
Real-time Melodic Accompaniment System for
Indian Music Using TMS320C6713
Prateek Verma

Department of Electrical Engineering
IIT Bombay

Mumbai , India
prateekv@ee.iitb.ac.in

Preeti Rao
Department of Electrical Engineering

IIT Bombay
Mumbai , India

prao@ee.iitb.ac.in

Abstract— An instrumental accompaniment system for Indian
classical vocal music is designed and implemented on a Texas
Instruments Digital Signal Processor TMS320C6713. This will
act as a virtual accompanist following the main artist, possibly a
vocalist. The melodic pitch information drives an instrument
synthesis system, which allows us to play any pitched musical
instrument virtually following the singing voice in real time with
small delay. Additive synthesis is used to generate the desired
tones of the instrument with the needed instrument constraints
incorporated. The performance of the system is optimized with
respect to the computational complexity and memory space
requirements of the algorithm. The system performance is
studied for different combinations of singers and songs. The
proposed system complements the already available automatic
accompaniment for Indian classical music, namely the sruti and
taala boxes.

 Keywords - Pitch detection; DSP; Automatic accompaniment;
Additive Synthesis .

I. INTRODUCTION
 The purpose of this project is to build an automatic system
that provides real-time melodic accompaniment in a music
performance. Such a device can be useful in the Indian
classical music performance context, in which there is a
principal performer, rhythmic and melodic accompaniment
and a drone instrument. Usually a tanpura is used as a drone
instrument, which gives the tonal context to the melody.
Melodic accompaniment is usually provided by a pitched
instrument, such as a violin, sarangi or harmonium. The
rhythmic accompaniment is usually provided by a percussive
instrument, such as a tabla or mridangam. Typically the
melodic accompaniment follows the singer’s musical
composition with some delay. For instance Carnatic vocalists
are usually accompanied by the violin which shadows the
singer’s melody while also filling in the silent intervals.
Likewise the harmonium tracks the Hindustani vocalist`s
melody. Pitch-continuous instruments like the violin and
sarangi follow the vocal melodic contour closely including the
expressive ornamentation (known as gamaka). On the other
hand, the harmonium is operated via keys providing a set of
discrete, pre-tuned pitch values only. Thus the harmonium can
be constrained in following some continuous and rapid pitch
modulations of the voice. However it is still favored by
Hindustani musicians due to its rich tonal quality.

 These days tanpuras are increasingly being replaced by
electronic tanpuras or sruti boxes. Also virtual software for
taals (rhythmic accompaniment) is available since it is pre-
decided before a particular vocal performance. Some
accompaniment systems such as MySong® [1] and LaDida®
[2] can create accompanied music but they do not operate in
real time but rather add only chords and beats after recording
the music. This paper proposes an automatic accompaniment
system based on a digital signal processor (DSP) which can
synthesize the sound of a selected instrument such as violin or
harmonium, and provide real-time melodic accompaniment.
This can be useful for musicians to practice by providing a
virtual concert like scenario. It can also be used in concerts as
a virtual accompanying instrument. Some of the challenges
faced in developing such an embedded system application are
the response time, memory space, throughput and accuracy.
All these factors will play a major role in the design of the
algorithm and its implementation on the DSP.

Unlike composition-driven western classical music,
an Indian classical vocal performance is heavy in
improvisation. Since the Indian classical vocalist creates the
melody during the performance within a decided Raga and
Tala framework, there is no musical score already available to
the accompanist. Rather the accompanist listens to the main
performer and reproduces the melody on the fly with at most a
short delay. This makes the design of a real-time automatic
melody accompanier in Indian classical music difficult and
challenging. Further, unlike Western classical music, which
uses a fixed tuning system, in Indian classical music the singer
is free to choose the actual pitch of the tonic note at the start of
every performance. Consequently, the system must be able to
automatically tune itself to the reference key. In our design the
system imitates the actual pitch of the singer/lead artist.
Therefore it works similarly for both improvisation and fixed
compositions.
 The organization of the paper is as follows: Section II gives
a brief review of the algorithm involved, followed by the
description of each sub-system. Section III describes the DSP
implementation of the system. Section IV describes the
evaluation of the accompaniment system followed by the
conclusion and future work.

Proc. of the International Conference on VLSI Design and Embedded Systems, Jan 2012, Hyderabad, India

II. ALGORITHM DESCRIPTION
 Fig 1. shows a block diagram of the melodic
accompaniment system which uses the detected input singing
voice signal parameters together with tuning parameters
extracted from a short training audio sample to generate the
accompaniment audio of a selected melodic instrument. In this
section, we provide an overview of the main modules in Fig.
1.divided into A. Tuning, B. Pre-Processing, C. Pitch
Extraction and D. Instrument Synthesis. More detailed
descriptions as well as implementation aspects appear in Sec.
III.

A. Tuning
A knowledge of the singer’s volume (amplitude level) and
level of background noise, if any, impinging on the
microphone are required to reliably distinguish the signal from
any background noise that may be present . The mean energy
of the singer is calculated and used for thresholding of
silence/non silence region. Further, knowledge of the singer’s
tuning i.e. the locations of notes in pitch space is important
information if the selected accompaniment is a keyed
instrument. To obtain this information a singer is first asked
to sing a brief excerpt, e.g. a few musical notes, as training
data. Next the assumption of musical equal-temperament scale
is used to describe the entire pitch space. The computation of
the pitches of the singer in terms of the note locations is done
for a musical piece. In general singers do not exceed a three
octave pitch range.

Fig 1. Block diagram of the proposed accompaniment system

B. Pre-Processing
It is very important to separate the silence and the non-silence
regions of the signal in order to avoid the problem of spurious
pitch values. Hence energy filtering is done wherein energy of
each frame is calculated and then silence/voice determination
is done. The average energy content of the musical piece is
calculated from the tuning data with 0.55 of this value is taken
as threshold on short-time energy to separate between the
silence and non silence regions.

Voice signals have a rich harmonic structure spanning the
frequency range 80 Hz to 5000 Hz. A pitched vocal utterance
may contain 30-40 harmonic components. Moreover, the
fundamental may not be the strongest one i.e. the first 2-8
harmonic components are usually stronger than fundamental
component. The harmonic structure make pitch tracking
complex with the possibility of octave errors. In order to
improve the reliability and reduce the influence of strong
higher order harmonics, low pass filtering is carried out.

C. Pitch Extraction and Note Segmentation
Pitch is detected every 40 ms by the short-time

analysis of a windowed segment of the input signal. There are
various pitch detection algorithms available both in the time
and frequency domain based on the temporal periodicity and
spectrum harmonicity respectively [4]. Table 1 depicts the
comparison of well-known pitch detection methods, viz. the
Average Magnitude Difference Function (AMDF), Auto
Correlation Function (ACF) and Harmonic Product Spectrum
(HPS). N denotes the number of samples in a frame and R is
the number of harmonics considered in the HPS algorithm [5].
Generally the time domain approaches are computationally
simpler. The AMDF algorithm only needs addition,
subtraction and absolute value operations. Here we choose
AMDF due to its low complexity and therefore suitability for
real-time applications. A disadvantage of the AMDF method
is that it is highly susceptible to background noise and
intensity variation and therefore certain modifications are
incorporated as described next.

TABLE I. COMPARISON OF VARIOUS PITCH DETECTION
ALGORITHMS IN TERMS OF NUMBER OF COMPUTATIONS

INVOLVED.
Algorithm No. of

Multiplications
No. of Additions

AMDF - N
ACF N N
HPS 2N(log N + R) 2N log N

The short time average magnitude difference function

of a frame of the filtered input signal is defined as

(݉)௪ݔ =
1

ܰ −݉− 1
 ݊)௪ݏ| + ݉) − ௪ݏ

ேିିଵ

ୀ

(݊)|

 (1)
where sw(n) is the filtered voice signal, N is the analysis

m

window duration, and the lag m varies between 0 and N-1.
Here we see that AMDF calculations require no
multiplications, a desirable property for real time applications.
We see that the function x w(m) is minimized at the integer
multiples of the pitch period (i.e. whenever m=0, ±T,
±2T….). Ideally xw(n) should approach zero at multiples of the
period T but since the signal is quasi-periodic the difference
only attains local minimum.

Further, the position of the global minimum may not
match the pitch period because of the effect of the amplitude
variations, noise and formants of the voice signal [3]. These
can cause octave errors in the obtained pitch. There are
several methods available to reduce these errors. YIN [3] has
employed a cumulative mean difference function (CMNDF) in
order to reduce the occurrence of sub-harmonic errors. It de-
emphasizes higher period dips in the difference function. The
CMNDF is given below.

(݉)௪´ݔ =

⎩
⎪
⎨

⎪
⎧

1 ݂݅ ݉ = 0 ,

(݉)௪ݔ (1/m)ݔ௪(݆)
୫

ୀଵ

 ൘.݁ݏ݅ݓݎℎ݁ݐ

 (2)

 Theoretically x´nw(n) should tend to zero for integral
multiples of the period but actually a local minima exists at
these points. The position of the minimum value is found.
Knowing the sampling frequency and this value, the pitch
value of the frame is found. The minimum value will not
always correspond to the pitch period. If we search for the
global minimum then a lot of octave and sub harmonic errors
occur. To avoid this and improve the accuracy of the
algorithm, only local minima below a given absolute threshold
are considered [3].

Fig 2. Example of a sub harmonic error.

 For example, consider the AMDF function for a particular
signal segment with actual pitch period = 45 samples in Fig 2.
Clearly the global minimum, i.e. point 3 is not the pitch

period. Hence first we store the local minima occurring in a
frame in increasing order. Then a value for the threshold and
the number of minima points to look for is set from
experimental observation. Now out of the first n number of
local minima after arranging in the increasing order (7 in the
above case), the lag corresponding to the local minimum
closest to m=0, and lying below a threshold, is taken to be the
pitch period.

For error correction post processing of the pitch values is
done. Here it is assumed that there cannot be a pitch variation
of more than two octaves between two successive frames as
they are only 40 ms apart . Also the ground truth pitch value
of the voice is assumed not to exceed 800 Hz. Hence in such
cases the previous valid pitch value is assigned as pitch value
of the current frame.

Now after this stage some rules are incorporated in making the
rendition of the “virtual instrument” as close to real instrument
as possible. For a pitch-continuous instrument such as the
violin, no further processing is needed. However for a keyed
instrument such as the harmonium, we need a step of note
segmentation and labeling. Fig 3. shows a comparison
between time aligned pitch contour of the vocalist to that of a
harmonium player. The continuous pitch contour corresponds
to the vocals whereas discrete valued graph correspond to the
same track being played by a harmonium player with time
alignment. Based upon such data, some simple rules are
incorporated in the algorithm for making our system as close
to the instrument as possible.

Fig.3 Comparison between the pitch contour of Harmonium player vs.
Vocalist. A vertical offset has been applied to improve clarity.

 If the raga is known beforehand (which is usually the case
in case of classical music concerts) then all the swars which
are not in a particular raga can be omitted at the time of note
segmentation. We also see that there is a minimum duration
for which a note is played in the actual instrument. This
minimum note duration depends on the musical piece. Hence
in our system also there is a provision of incorporating this,
i.e. a note is played for a particular time duration which is

adjustable. Also there is always some delay present between
the accompanist and the vocalist. Each note has some link
with its preceding and succeeding note. These linking notes
are called grace notes or Kan-swars. It was observed that these
Kan-swars are ignored most of the times by the accompanist.
We thus use rules on allowed note locations and duration to
convert the vocalist’s tracked pitch contour into a note
sequence suitable for harmonium. We thus use rules on
allowed note locations and duration to convert the vocalist’s
tracked pitch contour into a note sequence suitable for
harmonium.

D. Instrument Synthesis
 In human ear, pitch perceived is logarithmically related to
the physical fundamental frequency. The cent is a logarithmic
unit of measure used for musical intervals. Twelve-tone equal
temperament divides the octave into 12 semitones of 100 cents
each. Typically, cents are used to measure extremely small
finite intervals, or to compare the sizes of comparable
intervals in different tuning systems. In a piano the adjacent
keys are 100 cents apart. An octave comprises of 1200 cents.
 If the selected accompaniment is a keyed instrument such as
the harmonium, the next step involves gridding, i.e. snapping
the instrumental pitch values to a pre-determined note-grid.
This note-grid is determined as 100 cent intervals as computed
in the Tuning block. At every analysis time-instant (spaced 40
ms apart) the singer’s pitch value is snapped to the nearest grid
location.

 The system uses additive synthesis to generate the
instrumental sound. Additive synthesis is defined as the
addition of one or more pure tones to generate the required
musical timbre. If we analyze the sound of different musical
instruments we see that the same note (pitch) differs in sound
quality (timbre) due to following:

1. Non-harmonic components present.
2. Amplitude of each harmonic component according to the
spectral envelope corresponding to the instrument timbre .
3. The temporal volume envelope of the played note .

Figure 4. Additive synthesis

 We simulate the desired sound accurately based on the
following equation.

x(n) = ቀa୩sin ଶబ୩୬
౩

+φ୩ቁ

୩ୀଵ
 (3)

where ak denotes the amplitude of the kth harmonic (sinusoid)
component, f0 is the desired fundamental frequency, Fs is the
chosen sampling frequency, φk is the phase of the kth
harmonic, and N is the desired number of harmonics. The
sound is synthesized using the implementation shown in Fig. 4
given the pitch, level (volume) and stored spectral envelope
corresponding to the timbre of the sound. The harmonic
phases are usually set to arbitrary initial values. Additive
synthesis is a computationally complex but flexible sound
modeling method. Inharmonic components are not considered
here. Instrument temporal envelope modeling has not been
considered here. But rather we assume that the harmonic
amplitudes are constant over the note duration.

Fig 5. Spectrogram of an octave played on (a) harmonium and (b)
flute.

 From Fig 5. we see that harmonium is a spectrally rich
instrument having dominant higher order harmonics. Thus
synthesizing its sound takes up a lot of computation. On the
other hand flute has at most five significant harmonics. Hence
amount of computation time required for flute synthesis is
less.

Fig.6 Comparison of spectral envelope of harmonium notes.

Fig.6. shows the smooth spectral envelope of a harmonium
tone computed by averaging over a number of different notes
in each of two frequency ranges:low (50-160 Hz) and high
(170-512 Hz). Depending on the pitch of the desired note, the

Amp 1

Freq 1

Amp 2

Amp n

Freq 2

Freq n

 Desired
 Sound

harmonic amplitudes are read off one of these stored envelope
for additive synthesis.

 The human ear is very sensitive to abrupt changes in phase.
Hence phase of each final value of the frame is tracked in
order to make the synthesized waveform shape continuous.
Otherwise the synthesis will result in artifacts manifested as
clicking sounds after each frame, resulting in an unpleasant
and poor audio quality.

 Time in

III . DSP IMPLEMENTATION OF THE
ACCOMPANIMENT SYSTEM

In this section we discuss implementation of the proposed
accompaniment system on TMS320C6713 floating point
Digital Signal Processor from Texas Instruments [6]. It has an
optimized architecture for fast operation capable of a large
number of mathematical operations on large chunks of data
with minimum latency in order to facilitate real time
operations. TMS320C6713 has a clock frequency of 225 MHz
but an architecture giving higher MIPS (Million Instruction Per
Second) compared to other processors of similar speed [7].
The advantage of this processor over a fixed point processor is
that there are reduced errors due to overflow, truncation and
rounding of operands. Additionally this processor has the
ability to handle a large dynamic range and also algorithms are
easier to implement in floating point DSP rather than fixed
point. The CCS (Code Composer Studio v3. 1) is used for
compiling, and creating an assembly language code and
linking.

 The present algorithm involves block-based processing i.e.
computations are carried out every 40ms throughout the non-
silent region of the input audio signal to generate estimated
pitch corresponding to the centre of the 40ms frame.

A. Programming aspects of DSP Implementation
For low pass filtering in the preprocessing stage, an elliptical
filter is chosen as no other filter of equal order can have a
faster transition in gain between the pass band and stop band.
Lesser order means less complexity and memory
consumption. A 10th order low pass elliptical filter with pass
band as 600Hz and stop band attenuation of -80dB is
designed. For implementing the 10th order filter, its transfer
function is broken into second order sections and then
cascaded. This is done so as to reduce the quantization
effects. Each of the second order section is written in terms of
its difference equation. This takes lesser number of CPU
cycles as it involves only addition and storage elements.
Linear buffers are used to store the delayed by one sample
values. After each iteration the new value is stored in the first
element of the storage buffers whereas the last value is
discarded. Every iteration results in the buffer elements being
right shifted by one (first in, last out).
Division generally takes much more time as compared to other
mathematical operations. Hence it is avoided as much as
possible. Synthesis of required audio needs a lot of harmonic

components to be generated each corresponding to a sine
function. Hence we define a look up table for the values of
the sine function. Again the intervals in the table must be
optimized by experiments done without the loss of accuracy
and quality. In order to save memory the look up table for
only half the sinusoidal cycle is considered [8]. Thus 256
samples of a half cycle of sinusoid are stored. Sampling
frequency cannot be too high since it means lesser time
available to fill up the individual buffers and thus lesser
processing time for the algorithm. Frame length too dictates
the real time performance as well as pitch accuracy. Therefore
repeated profiling was carried out till our system worked
efficiently. It executes the code rapidly and uses fewer
available resources on the chip.

Finally 8 kHz sampling was chosen as the best trade-off
between sound quality and computation time. The size of the
buffer for a 40ms analysis frame was thus equal to 320.
Block-based processing with DMA was done instead of
sample by sample processing due to computational complexity
of the algorithm. Ping and Pong buffers alternately receive the
samples or process and extract pitch. Instead of sorting the
minima after AMDF computation which may take up a lot of
computational cycles, a different approach is taken. First the
global minimum of the function xw(m) is calculated for a
particular frame. Then using a predetermined threshold only
those minima that lie within the threshold are stored. Now out
of these values the minima that has the least time index “m”
is chosen as the desired value of the period. The values for the
amplitudes of the Fourier coefficients of a particular
instrument were stored in look up table to save the
computational time.
 This accompaniment system has many features which makes
its similar to electronic tanpura in some ways. Its output pitch
can be tuned to our desired pitch range providing flexibility.
Since it was observed that the delay between the accompanying
instrument and the lead vocalist varies depending on
composition, mood and the need delay can be varied with . As
of now there is a provision of playing one of the three
accompanying instruments namely harmonium, violin and
flute. But virtually any non percussion instrument can be
synthesized by studying its spectrum for the amplitudes to be
used in additive synthesis.

IV. EVALUATION OF THE ACCOMPANIMENT SYSTEM
 For evaluation a set of five musical pieces is chosen. In
order to cover a large number of variations songs having a
variety of musical ornaments are selected. Five different
singers were chosen. In the first stage the pitch accuracy is
calculated. Here the accuracy depicts the total number of
frames lying within a range of 50 cents of the original pitch
value. A total of 745 seconds database of audio files was thus
selected and the pitch accuracy was found to be 93.45% based
on ground-truth pitch values obtained via a semi-automatic
melody detection interface for polyphonic music [9].

 After assigning fixed pitch values based on the detected user
tuning, note names are assigned to the output of our “virtual
instrument” for a particular song. Thus for each song we get a

musical score wherein each note duration is assigned according
to the known tempo of the audio file. To validate the note
segmentation stage, it was necessary to get the ground truth
note sequence corresponding to the songs. This was achieved
by getting an expert harmonium player to reproduce the song
on harmonium while listening to the corresponding singing
audio over headphones. The harmonium audio was transcribed
into notes by automatic pitch detection. Word error rate is
often used to evaluate the performance of a speech recognition
system. Here after getting these two strings (i.e. the
automatically segmented note sequence and the human
harmonium experts note sequence) they can be compared for
word error rate viz. number of matches, number of
substitutions, deletions and insertions between two optimally
aligned strings. Word error rate is computed as :

ܴܧܹ = ௌାାூ
ே

 (4)
where S is the number of substitutions, D is the number of
deletions, I is the number of insertions, N is the number of
words in the reference which are the notes played by an actual
instrument player.

TABLE II. COMPARISON OF ACTUAL INSTRUMENT AND PROPOSED
VIRTUAL ACCOMPANIMENT SYSTEM IN TERMS OF WORD ERROR RATE

OF NOTES.

Song
Name

% Notes

Matching

% Note

Substitutions

% Note

Insertions

% Note

Deletions

%

WER

Kesar 78.32 5.59 11.89 4.2 21.68

Kaise
Paheli

77.78 13.07 8.17 0.98 22.22

Total 77.88 11.66 8.87 1.59 22.12

 Table II shows the results for a subset of the songs. Here we
note that even though the accuracy was very high, the number
of matching notes given by DSP and that of actual player is
around 77%. This happens because the duration for which a
note is played depends on individual player and style. Also
musical ornaments Kan-Swar and vibrato are followed by our
system whereas real instrument players often tend to ignore
such notes. Thus there are greater number of substitutions as
compared to deletions as the current system follows whatever
the main artist does whereas the accompanist may follow these
subtle changes depending on the expertise.
 After this we move to evaluation of the accompaniment
system from the point of view of hardware resources utilized.
The hardware resources utilized towards the DSP
implementation of the accompaniment system is reported in
Table III. Here since a 40 ms frame was chosen with a
sampling frequency of 8 kHz available clock cycles are 9 x
106.

 TABLE III. HARDWARE UTILIZATION OF THE ACCOMPANIMENT SYSTEM

V. CONCLUSION AND FUTURE WORK
In this paper implementation of a music accompaniment

system, particularly for Indian music, is implemented on a
TMS320C6713. It gives satisfactory performance both in terms
of sound quality and accuracy. The C-code is written keeping
in mind the real time considerations and the limited memory
space available on the DSP chip. We have managed to
synthesize the sound of harmonium by formulation of some
simple rules but these need to be further refined. The temporal
envelope of the synthesized tones needs to be shaped for more
authentic quality. Also from the experiments carried out, we
see that the virtual harmonium is tracking the vibrato effect by
switching between two notes whereas a harmonium player
does it seldomly. There remain such differences for which
musicological knowledge is required.

AKNOWLEDGEMENT
This work was done while Prateek Verma was with the Bharti
Centre for Communication at IIT Bombay. He would also like

to thank Vishweshwara Rao for his kind suggestions.

 REFERENCES

[1] http://khu.sh/
[2] http://research.microsoft.com/en-us/um/people/dan/mysong/
[3] A. D. Chveigne And H. Kawahara, Yin, A Fundamental Frequency

Estimator For Speech And Music, J. Accoust. Soc. Am. 111 (4),
2002, pp 1917-1930.

[4] D. Gerhard, Pitch Extraction And Fundamental Frequency: History
And Current Techniques, Technical Report, University Of Regina,
Canada, 2003.

[5] Patricio De La Cuadra, Aaronmaster And Craig Sapp, Efficient Pitch
Detection Techniques For Interactive Music , Center For Computer
Research In Music And Acoustics, Stanford University.

[6] TMS320C6713 Floating Point Digital Signal Processor, SPRS186L,
Nov 2005.

[7] http://www.eecg.toronto.edu/~moshovos/ACA05/004-pipelining.pdf
[8] Francis Kua,Generation Of A Sine Wave Using A TMS320C54xx

Digital Signal Processor, Application Report Texas Instruments
SPRA 819, July 2004

[9] S. Pant, V. Rao and P. Rao, A Melody Detection User Interface For
Polyphonic Music, Proc. of the National Conference on
Communications (NCC), 2010, Chennai, India.

Resource Utilization Details
DSP Device TMS320C6713

Clock Frequency 225MHz
Program Memory Used 187kbytes

Clock Cycles consumed per
execution

8.9671 x 106

%idle processor time per execution

0.3661

% Memory consumed 83.1 %

