8051 Interrupts

Dinesh K. Sharma
Electrical Engineering Department
LLI.T. Bombay
Mumbai 400 076

1 Interrupt Sources

The 8051 architecture can handle interrupts from 5 sources. These are: the two
external interrupt lines, two timers and the serial interface. Each one of these is
assigned an interrupt vector address. This is quite similar to the RST interrupt
vectors in the case of 8085.

1.1 External Interrupts

Port P3 of 8051 is a multi-function port. Different lines of this port carry out
functions which are additional to data input-output on the port.

Additional functions of Port 3 lines

Port Line | P3.7 | P3.6 | P3.5 | P34 | P3.3 | P3.2 | P3.1 | P3.0
Function RD | WR | Tlin | TOin | INT1 | INTO | TxD | RxD

Lines P3.2 and P3.3 can be used as interrupt inputs. Interrupts will be caused by
a ‘LOW’ level, or a negative edge on these lines. Half of the special function reg-
ister TCON is used for setting the conditions for causing interrupts from external
sources. This register is bit addressable.

SFR TCON at byte address 88H

Bit No. 7 6 5 4 3 2 1 0
Bit Name | TF1 | TR1 | TFO | TRO | IE1 | IT1 | IEO | ITO
Bit Addr | 8F SE 8D 8C | 8B | 8A | 89 | 88

IT1 and ITO are the “Interrupt Type” flags for external sources 1 and 0 respecively.
These decide whether a negative going edge or a ‘LOW’ level will cause an inter-
rupt. If the bit is set, the corresponding interrupt is edge sensitive. If it is cleared,
the interrupt is level sensitive. IE1 and IEQ are the status flags for the two exter-
nal interrupt lines. If the flag is 1, the selected type of event (edge or level) has
occured on the corresponding interrupt line.

1.2 Internal Interrupts

Internally generated interrupts can be from either timer, or from the serial in-
terface. The serial interface causes interrupts due to a receive event (RI) or due
to a transmit event (TI). The receive event occurs when the input buffer of the
serial line (sbuf in) is full and a byte needs to be read from it. The transmit event
indicates that a byte has been sent a new byte can be written to output buffer of
the serial line (sbuf out).

8051 timers always count up. When their count rolls over from the maximum
count to 0000, they set the corresponding timer flag TF1 or TF0 in TCON. Coun-
ters run only while their run flag (TR1 or TRO) is set by the user program. When
the run flag is cleared, the count stops incrementing. The 8051 can be setup so
that an interrupt occurs whenever TF1 or TFO is set.

2 Enabling Interrupts

At power-up, all interrupts are disabled. Suppose Timer 0 is started. When it
times out, TFO in the special function register TCON will be set. However, this
will not cause an interrupt. To enable interrupts, a number of steps need to be
taken.

Interrupts are enabled in a manner which is quite similar to the 8085. There is
an interrupt enable special function register IE at byte address A8H. This register
is bit addressable. (The assembler gives special mnemonics to each bit address.)

SFR IE at byte address ASH

Bit No. 7 6 5 4 3 2 1 0

Function IE | U U SI | TF1 | Ex1 | TFO | Ex0
Bit Addr | AF | AE| AD | AC| AB | AA | A9 A8
Bit Name | EA | - - ES | ET1 | EX1 | ET0 | EXO0

The most significant bit of the register is a global interrupt enable flag. This bit
must be set in order to enable any interrupt. Bits 6 and 5 are undefined for 8051.
(Bit 5 is used by 8052 for the third timer available in 8052). Bit 4, when set,
enables interrupts from the serial port. Bit 3 should be set to enable interrupts
from Timer 1 overflow. Bit 2 is set to enable interrupts from external interrupt
1 (pin P3.3 on Port 3). Bit 1 enables interrupts from Timer 0 when it overflows.
Bit 0, when set, will enable interrupts from external interrupt 0 (pin P3.2 on Port
3).

3 Interrupt Vectors

When an interrupt occurs, the updated PC is pushed on the stack and is loaded
with the vector address corresponding to the interrupt. The following table gives
the vector addresses. The order of entries in the table is also the order in which
the 8051 will poll these in case of multiple interrupts.

Interrupt Source Vector address
External Interrupt 0 0003H
Timer 0 Overflow 000BH
External Interrupt 1 0013H
Timer 1 Overflow 001BH
Serial Interface 0023H

8051 starts executing from address 0000H at power-up or reset. The first 3 bytes
are typically used for placing a long jump instruction to start of the code area. The
interrupt vectors start from 0003 and are separated by 8 bytes from each other.
Many simple interrupt handlers can be accommodated in this space. Otherwise,
jump instructions (to handler locations) need to be placed at the vector addresses.
This is quite similar to the RST handlers for 8085.

Thus, to enable interrupts from T0, we have to do

SetB EA ;(or SetB IE.7) to enable interrupts
SetB ET0 ;(or SetB IE.1) to enable interrupts from TO

After this, whenever T0 overflows, TF0 will be set (in SFR TCON), the currently
running program will be interrupted, its PC value will be put on the stack (PC-L
first, PC-H after — because the stack grows upwards in 8051), and PC will be
loaded with 000B H. The interrupt handler for TO should be placed here, and it
should end with the instruction:

RETI

4 Interrupt Priorities

8051 has two levels of interrupt priorities: high or low. By assigning priorities,
we can control the order in which multiple interrupts will be serviced. Priorities
are set by bits in a special function register called IP, which is at the byte address
B8H. This register is also bit addressable. The assembler defines special names
for bits of this register.

SFR IP at byte address B8H

Bit No. 7 6) 4 3 2 1 0
Bit Addr | BF | BE | BD | BC| BB | BA | B9 B8
Bit Name | U | U | U | PS | PT1 | PX1 | PTO | PX0

Notice that the bits are in the polling order of interrupts. A 1 in a bit position
assigns a high priority to the corresponding source of interrupts — a 0 gives it a
low priority. In case of multiple interrupts, the following rules apply:

e While a low priority interrupt handler is running, if a high priority interrupt
arrives, the handler will be interrupted and the high priority handler will
run. When the high priority handler does ‘RETT’, the low priority handler
will resume. When this handler does ‘RETI’, control is passed back to the
main program.

e If a high priority interrupt is running, it cannot be interrupted by any other
source — even if it is a high priority interrupt which is higher in polling order.

e A low-priority interrupt handler will be invoked only if no other interrupt is
already executing. Again, the low priority interrupt cannot preempt another
low priority interrupt, even if the later one is higher in polling order.

e If two interrupts occur at the same time, the interrupt with higher priority
will execute first. If both interrupts are of the same priority, the interrupt
which is higher in polling sequence will be executed first. This is the only
context in which the polling sequence matters.

5 Serial Interrupts

Serial interrupts are handled somewhat differently from the timers. There are
independent interrupt flags for reception and transmission of serial data, called
RI and TI. RI indicates that a byte has been received and is available for reading
in the input buffer. TI indicates that the previous byte has been sent serially
and a new byte can be written to the serial port. A serial interrupt occurs if
either of these flags is set. (Of course the serial interrupt must be enabled for
this to occur). The interrupt service routine should check which of these events
caused the interrupt. This can be done by examining the flags. Either or both
of the flag might be set, requiring a read from or write to the serial buffer sbuf
(or both). Recall that the input and output buffers are distinct but are located
at the same address. A read from this address reads the input buffer while a
write to the same address writes to the output buffer. The RI and TI flags are
not automatically cleared when an interrupt is serviced. Therefore, the interrupt
service routine must clear them before returning. Here is an example handler for
serial interrupts:

Serial_ISR:
PUSH PSW ; Save flags and context
PUSH ACC ; and accumulator
JNB RI,output; If RI not set, check for TI
MOV A, SBUF

MOV
CLR
output:
JNB
MOV
MOV
CLR
done: POP
POP
RETI

inchar, A;
RI ;

3

TI, done ;
A, outchar;
sbuf, A ;
TI ;
ACC 5
PSW ;

3

Save this character
clear receive interrupt flag

; Check if output is required

If no transmit interrupt, leave
Else get the char to send
Write to serial buffer

Clear Transmit interrupt flag
Restore Accumulator

and flags

and return

6 Sequence of Events after an interrupt

When an enabled interrupt occurs,

1. The PC is saved on the stack, low byte first. Notice that this order is different
from 8085. This is because the stack grows upwards in 8051.

2. Other interrupts of lower priority and same priority are disabled.

3. Except for the serial interrupt, the corresponding interrupt flag is cleared.

4. PC is loaded with the vector address corresponding to the interrupt.

When the handler executes ‘RETT”

1. PC is restored by popping the stack.

2. Interrupt status is restored to its original value. (Same and lower priority
interrupts restored to original status).

