noise robustness of a low 
rate speech codec with a preprocessor.  
 
random noise spectrum in a frequency dependent 
manner. The phase of harmonics is not 
transmitted but predicted during synthesis in 
most low rate coders. Often, to keep the bit rate 
low, the multiband voicing vector is replaced by 
a voicing “cut-off” band number, above which 
band the frequency spectrum is taken to be 
unvoiced. Fig. 2 depicts the MBE parameters and 
their relation to the speech signal power 
spectrum. 
 
As described in [7], we estimate the excitation 
and system parameters, for each input frame of 
20 ms duration, which minimize the distance 
between the original and synthetic speech spectra 
by an analysis-by-synthesis (AbS) method. The 
error distance is first minimized over the 
fundamental frequency and spectral amplitudes 
assuming all voiced speech. Once these 
parameters are estimated, voicing decisions are 
made based on the closeness of fit between the 
original and synthetic spectrum for each group of 
harmonics. A frequency-dependent threshold is 
applied to this normalized error to get a voicing 
decision error for each band [6]. The multiband 
voicing vector is then replaced by a single 
voicing cut-off band number obtained by a 
suitable filtering of the binary decisions. We see, 
therefore, that the synthesized speech quality of 
the MBE speech coder depends greatly on the 
accuracy of the pitch estimate since both spectral 
amplitudes and voicing decision are based on 
AbS matching of a synthetic spectrum, based on 
the estimated pitch, with the input spectrum. 
Gross pitch errors due to the selection of pitch 
period multiples are minimized by a process that 
favours lower submultiples of pitch. Dynamic 
pitch tracking is used to improve pitch estimation 
in noise by reducing gross pitch errors via 
imposing smoothness constraints on the 
estimated pitch across frames. Several past and 
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future frames are searched jointly in order to find 
the pitch track with the minimum error [7]. In our 
implementation we have used two frame look-
back but a single frame look-ahead in order to 
keep computational complexity low.  
 

 
 
Fig. 2 The parameters of the MBE speech model 

 

3. INFLUENCE OF ADDITIVE NOISE  

While the quantisation of the sinusoidal and 
noise parameters varies greatly among codecs 
depending on the actual target bit rate, it turns 
out that the parameter set, and associated analysis 
and synthesis procedures, are essentially the 
same for all low rate sinusoidal coders. We 
therefore confine ourselves at first to studying 
the effect of noise on a combination of only the 
main functional blocks, namely analysis and 
synthesis modules (henceforth referred to as the 
MBE speech codec). All our simulations are 
based on the “white noise” sample file from the 
SPIB database [8].  
 
We studied the influence of additive white noise 
at various SNRs on the parameters obtained by 
the MBE analysis of noisy speech. An 8 kHz 
sampled speech file consisting of the 
concatenation of 30 sentences uttered by 15 male 
and 15 female speakers was constructed using 
sentences from the TIMIT database [9] among 
others. This file contained about 30 % silent 
frames (a typical telephone conversation has 60% 
silence and non-speech sound) but otherwise 
fully tested the system in terms of a wide range 

of voice types and content. The SNR is computed 
according to ITU standard [10] based on the 
r.m.s. “active speech level” and r.m.s. noise 
level. The active speech level is estimated by 
leaving out silence and idle segments but 
including grammatical/structural pauses (i.e. 
those within 300 ms). Reference parameters 
obtained from the MBE analysis of the clean 
speech are used to determine parameter errors 
that occur after the addition of noise. A pitch 
estimate is deemed correct if its value does not 
differ from the reference by more than 5 % [2].  
Fig. 3 shows the behaviour of percentage pitch 
errors in speech frames for speech in additive 
white noise at various SNRs. We see that while 
the pitch tracker is useful in keeping down pitch 
errors at high SNRs, the pitch estimate degrades 
gradually as SNR decreases. The increase in 
pitch errors with decreasing SNR is also borne 
out by informal listening. Another aspect of the 
perceived speech quality that is evident from 
informal listening is the change in the nature of 
the background noise as reproduced by the 
codec. This is an important determinant of 
overall signal quality. While at high SNRs, the 
output sound continues to be a good reproduction 
of the input, there is a turning point below which 
the background noise is marked by an annoying, 
intermittent buzziness resulting in significant 
overall quality degradation. On closer 
examination, his was found to be due to the 
occurrence of intermittent pitch structure from a 
marked increase of unvoiced-to-voiced errors in 
the non-speech (noise only) regions. Fig.3 also 
shows the percentage of voicing errors in the 
non-speech frames versus SNR. We note a sharp 
increase in % errors as SNR drops below 8 dB. 
This can be explained by the increased variance 
of the background noise at lower SNRs leading 
to larger fluctuations in the normalized error 
between the estimated and synthesized spectra 
computed during MBE analysis. That the 
percentage voicing error remains more or less 
constant below the “breakdown” SNR may be 
explained by the fact that in the MBE analysis, 
the error threshold itself is adapted according to 
the local signal energy [6]. 
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Fig. 3.  % Pitch errors in speech frames and % 
voicing errors in non-speech frames for noisy 
speech at various SNRs 
 
Table 1 shows the extent of parameter errors 
during speech frames (that is speech plus noise is 
present). We see that voicing errors (defined as 
occurring whenever voicing cut-off frequency 
deviates by more than 500 Hz) are high and tend 
to increase with decreasing SNR. The log 
spectral distortion (S.D.) is measured over the 0-
3 kHz band and is seen to increase with 
decreasing SNR. The voicing errors and S.D. 
point to the loss of important speech spectral 
cues at low SNRs. 
 

Parameter errors  SNR 
(dB) pitch voicing     S.D. 

 (%) (%)          (dB) 
          +3  27 75            6.8 

0 39 78            7.7 
-3 50 84            8.5 

Table 1. Parameter errors during speech frames 
for noisy speech at various SNRs 
 
4. EVALUATION OF SPEECH QUALITY 
 
The performance of a speech codec under noisy 
conditions may be expressed in terms of 
subjective measures such as quality and 
intelligibility that reflect how the output signal is 
perceived by listeners. The quality attribute is 
related to the pleasantness of the sound or how 
much effort is required on behalf of the listeners 
in order to understand the message. 
Intelligibility, on the other hand, is an objective 
measure of the amount of information which can 
be extracted by listeners from the given signal. A 
given signal may be of high quality but low 

intelligibility, and vice versa. Hence, the two 
measures are relatively independent of each other 
[11].  
 
To assess the extent of degradation of 
performance of the speech coder in noisy 
conditions compared with the clean speech 
condition, it is necessary to obtain some form of 
quantitative estimate of the speech quality and 
intelligibility. Subjective testing procedures may 
be used for this purpose. Evaluation using 
additive white noise was carried out at 3 low 
SNRs: -3 dB, 0 dB and 3 dB (SNRs computed 
according to [10]). To avoid listener familiarity 
with a specific noise sample, segments of the 
noise file to be added to the sentences were 
chosen randomly. 
 
Subjective tests to evaluate the intelligibility and 
quality of spectrally enhanced noisy speech 
before and after MBE modeling were carried out. 
Intelligibility was measured using the Modified 
Rhyme Test [12]. There are 50 sets of 6 single-
syllable words available to test consonant 
intelligibility. Vowel intelligibility was included 
by adding one more set: had, hid, hod, hud, head, 
heed. The listener hears one word (randomly 
chosen) from each set in the carrier phrase 
“Would you write xxx” And so on, 51 times.  
The 6 possible words are presented on the test 
sheet to the listener who indicates his opinion of 
the word uttered by selecting it. One speaker and 
six listeners were used in the subjective test. 
Percentage correct responses were scored for 
each listener and averaged across listeners. 
Although additional speakers would have been 
desirable to get reliable measurements of 
intelligibility, in the present study only 
comparisons were of interest.  
 
The results appear in Table 2. We see that the 
intelligibility of noisy speech drops sharply after 
coding (MBE analysis and synthesis) at all 
SNRs. We note that while the codec reduces the 
intelligibility of clean speech (SNR = infinity) by 
only 3 points it degrades the intelligibility as well 
as quality of noisy speech much more. The 
decrease in intelligibility appears to be correlated 
with the increase in the parameter errors of Table 
1.  
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Intelligibility (%) SNR 
(dB) Input Output 

          Infinity 94 91 
          +3  63 53 

0 57 46 
-3 46 42 

 
Table 2. Percentage intelligibility of noisy input 
speech and coded output speech at various SNRs. 
 
 
5. CONCLUSIONS AND FUTURE WORK 

 
Our studies so far indicate that the loss in speech 
quality and intelligibility of MBE-coded speech 
in high acoustic background noise is related to 
the increased errors in analysis parameters. While 
the MBE analysis algorithm has an inherent 
noise robustness, there is a strong need for added 
noise pre-processing at very low SNRs such as 
considered here. The understanding obtained of 
the behaviour of parameter errors with SNR can 
aid in the design of an effective noisy speech 
preprocessor.  Optimisation of the preprocessor 
can be based on obtaining the maximum 
reduction in parameter errors.  
 
So far, we have not considered any broadband 
noise other than white noise. We plan to study 
the performance of the speech codec under more 
realistic noise conditions including moving 
vehicle noise and babble. Speech enhancement 
algorithms will be reviewed and investigated for 
possible application in a noisy speech 
preprocessor for the low bit rate MBE speech 
codec.  
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