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Abstract— An instrumental accompaniment system for Indian 
classical vocal music is designed and implemented on a Texas 
Instruments Digital Signal Processor TMS320C6713. This will 
act as a virtual accompanist following the main artist, possibly a 
vocalist. The melodic pitch information drives an instrument 
synthesis system, which allows us to play any pitched musical 
instrument virtually following the singing voice in real time with 
small delay.  Additive synthesis is used to generate the desired 
tones of the instrument with the needed instrument constraints 
incorporated. The performance of the system is optimized with 
respect to the computational complexity and memory space 
requirements of the algorithm.  The system performance is 
studied for different combinations of singers and songs. The 
proposed system complements the already available automatic 
accompaniment for Indian classical music, namely the sruti and 
taala boxes.  
 
 
    Keywords - Pitch detection; DSP; Automatic accompaniment;  
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I. INTRODUCTION 
    The purpose of this project is to build an automatic system 
that provides real-time melodic accompaniment in a music 
performance. Such a device can be useful in the Indian 
classical music performance context, in which there is a 
principal performer, rhythmic and melodic accompaniment 
and a drone instrument. Usually a tanpura is used as a drone 
instrument, which gives the tonal context to the melody. 
Melodic accompaniment is usually provided by a pitched 
instrument, such as a violin, sarangi or harmonium. The 
rhythmic accompaniment is usually provided by a percussive 
instrument, such as a tabla or mridangam.  Typically the 
melodic accompaniment follows the singer’s musical 
composition with some delay.  For instance Carnatic vocalists 
are usually accompanied by the violin which shadows the 
singer’s melody while also filling in the silent intervals.  
Likewise the harmonium tracks the Hindustani vocalist`s 
melody. Pitch-continuous instruments like the violin and 
sarangi follow the vocal melodic contour closely including the 
expressive ornamentation (known as gamaka). On the other 
hand, the harmonium is operated via keys providing a set of 
discrete, pre-tuned pitch values only. Thus the harmonium can 
be constrained in following some continuous and rapid pitch 
modulations of the voice. However it is still favored by 
Hindustani musicians due to its rich tonal quality. 

    These days tanpuras are increasingly being replaced by 
electronic tanpuras  or sruti boxes. Also virtual software for 
taals (rhythmic accompaniment) is available since it is pre-
decided before a particular vocal performance. Some 
accompaniment systems such as MySong® [1] and LaDida®   
[2] can create accompanied music but they do not operate in 
real time but rather add only chords and beats after recording 
the music. This paper proposes an automatic accompaniment 
system based on a digital signal processor (DSP) which can 
synthesize the sound of a selected instrument such as violin or 
harmonium, and provide real-time melodic accompaniment.  
This can be useful for musicians to practice by providing a 
virtual concert like scenario.  It can also be used in concerts as 
a virtual accompanying instrument. Some of the challenges 
faced in developing such an embedded system application are 
the response time, memory space, throughput and accuracy.  
All these factors will play a major role in the design of the 
algorithm and its implementation on the DSP.  

Unlike composition-driven western classical music, 
an Indian classical vocal performance is heavy in 
improvisation. Since the Indian classical vocalist creates the 
melody during the performance within a decided Raga and 
Tala framework, there is no musical score already available to 
the accompanist. Rather the accompanist listens to the main 
performer and reproduces the melody on the fly with at most a 
short delay.  This makes the design of a real-time automatic 
melody accompanier in Indian classical music difficult and 
challenging. Further, unlike Western classical music, which 
uses a fixed tuning system, in Indian classical music the singer 
is free to choose the actual pitch of the tonic note at the start of 
every performance. Consequently, the system must be able to 
automatically tune itself to the reference key. In our design the 
system imitates the actual pitch of the singer/lead artist. 
Therefore it works similarly for both improvisation and fixed 
compositions. 
    The organization of the paper is as follows: Section II gives 
a brief review of the algorithm involved, followed by the 
description of each sub-system. Section III describes the DSP 
implementation of the system. Section IV describes the 
evaluation of the accompaniment system followed by the 
conclusion and future work. 
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II. ALGORITHM  DESCRIPTION 
      Fig 1. shows a block diagram of the melodic 
accompaniment system which uses the detected input singing 
voice signal parameters together with tuning parameters 
extracted from a short training audio sample to generate the 
accompaniment audio of a selected melodic instrument. In this 
section, we provide an overview of the main modules in Fig. 
1.divided into A. Tuning, B. Pre-Processing, C. Pitch 
Extraction and D. Instrument Synthesis. More detailed 
descriptions as well as implementation aspects appear in Sec. 
III.  

A.   Tuning 
A knowledge of the singer’s volume (amplitude level) and 
level of background noise, if any, impinging on the 
microphone are required to reliably distinguish the signal from 
any background noise that may be present . The mean energy 
of the singer is calculated and used for thresholding of 
silence/non silence region.  Further, knowledge of the singer’s 
tuning i.e. the locations of notes in pitch space is important 
information if the selected accompaniment is a keyed 
instrument.  To obtain this information a singer is first asked 
to sing a brief excerpt, e.g. a few musical notes, as training 
data. Next the assumption of musical equal-temperament scale 
is used to describe the entire pitch space. The computation of  
the pitches of the singer in terms of the note locations is done 
for a musical piece. In general singers do not exceed a three 
octave pitch range.  

 

 
 

Fig 1.  Block diagram of the proposed accompaniment system                   

B.  Pre-Processing 
It is very important to separate the silence and the non-silence 
regions of the signal in order to avoid the problem of spurious 
pitch values.  Hence energy filtering is done wherein energy of 
each frame is calculated and then silence/voice determination 
is done. The average energy content of the musical piece is 
calculated from the tuning data with 0.55 of this value is taken 
as threshold on short-time energy to separate between the 
silence and non silence regions. 

Voice signals have a rich harmonic structure spanning the 
frequency range 80 Hz to 5000 Hz. A pitched vocal utterance 
may contain 30-40 harmonic components. Moreover, the 
fundamental may not be the strongest one i.e. the first 2-8 
harmonic components are usually stronger than fundamental 
component.  The harmonic structure make pitch tracking 
complex with the possibility of octave errors. In order to 
improve the reliability and reduce the influence of strong  
higher order harmonics, low pass filtering is carried out.  

C. Pitch Extraction and Note Segmentation 
Pitch is detected every 40 ms by the short-time 

analysis of a windowed segment of the input signal. There are 
various pitch detection algorithms available both in the time 
and frequency domain based on the temporal periodicity and 
spectrum harmonicity respectively [4]. Table 1 depicts the 
comparison of well-known pitch detection methods, viz. the 
Average Magnitude Difference Function (AMDF), Auto 
Correlation Function (ACF) and Harmonic Product Spectrum 
(HPS). N denotes the number of samples in a frame and R is 
the number of harmonics considered in the HPS algorithm [5]. 
Generally the time domain approaches are computationally 
simpler.  The AMDF algorithm only needs addition, 
subtraction and absolute value operations. Here we choose 
AMDF due to its low complexity and therefore suitability for 
real-time applications. A disadvantage of the AMDF method 
is that it is highly susceptible to background noise and 
intensity variation and therefore certain modifications are 
incorporated as described next. 

 

TABLE I. COMPARISON OF VARIOUS PITCH DETECTION 
ALGORITHMS IN TERMS OF NUMBER OF COMPUTATIONS 

INVOLVED. 
Algorithm No. of 

Multiplications 
No. of Additions 

AMDF -  N 
ACF N N 
HPS 2N( log N + R ) 2N log N 

 
The short time average magnitude difference function 

of a frame of the filtered input signal is defined as  
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where   sw(n) is the filtered voice signal,  N is the analysis 
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window duration, and the lag  m varies  between 0 and N-1. 
Here we see that AMDF calculations require no 
multiplications, a desirable property for real time applications. 
We see that the function x w(m)  is minimized at the integer 
multiples of the pitch period (i.e. whenever m=0,  ±T,  
±2T….). Ideally xw(n) should approach zero at multiples of the 
period T but since the signal is  quasi-periodic the difference 
only attains local minimum.  

Further, the position of the global minimum may not 
match the pitch period because of the effect of the amplitude 
variations,  noise and formants of the voice signal [3]. These 
can cause octave errors in the obtained pitch.  There are 
several methods available to reduce these errors. YIN [3] has 
employed a cumulative mean difference function (CMNDF) in 
order to reduce the occurrence of sub-harmonic errors.  It de-
emphasizes higher period dips in the difference function. The 
CMNDF  is given below.    
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     Theoretically x´nw(n) should tend to zero for integral 
multiples of the period but actually a local minima exists at  
these points.  The position of the minimum value is found.  
Knowing the sampling frequency and this value, the pitch 
value of the frame is found. The minimum value will not 
always correspond to the pitch period.  If we search for the 
global minimum then a lot of octave and sub harmonic errors 
occur. To avoid this and improve the accuracy of the 
algorithm, only local minima below a given absolute threshold 
are considered [3]. 

 
 

Fig 2. Example of a sub harmonic error. 
 

    For example, consider the AMDF function for a particular 
signal segment with actual pitch period = 45 samples in Fig 2.  
Clearly the global minimum,  i.e.  point 3 is not the pitch 

period.  Hence first we store the local minima occurring in a 
frame in increasing order.  Then a value for the threshold and 
the number of minima points to look for is set from 
experimental observation.  Now out of the first n number of 
local minima after arranging in the increasing order (7 in the 
above case), the lag corresponding to the local minimum 
closest to m=0, and lying below a threshold, is taken to be the 
pitch period.  
     
For error correction post processing of the pitch values is 
done.  Here it is assumed that there cannot be a pitch variation 
of more than two octaves between two successive frames as 
they are only 40 ms apart . Also the ground truth pitch value 
of the voice is assumed not to exceed 800 Hz. Hence in such 
cases the previous valid pitch value is assigned as pitch value 
of the current frame.  
 
Now after this stage some rules are incorporated in making the 
rendition of the “virtual instrument” as close to real instrument 
as possible. For a pitch-continuous instrument such as the 
violin, no further processing is needed. However for a keyed 
instrument such as the harmonium, we need a step of note 
segmentation and labeling. Fig 3. shows a comparison 
between  time aligned pitch contour of the vocalist to that of a 
harmonium player. The continuous pitch contour corresponds 
to the vocals whereas discrete valued graph correspond to the 
same track being played by a harmonium player with time 
alignment. Based upon such data, some simple rules are 
incorporated in the algorithm for making our system as close 
to the instrument as possible.   

 
Fig.3 Comparison between the pitch contour of Harmonium player vs.  
Vocalist.  A vertical offset has been applied to improve clarity. 

  
    If the raga is known beforehand (which is usually the case 
in case of classical music concerts) then all the swars which 
are not in a particular raga can be omitted at the time of note 
segmentation. We also see that there is a minimum duration 
for which a note is played in the actual instrument. This 
minimum note duration depends on the musical piece. Hence 
in our system also there is a provision of incorporating this, 
i.e. a note is played for a particular time duration which is 



adjustable. Also there is always some delay present between 
the accompanist and the vocalist. Each note has some link 
with its preceding and succeeding note. These linking notes 
are called grace notes or Kan-swars. It was observed that these 
Kan-swars are ignored most of the times by the accompanist. 
We thus use rules on allowed note locations and duration to 
convert the vocalist’s tracked pitch contour into a note 
sequence suitable for harmonium. We thus use rules on 
allowed note locations and duration to convert the vocalist’s 
tracked pitch contour into a note sequence suitable for 
harmonium. 
 

D.   Instrument  Synthesis 
    In human ear, pitch perceived is logarithmically related to 
the physical fundamental frequency. The cent is a logarithmic 
unit of measure used for musical intervals. Twelve-tone equal 
temperament divides the octave into 12 semitones of 100 cents 
each. Typically, cents are used to measure extremely small 
finite intervals, or to compare the sizes of comparable 
intervals in different tuning systems. In a piano the adjacent 
keys are 100 cents apart. An octave comprises of  1200 cents. 
    If the selected accompaniment is a keyed instrument such as 
the harmonium, the next step involves gridding, i.e. snapping 
the instrumental pitch values to a pre-determined note-grid. 
This note-grid is determined as 100 cent intervals as computed 
in the Tuning block. At every analysis time-instant (spaced 40 
ms apart) the singer’s pitch value is snapped to the nearest grid 
location.                                
 
    The system uses additive synthesis to generate the 
instrumental sound. Additive synthesis is defined as the 
addition of one or more pure tones to generate the required 
musical timbre.  If we analyze the sound of different musical 
instruments we see that the same note (pitch) differs in sound 
quality (timbre) due to following: 
 
1.   Non-harmonic components present.  
2.   Amplitude of each harmonic component according to the 
spectral envelope corresponding to the instrument timbre .  
3.  The temporal volume envelope of the played note . 

                     
 

Figure 4. Additive synthesis 
 

    We simulate the desired sound accurately based on the 
following equation.   

x(n) =  ቀa୩sin ଶబ୩୬
౩

+φ୩ቁ


୩ୀଵ
                              (3)                    

where ak denotes the amplitude of the kth harmonic (sinusoid) 
component, f0 is the desired fundamental frequency,  Fs is the 
chosen sampling frequency, φk is the phase of the kth 
harmonic, and N is the desired number of harmonics.    The 
sound is synthesized using the implementation shown in Fig. 4  
given the pitch, level (volume) and stored spectral envelope 
corresponding to the timbre of the sound. The harmonic 
phases are usually set to arbitrary initial values. Additive 
synthesis is a computationally complex but flexible sound 
modeling method. Inharmonic components are not considered 
here. Instrument temporal envelope modeling has not been 
considered here. But rather we assume  that the harmonic 
amplitudes are constant over the note duration.  

 
 

Fig 5. Spectrogram of an octave played on (a) harmonium and (b) 
flute. 

 
    From Fig 5. we see that harmonium is a spectrally rich 
instrument having dominant higher order harmonics. Thus 
synthesizing its sound takes up a  lot of computation. On the  
other hand flute has at most five  significant harmonics. Hence 
amount of computation time  required for flute synthesis is 
less. 

 
Fig.6  Comparison of spectral envelope of harmonium notes.  
 
Fig.6. shows the smooth spectral envelope of a harmonium 
tone computed by averaging over a number of different notes 
in each of two frequency ranges:low (50-160 Hz) and high 
(170-512 Hz). Depending on the pitch of the desired note, the 
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harmonic amplitudes are  read off one of these stored envelope 
for additive synthesis. 
 
   The human ear is very sensitive to abrupt  changes in phase.  
Hence phase of each final value of the frame is tracked in 
order to make the synthesized waveform shape continuous.  
Otherwise the synthesis will result in artifacts manifested as 
clicking sounds after each frame, resulting in an unpleasant 
and poor audio quality. 
 
   Time in  

III .   DSP  IMPLEMENTATION OF THE 
ACCOMPANIMENT SYSTEM 

In this section we discuss implementation of the proposed 
accompaniment system on TMS320C6713 floating point 
Digital Signal Processor from Texas Instruments [6].  It has an 
optimized architecture for fast operation capable of a large 
number of mathematical operations on large chunks of data 
with minimum latency in order to facilitate real time 
operations. TMS320C6713 has a clock frequency of 225 MHz 
but an architecture giving higher MIPS (Million Instruction Per 
Second) compared to other processors of similar speed [7].  
The  advantage of this processor over a fixed point processor is 
that there are reduced errors due to overflow,  truncation and  
rounding of operands.  Additionally this processor has the 
ability to handle a large dynamic range and also algorithms are 
easier to implement in floating point DSP rather than fixed 
point. The CCS (Code Composer Studio v3. 1) is used for 
compiling, and creating an assembly language code and 
linking.    

    The present algorithm involves block-based processing i.e. 
computations are carried out every 40ms throughout the non-
silent region of the input audio signal to generate estimated 
pitch corresponding to the centre of the 40ms frame.  
 

A.    Programming aspects of DSP Implementation 
For low pass filtering in the preprocessing stage, an elliptical 
filter is chosen as no other filter of equal order can have a 
faster transition in gain between the pass band and stop band.  
Lesser order means less complexity and memory 
consumption.  A 10th order low pass elliptical filter with pass 
band as 600Hz and stop band attenuation of -80dB is 
designed. For implementing the 10th order filter, its transfer 
function is broken into second order sections and then 
cascaded.  This is done so as to reduce the quantization 
effects. Each of the  second order section is written in terms of 
its difference equation. This takes lesser number of CPU 
cycles as it involves only addition and storage elements.  
Linear buffers are used to store the delayed by one sample 
values. After each iteration the new value is stored in the first 
element of the storage buffers whereas the last value is 
discarded. Every iteration results in the buffer elements being   
right shifted by one (first in, last out).  
Division generally takes much more time as compared to other 
mathematical operations. Hence it is avoided as much as 
possible.  Synthesis of required audio needs a lot of harmonic 

components to be generated each corresponding to a sine 
function.  Hence we define a look up table for the values of 
the sine function.  Again the intervals in the table must be 
optimized by experiments done without the loss of accuracy 
and quality.  In order to save memory the look up table for 
only half the sinusoidal cycle is considered [8]. Thus 256 
samples of a half cycle of sinusoid are stored. Sampling 
frequency cannot be too high since it means lesser time 
available to fill up the individual buffers and thus lesser 
processing time for the algorithm. Frame length too dictates 
the real time performance as well as pitch accuracy. Therefore 
repeated profiling was carried out till our system worked 
efficiently.   It executes the code rapidly and uses fewer 
available resources on the chip.    

 
Finally 8 kHz sampling was chosen as the best trade-off 
between sound quality and computation time. The size of the 
buffer  for a 40ms analysis frame was thus equal to 320. 
Block-based processing with  DMA was done instead of 
sample by sample processing due to computational complexity 
of the algorithm.  Ping and Pong buffers alternately receive the 
samples or process and extract pitch. Instead of sorting the 
minima after AMDF computation which may take up a lot of 
computational cycles, a different approach is taken. First the 
global minimum of the function xw(m) is calculated for a 
particular frame. Then using a predetermined threshold only 
those minima that lie within the threshold are stored. Now out 
of these values the minima that has the least time index  “m”  
is chosen as the desired value of the period. The values for the 
amplitudes of  the Fourier coefficients of a particular 
instrument were stored in look up table to save the 
computational time. 
    This accompaniment system has many features which makes 
its similar to electronic tanpura in some ways. Its output pitch 
can be tuned to our desired pitch range providing flexibility. 
Since it was observed that the delay between the accompanying 
instrument and the lead vocalist varies depending on 
composition, mood and the  need delay can be varied with . As 
of now there is a provision of playing one of the three 
accompanying instruments namely harmonium, violin and 
flute. But virtually any non percussion instrument can be 
synthesized by studying its spectrum for the amplitudes to be 
used in additive synthesis.  

IV.  EVALUATION OF THE ACCOMPANIMENT SYSTEM 
    For evaluation a set of five musical pieces is chosen.  In 
order to cover a large number of variations songs having a 
variety of musical ornaments are selected.   Five different 
singers were chosen.  In the first stage the pitch accuracy is 
calculated.  Here the accuracy depicts the total number of 
frames lying within a range of  50 cents of the original pitch 
value.  A total of 745 seconds database of audio files was thus 
selected and the pitch accuracy was found to be 93.45% based 
on ground-truth pitch values obtained via a semi-automatic 
melody detection interface for polyphonic music [9]. 

    After assigning fixed pitch values based on the detected user 
tuning, note names are assigned to the output of our “virtual 
instrument” for a particular song. Thus for each song we get a 



musical score wherein each note duration is assigned according 
to the known tempo of the audio file. To validate the note 
segmentation stage, it was necessary to get the ground truth 
note sequence corresponding to the songs. This was achieved 
by getting an expert harmonium player to reproduce the song 
on harmonium while listening to the corresponding singing 
audio over headphones. The harmonium audio was transcribed 
into notes by automatic pitch detection. Word error rate  is 
often used to evaluate the performance of a speech recognition 
system. Here after getting these two strings (i.e. the 
automatically segmented note sequence and the human 
harmonium experts note sequence) they can be compared for 
word error rate viz.  number of matches, number of 
substitutions,  deletions and insertions between two optimally 
aligned strings. Word error rate is computed as : 

ܴܧܹ                                     = ௌାାூ
ே

                                 (4)                            
where S is the number of substitutions, D is the number of 
deletions, I is the number of insertions, N is the number of 
words in the reference which are the notes played by an actual 
instrument player. 

TABLE II. COMPARISON OF ACTUAL INSTRUMENT AND PROPOSED 
VIRTUAL ACCOMPANIMENT SYSTEM  IN TERMS OF WORD ERROR RATE 

OF NOTES. 

 
Song 
Name 

% Notes 

Matching 

% Note 

Substitutions 

% Note 

Insertions 

% Note 

Deletions 

% 

WER 

Kesar 78.32 5.59 11.89 4.2 21.68 

Kaise 
Paheli 

77.78 13.07 8.17 0.98 22.22 

Total 77.88 11.66 8.87 1.59 22.12 

    Table II shows the results for a subset of the songs. Here we 
note that even though the accuracy was very high, the number 
of  matching  notes  given by DSP and that of actual player is 
around 77%. This happens because the duration for which a 
note  is played depends on individual player and style. Also 
musical ornaments Kan-Swar and vibrato are followed by our 
system whereas real instrument players often tend to ignore 
such notes. Thus there are greater number of  substitutions as 
compared to deletions as the current system follows whatever 
the main artist does whereas the accompanist may follow these 
subtle changes depending on the expertise. 
    After this we move to evaluation of the accompaniment 
system from the point of view of hardware resources utilized.  
The hardware resources utilized towards the DSP 
implementation of the accompaniment system is reported in 
Table III. Here since a 40 ms frame was chosen with a 
sampling frequency of 8 kHz available clock cycles are 9 x 
106.    

      TABLE III.  HARDWARE UTILIZATION OF THE ACCOMPANIMENT SYSTEM     

V.  CONCLUSION AND FUTURE WORK 
In this paper implementation of a music accompaniment 

system, particularly for Indian music, is implemented on a 
TMS320C6713. It gives satisfactory performance both in terms 
of sound quality and accuracy.  The C-code is written keeping 
in mind the real time considerations and the limited memory 
space available on the DSP chip. We have managed to 
synthesize the sound of harmonium by formulation of some 
simple rules but these need to be further refined.  The temporal 
envelope of the synthesized tones needs to be shaped for more 
authentic quality. Also from the experiments carried out, we 
see that the virtual harmonium is tracking the vibrato effect by 
switching between two notes whereas a harmonium player  
does it seldomly.  There remain such differences for which  
musicological  knowledge is required. 
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Resource Utilization Details  
DSP Device TMS320C6713 

Clock Frequency 225MHz 
Program Memory Used 187kbytes 

Clock Cycles consumed per 
execution  

8.9671 x 106 

%idle processor time per execution 
 

0.3661 

% Memory consumed 83.1 % 


