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Abstract

What is an algorithm? The interest in this foundational problem is not
only theoretical; applications include specification, validation and verifica-
tion of software and hardware systems. We describe the quest to understand
and define the notion of algorithm. We start with the Church-Turing thesis
and contrast Church’s and Turing’s approaches, and we finish with some
recent investigations.

Contents
1 Introduction

2 The Church-Turing thesis
2.1 Church + Turing . . . . . . . .. o
2.2 Turing — Church . . . ... ... o oo L

2.3 Remarks on Turing’s analysis . . . . .. ... ... ... ......
3 Kolmogorov machines and pointer machines

4 Related issues
4.1 Physics and computations . . . . .. ..o L0000 L.
4.2 Polynomial time Turing’s thesis . . . . . . .. .. ... ... ...

4.3 Recursion . . . . . . .. s,

*Partially supported by NSF grant DMS—0070723 and by a grant from Microsoft Research.

Address: Mathematics Department, University of Michigan, Ann Arbor, MI 48109-1109.
tMicrosoft Research, One Microsoft Way, Redmond, WA 98052.



5 Formalization of sequential algorithms 14

5.1 Sequential Time Postulate . . . . . . . ... ... ... ... .... 15
5.2 Small-step algorithms . . . . . . . .. ... o000 16
5.3 Abstract State Postulate . . . . . .. ... ... ... ... ... 16
5.4 Bounded Exploration Postulate and the definition of sequential al-
gorithms . . . . . .. ..o 18
5.5 Sequential ASMs and the characterization theorem . . . .. . . .. 19
6 Formalization of parallel algorithms 20
6.1 What parallel algorithms? . . . . .. ... ... 0000 21
6.2 A few words on the axioms for wide-step algorithms . . . . . . . .. 21
6.3 Wide-step abstract state machines . . . . . . . ... ... ... ... 22
6.4 The wide-step characterization theorem . . . . . . . . . .. ... .. 23
7 Toward formalization of distributed algorithms 23
7.1 Trivial updates in distributed computation . . . . . . . .. ... .. 23
7.2 Intra-step interacting algorithms . . . . . . . . .. ... ... ... 24

1 Introduction

In 1936, Alonzo Church published a bold conjecture that only recursive functions
are computable [10]. A few months later, independently of Church, Alan Turing
published a powerful speculative proof of a similar conjecture: every computable
real number is computable by the Turing machine [54]. Kurt Gédel found Church’s
thesis “thoroughly unsatisfactory” but later was convinced by Turing’s argument.
Later yet he worried about a possible flaw in Turing’s argument. In Section 2 we
recount briefly this fascinating story, provide references where the reader can find
additional details, and give remarks of our own.

By now, there is overwhelming experimental evidence in favor of the Church-
Turing thesis. Furthermore, it is often assumed that the Church-Turing thesis
settled the problem of what an algorithm is. That isn’t so. The thesis clarifies the
notion of computable function. And there is more, much more to an algorithm
than the function it computes. The thesis was a great step toward understanding
algorithms, but it did not solve the problem what an algorithm is.

Further progress in foundations of algorithms was achieved by Kolmogorov and
his student Uspensky in the 1950s [39, 40]. The Kolmogorov machine with its



reconfigurable “tape” has a certain advantage over the Turing machine. The notion
of pointer machine was an improvement of the notion of Kolmogorov machine.
These issues are discussed in Section 3

This paper started as a write-up of the talk that the second author gave at the Kol-
mogorov Centennial conference in June 2003 in Moscow. The talk raised several
related issues: physics and computation, polynomial time versions of the Turing
thesis, recursion and algorithms. These issues are very briefly discussed in Sec-
tion 4.

In 1991, the second author published the definition of sequential abstract state
machines (ASMs, called evolving algebras at the time) [23]. In 2000, he published
a definition of sequential algorithms derived from first principles [27]. In the same
paper he proved that every sequential algorithm A is behaviorally equivalent to
some sequential ASM B. In particular, B simulates A step for step. In Section 5
we outline the approach of [27].

In 1995, the second author published the definition of parallel and distributed
abstract state machines [25]. The Foundations of Software Engineering group at
Microsoft Research developed an industrial strength specification language AsmlL
that allows one to write and execute parallel and distributed abstract state ma-
chines [2]. In 2001, the present authors published a definition of parallel algorithms
derived from first principles as well as a proof that every parallel algorithm is equiv-
alent to a parallel ASM [7]. Section 6 is a quick discussion of parallel algorithms.

The problem of defining distributed algorithms from first principles is open. In
Section 7 we discuss a few related issues.

Finally let us note that foundational studies go beyond satisfying our curiosity.
Turing machines with their honest counting of steps enabled computational com-
plexity theory. Kolmogorov machines and pointer machines enabled better com-
plexity measures. Abstract state machines enable precise executable specifications
of software systems though this story is only starting to unfold [1, 2, 9].

2 The Church-Turing thesis

2.1 Church + Turing

The celebrated Church-Turing thesis [10, 54] captured the notion of computable
function. Every computable function from natural numbers to natural numbers
is recursive and computable, in principle, by the Turing machine. The thesis has
been richly confirmed in practice. Speaking in 1946 at the Princeton Bicentennial
Conference, Godel said this [19, article 1946]:



Tarski has stressed in his lecture (and I think justly) the great impor-
tance of the concept of general recursiveness (or Turing’s computabil-
ity). It seems to me that this importance is largely due to the fact
that with this concept one has for the first time succeeded in giving
an absolute definition of an interesting epistemological notion, i.e., one
not depending on the formalism chosen. In all other cases treated pre-
viously, such as demonstrability or definability, one has been able to
define them only relative to the given language, and for each individual
language it is clear that the one thus obtained is not the one looked
for. For the concept of computability, however, although it is merely
a special kind of demonstrability or decidability, the situation is differ-
ent. By a kind of miracle it is not necessary to distinguish orders, and
the diagonal procedure does not lead outside the defined notion.

2.2 Turing — Church

It became common to speak about the Church-Turing thesis. In fact the contri-
butions of Church and Turing are different, and the difference between them is
of importance to us here. Church’s thesis was a bold hypothesis about the set of
computable functions. Turing analyzed what can happen during a computation
and thus arrived at his thesis.

Church’s Thesis The notion of an effectively calculable function from natural
numbers to natural numbers should be identified with that of a recursive function.

Church had in mind total functions [10]. Later Kleene improved on Church’s thesis
by extending it to partial functions [32]. The fascinating history of the thesis is
recounted in [14]; see also [51].

Originally Church hypothesized that every effectively calculable function from nat-
ural numbers to natural numbers is definable in his lambda calculus. Gdédel didn’t
buy that. In 1935, Church wrote to Kleene about his conversation with Goédel [14,
Page 9.

In discussion [sic] with him the notion of lambda-definability, it devel-
oped that there was no good definition of effective calculability. My
proposal that lambda-definability be taken as a definition of it he re-
garded as thoroughly unsatisfactory. I replied that if he would propose
any definition of effective calculability which seemed even partially sat-
isfactory I would undertake to prove that it was included in lambda-
definability. His only idea at the time was that it might be possible, in



terms of effective calculability as an undefined notion, to state a set of
axioms which would embody the generally accepted properties of this
notion, and to do something on this basis.

Church continued:

Evidently it occurred to him later that Herbrand’s definition of recur-
siveness, which has no regard to effective calculability, could be modi-
fied in the direction of effective calculability, and he made this proposal
in his lectures. At that time he did specifically raise the question of
the connection between recursiveness in this new sense and effective
calculability, but said he did not think that the two ideas could be
satisfactorily identified “except heuristically”.

The lectures of Gédel mentioned by Church were given at the Institute for Ad-
vanced Study in Princeton from February through May 1934. In a February 15,
1965, letter to Martin Davis, Godel wrote [14, page 8]:

However, I was, at the time of these lectures [1934], not at all convinced
that my concept of recursion comprises all possible recursions.

Soon after Godel’s lectures, Church and Kleene proved that the Herbrand-Godel
notion of general recursivity is equivalent to lambda definability (as far as total
functions are concerned), and Church became sufficiently convinced of the correct-
ness of his thesis to publish it. But G6del remained unconvinced.

Indeed, why should one believe that lambda definability captures the notion of
computability? The fact that lambda definability is equivalent to general recur-
sivity, and to various other formalizations of computability that quickly followed
Church’s paper, proves only that Church’s notion of lambda definability is very
robust.

To see that a mathematical definition captures the notion of computability, one
needs an analysis of the latter. This is what Turing provided to justify his thesis.

Turing’s Thesis Let X be a finite alphabet. A partial function from strings
over X to strings over X is effectively calculable if and only if it is computable by
a Turing machine.

Remark 2.1 Turing designed his machine to compute real numbers but the ver-
sion of the Turing machine that became popular works with strings in a fixed
alphabet. Hence our formulation of Turing’s thesis.



Turing analyzed a computation performed by a human computer. He made a
number of simplifying without-loss-of-generality assumptions. Here are some of
them. The computer writes on graph paper; furthermore, the usual graph paper
can be replaced with a tape divided into squares. The computer uses only a finite
number of symbols, a single symbol in a square. “The behavior of the computer
at any moment is determined by the symbols which he is observing, and his ‘state
of mind’ at that moment”. There is a bound on the number of symbols observed
at any one moment. “We will also suppose that the number of states of mind
which need to be taken into account is finite. .. If we admitted an infinity of states
of mind, some of them will be ‘arbitrarily close’ and will be confused”. He ends
up with a Turing machine simulating the original computation. Essentially Turing
derived his thesis from more or less obvious first principles though he didn’t state
those first principles carefully.

“It seems that only after Turing’s formulation appeared,” writes Kleene in [33, Page
61], “did Godel accept Church’s thesis, which had then become the Church-Turing
thesis.” “Turing’s arguments,” he adds in [34, Page 48|, “eventually persuaded
him.”

Church’s lambda calculus was destined to play an important role in programming
theory. The mathematically elegant Herbrand-Godel-Kleene notion of partial re-
cursive functions served as a springboard for many developments in recursion the-
ory. The Turing machine gave us honest step counting and became eventually the
foundation of complexity theory.

2.3 Remarks on Turing’s analysis

Very quickly the Church-Turing thesis acquired the status of a widely shared belief.
Meantime Godel grew skeptical of at least one aspect of Turing’s analysis. In a
remark published after his death, G6del writes this [19, article 1972a, page 306].

A philosophical error in Turing’s work. Turing in his [54, page 250],
gives an argument which is supposed to show that mental procedures
cannot go beyond mechanical procedures. However, this argument is
inconclusive. What Turing disregards completely is the fact that mind,
in its use, 1s not static, but constantly developing, i.e. that we under-
stand abstract terms more and more precisely as we go on using them,
and that more and more abstract terms enter the sphere of our un-
derstanding. There may exist systematic methods of actualizing this
development, which could form part of the procedure. Therefore, al-
though at each stage the number and precision of the abstract terms at
our disposal may be finite, both (and therefore, also Turing’s number
of distinguishable states of mind) may converge toward infinity in the



course of the application of the procedure.

Godel was extremely careful in his published work. It is not clear whether the
remark in question was intended for publication as is. In any case, the question
whether mental procedures can go beyond mechanical procedures is beyond the
scope of this paper, which focuses on algorithms. Furthermore, as far as we can
see, Turing did not intend to show that mental procedures cannot go beyond
mechanical procedures. The expression “state of mind” was just a useful metaphor
that could be and in fact was eliminated: “we avoid introducing the ‘state of mind’
by considering a more physical and definite counterpart of it” [54, Page 253].

But let us consider the possibility that Godel didn’t speak about biology either,
that he continued to use Turing’s metaphor and worried that Turing’s analysis does
not apply to some algorithms. Can an algorithm learn from its own experience,
become more sophisticated and thus compute a real number that is not computable
by the Turing machine? Note that the learning process in question is highly unusual
because it involves no interaction with the environment. (On the other hand, it
is hard to stop brains from interacting with the environment.) Gddel gives two
examples “illustrating the situation”, both aimed at logicians.

Note that something like this indeed seems to happen in the process of
forming stronger and stronger axioms of infinity in set theory. This pro-
cess, however, today is far from being sufficiently understood to form
a well-defined procedure. It must be admitted that the construction
of a well-defined procedure which could actually be carried out (and
would yield a non-recursive number-theoretic function) would require a
substantial advance in our understanding of the basic concepts of math-
ematics. Another example illustrating the situation is the process of
systematically constructing, by their distinguished sequences «,, — «,
all recursive ordinals « of the second number-class.

The logic community has not been swayed. “I think it is pie in the sky!” wrote
Kleene [34, page 51]. Here is a more expansive reaction of his [34, page 50].

But, as I have said, our idea of an algorithm has been such that, in over
two thousand years of examples, it has separated cases when mathe-
maticians have agreed that a given procedure constitutes an algorithm
from cases in which it does not. Thus algorithms have been proce-
dures that mathematicians can describe completely to one another in
advance of their application for various choices of the arguments. How
could someone describe completely to me in a finite interview a process
for finding the values of a number-theoretic function, the execution of
which process for various arguments would be keyed to more than the



finite subset of our mental states that would have developed by the
end of the interview, though the total number of mental states might
converge to infinity if we were immortal? Thus Godel’s remarks do not
shake my belief in the Church-Turing thesis ...

If Godel’s remarks are intended to attack the Church-Turing thesis, then the attack
is a long shot indeed. On the other hand, we disagree with Kleene that the notion
of algorithm is that well understood. In fact the notion of algorithm is richer these
days than it was in Turing’s days. And there are algorithms, of modern and clas-
sical varieties, not covered directly by Turing’s analysis, for example, algorithms
that interact with their environments, algorithms whose inputs are abstract struc-
tures, and geometric or, more generally, non-discrete algorithms. We look briefly
at the three examples just mentioned.

Interactive algorithms This is a broad class. It includes randomized algo-
rithms; you need the environment to provide random bits. It includes asynchronous
algorithms; the environment influences action timing. It includes nondeterministic
algorithms as well [27, section 9.1]. Clearly, interactive algorithms are not cov-
ered by Turing’s analysis. And indeed an interactive algorithm can compute a
non-recursive function. (The nondeterministic Turing machines, defined in com-
putation theory courses, are known to compute only partial recursive functions.
But a particular computation of such a machine cannot in general be simulated by
a deterministic Turing machine.)

Computing with abstract structures Consider the following algorithm P
that, given a finite connected graph G = (V, E) with a distinguished vertex s,
computes the maximum distance of any vertex from s.

A S:={s}andr:=0.

B If S =V then halt and output r.

C IfS#Vthen S:=SU{y:3z(x € SAE(z,y))}and r:=r+1.

D GotoB.

P is a parallel algorithm. Following Turing’s analysis we have to break the as-
signment S :={y: 3z (x € SA E(x,y))} into small tasks of bounded complexity,
e.g. by going systematically though every z € S and every neighbor y of z. But

how will the algorithm go through all z € S? The graph G is not ordered. A
nondeterministic algorithm can pick an arbitrary vertex and declare it the first



vertex, pick one of the remaining vertices and declare it the second vertex, etc.
But a deterministic algorithm cannot do that.

Algorithms like P are not covered directly by Turing’s analysis. But there is an
easy patch if you don’t care about resources and use parallelism. Let n be the
number of vertices. In parallel, the desired algorithm orders the vertices in all n!
possible ways and then carries on all n! computations.

Non-discrete computations Turing dealt with discrete computations. His
analysis does not apply directly e.g. to the classical, geometrical ruler-and-compass
algorithms. The particular case of ruler-and-compass algorithms can be taken care
of; such algorithms do not allow you to compute a non-recursive function [36]. In
general, however, it is not clear how to extend Turing’s analysis to non-discrete
algorithms.

3 Kolmogorov machines and pointer machines

The problem of the absolute definition of algorithm was attacked again in 1953 by
Andrei N. Kolmogorov; see the one-page abstract [39] of his March 17, 1953, talk
at the Moscow Mathematical Society. Kolmogorov spelled out his intuitive ideas
about algorithms. For brevity, we express them in our own words (rather than
translate literally).

e An algorithmic process splits into steps whose complexity is bounded in
advance, i.e., the bound is independent of the input and the current state of
the computation.

e Each step consists of a direct and immediate transformation of the current
state.

e This transformation applies only to the active part of the state and does not
alter the remainder of the state.

e The size of the active part is bounded in advance.

e The process runs until either the next step is impossible or a signal says the
solution has been reached.

In addition to these intuitive ideas, Kolmogorov gave a one-paragraph sketch of a
new computation model. The ideas of [39] were developed in the article [40] written
by Kolmogorov together with his student Vladimir A. Uspensky. The Kolmogorov
machine model can be thought of as a generalization of the Turing machine model



where the tape is a directed graph of bounded in-degree and bounded out-degree.
The vertices of the graph correspond to Turing’s squares; each vertex has a color
chosen from a fixed finite palette of vertex colors; one of the vertices is the current
computation center. Each edge has a color chosen from a fixed finite palette of
edge colors; distinct edges from the same node have different colors. The program
has this form: replace the vicinity U of a fixed radius around the central node by
a new vicinity W that depends on the isomorphism type of the digraph U with
the colors and the distinguished central vertex. Contrary to Turing’s tape whose
topology is fixed, Kolmogorov’s “tape” is reconfigurable.

Remark 3.1 We took liberties in describing Kolmogorov machines. Kolmogorov
and Uspensky require that the tape graph is symmetric — for every edge (z,v)
there is an edge (y,z). The more liberal model is a bit easer to describe. And the
symmetry requirement is inessential in the following sense: any machine of either
kind can be step-for-step simulated by a machine of the other kind.

Like Turing machines, Kolmogorov machines compute functions from strings to
strings; we skip the description of the input and output conventions. In the foot-
note to the article title, Kolmogorov and Uspensky write that they just wanted
to analyze the existing definitions of the notions of computable functions and al-
gorithms and to convince themselves that there is no hidden way to extend the
notion of computable function. Indeed, Kolmogorov machines compute exactly
Turing computable functions. It seems, however, that they were more ambitious.
Here is a somewhat liberal translation from [40, page 16].

To simplify the description of algorithms, we introduced some conven-
tions that are not intrinsic to the general idea, but it seems to us that
the generality of the proposed definition remains plausible in spite of
the conventions. It seems plausible to us that an arbitrary algorithmic
process satisfies our definition of algorithms. We would like to empha-
size that we are talking not about a reduction of an arbitrary algorithm
to an algorithm in the sense of our definition but that every algorithm
essentially satisfies the proposed definition.

In this connection the second author formulated a Kolmogorov-Uspensky thesis
[22, page 227]: “every computation, performing only one restricted local action at
a time, can be viewed as (not only being simulated by, but actually being) the
computation of an appropriate KU machine”. Uspensky concurred [55, page 396].

Kolmogorov’s approach proved to be fruitful. It led to a more realistic complex-
ity theory. For example, given a string z, a Kolmogorov machine can build a
binary tree over x and then move fast about x. Leonid Levin used a universal
Kolmogorov machine to construct his algorithm for NP problems that is optimal
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up to a multiplicative constant [41, 22]. The up-to-a-multiplicative-constant form
is not believed to be achievable for the multitape Turing machine model popular in
theoretical computer science. Similarly, the class of functions computable in nearly
linear time n(logn)°® on Kolmogorov machines remains the same if Kolmogorov
machines are replaced e.g. by various random access computers in the literature; it
is not believed, however, that the usual multitape Turing machines have the same
power [29].

Kolmogorov machines allow one to do reasonable computations in reasonable time.
This may have provoked Kolmogorov to ask new questions. “Kolmogorov ran a
complexity seminar in the 50s or early 60s,” wrote Leonid Levin, a student of Kol-
mogorov, to us [42]. “He asked if common tasks, like integer multiplication, require
necessarily as much time as used by common algorithms, in this case quadratic
time. Unexpectedly, Karatsuba reduced the power to log,(3) [31].” (Readers in-
terested in fast integer multiplication are referred to [38].)

It is not clear to us how Kolmogorov thought of the tape graph. One hypothesis
is that edges reflect physical closeness. This hypothesis collides with the fact that
our physical space is finite-dimensional. As one of us remarked earlier [27, page
81], “In a finite-dimensional Euclidean space, the volume of a sphere of radius n
is bounded by a polynomial of n. Accordingly, one might expect a polynomial
bound on the number of vertices in any vicinity of radius n (in the graph theoretic
sense) of any state of a given KU machine, but in fact such a vicinity may contain
exponentially many vertices.”

Another hypothesis is that edges are some kind of channels. This hypothesis too
collides with the fact that our physical space is finite-dimensional.

Probably the most natural approach would be to think of informational rather
than physical edges. If vertex a contains information about the whereabouts of
b, draw an edge from a to b. It is reasonable to assume that the amount of
information stored at every single vertex a is bounded, and so the out-degree of
the tape graph is bounded. It is also reasonable to allow more and more vertices
to have information about b as the computation proceeds, so that the in-degree of
the tape graph is unbounded. This brings us to Schonhage machines. These can
be seen as Kolmogorov machines (in the version with directed edges) except that
only the out-degrees are required to be bounded. The in-degrees can depend on
the input and, even for a particular input, can grow during the computation.

“In 1970 the present author introduced a new machine model (cf. [47]) now called
storage modification machine (SMM),” writes Schénhage in [48], “and posed the
intuitive thesis that this model possesses extreme flexibility and should there-
fore serve as a basis for an adequate notion of time complexity.” In article
[48], Schonhage gave “a comprehensive presentation of our present knowledge
of SMMs”. In particular, he proved that SMMs are “real-time equivalent” to
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successor RAMs (random access machines whose only arithmetical operation is
a3 n + 1). The following definitions appear in [48, page 491].

Definition 3.2 A machine M’ is said to simulate another machine M “in real
time”, denoted M — M’, if there is a constant ¢ such that for every input sequence
x the following holds: if x causes M to read an input symbol, or to print an output
symbol, or to halt at time steps 0 =ty < t; < --- < #;, respectively, then x causes
M’ to act in the very same way with regard to those external actions at time steps
0=ty <ty <--- <t wheret; —t; | <c(t; —t; 1) for 1 < j < I. For machine
classes M, M' real time reducibility M <> M' is defined by the condition that for
each M € M there exists an M’ € M’ such that M = M'. Real time equivalence
M E M means M 5 M and M' S M. O

Dima Grigoriev proved that Turing machines cannot simulate Kolmogorov ma-
chines in real time [21].

Schonhage introduced a precise language for programming his machines and com-
plained that the Kolmogorov-Uspensky description of Kolmogorov machines is
clumsy. For our purposes here, however, it is simplest to describe Schonhage ma-
chines as generalized Kolmogorov machines where the in-degree of the tape graph
may be unbounded. It is still an open problem whether Schonhage machines are
real time reducible to Kolmogorov machines.

Schénhage states his thesis as follows: “M - SMM holds for all atomistic machine
models M.”

Schonhage writes that Donald E. Knuth “brought to his attention that the SMM
model coincides with a special type of ‘linking automata’ briefly explained in vol-
ume one of his book (cf. [37, pages 462-463]) in 1968 already. Now he suggests
calling them ‘pointer machines’ which, in fact, seems to be the adequate name
for these automata.” Note that Kolmogorov machines also modify their storage.
But the name “pointer machine” fits Knuth-Schonhage machines better than it
fits Kolmogorov machines.

A successor RAM is a nice example of a pointer machine. Its tape graph consists
of natural numbers and a couple of special registers. Each special register has only
one pointer, which points to a natural number that is intuitively the content of the
register. Every natural number n has only a pointer to n+ 1, a pointer to another
natural number that is intuitively the content of register n, and a pointer to every
special register.

The notion of pointer machine seems an improvement over the notion of Kol-
mogorov machine to us (and of course the notion of Kolmogorov machine was an
improvement over the notion of Turing machine). And the notion of pointer ma-
chine proved to be useful in the analysis of the time complexity of algorithms. In
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that sense it was successful. It is less clear how much of an advance all these devel-
opments were from the point of view of absolute definitions. The pointer machine
reflected the computer architecture of real computers of the time. (The modern
tendency is to make computers with several CPUs, central processing units, that
run asynchronously.)

Remark 3.3 In an influential 1979 article, Tarjan used the term “pointer ma-
chine” in a wider sense [53]. This wider notion of pointer machines has become
better known in computer science than the older notion.

4 Related issues

We mention a few issues touched upon in the talk that was the precursor of this
paper. It is beyond the scope of this paper to develop these issues in any depth.

4.1 Physics and computations

What kind of computations can be carried out in our physical universe? We are
not talking about what functions are computable. The question is what algorithms
are physically executable. We don’t expect a definitive answer soon, if ever. It
is important, however, to put things into perspective. Many computer science
concerns are above the level of physics. It would be great if quantum physics
allowed us to factor numbers fast, but this probably will not greatly influence
programming language theory.

Here are some interesting references.

e Robin Gandy attempted to derive Turing’s thesis from a number of “princi-
ples for mechanisms” [17]. Wilfried Sieg continues this line of research [52].

e David Deutsch [15] designed a universal quantum computer that is supposed
to be able to simulate the behavior of any finite physical system. Gandy’s ap-
proach is criticized in [16, pages 280-281]. Deutsch’s approach and quantum
computers in general are criticized in [43, Section 2].

e Charles H. Bennett and Rolf Landauer pose in [3] important problems related
to the fundamental physical limits of computation.

e Marian Boykan Pour-El and Ian Richards [45] investigate the extent to which
computability is preserved by fundamental constructions of analysis, such as
those used in classical and quantum theories of physics.

13



4.2 Polynomial time Turing’s thesis

There are several versions of the polynomial time Turing’s thesis discussed in theo-
retical computer science. For simplicity, we restrict attention to decision problems.

To justify the interest in the class P of problems solvable in polynomial time by
a Turing machine, it is often declared that a problem is feasible (= practically
solvable) if and only if it is in P. Complexity theory tells us that there are P
problems unsolvable in time n!%°°. A more reasonable thesis is that a “natural
problem” is feasible if and only if it is in P. At the 1991 Annual Meeting of the
Association of Symbolic Logic, Steve Cook argued in favor of that thesis, and the
second author argued against it. Some of the arguments can be found in [11] and
[24] respectively.

A related but different version of the polynomial time Turing thesis is that a prob-
lem is in P if it can be solved in polynomial time at all, by any means. The
presumed reason is that any polynomial time computation can be polynomial time
simulated by a Turing machine (so that the computation time of the Turing ma-
chine is bounded by a polynomial of the computation time of the given computing
device). Indeed, most “reasonable” computation models are known to be polytime
equivalent to the Turing machine. “As to the objection that Turing machines pre-
dated all of these models,” says Steve Cook [12], “I would reply that models based
on RAMs are inspired by real computers, rather than Turing machines.”

Quantum computer models can factor arbitrary integers in polynomial time [50],
and it is not believed that quantum computers can be polynomial time simulated
by Turing machines. For the believers in quantum computers, it is more natural
to speak about probabilistic Turing machines. We quote from [4].

Just as the theory of computability has its foundations in the Church-
Turing thesis, computational complexity theory rests upon a modern
strengthening of this thesis, which asserts that any “reasonable” model
of computation can be efficiently simulated on a probabilistic Turing
Machine (an efficient simulation is one whose running time is bounded
by some polynomial in the running time of the simulated machine).
Here, we take reasonable to mean in principle physically realizable.

Turing’s analysis does not automatically justify any of these new theses. (Nor
does it justify, for example, the thesis that polynomial time interactive Turing
machines capture polynomial time interactive algorithms.) Can any of the theses
discussed above be derived from first principles? One can analyze Turing’s original
justification of his thesis and see whether all the reductions used by Turing are
polynomial time reductions. But one has to worry also about algorithms not
covered directly by Turing’s analysis.
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4.3 Recursion

According to Yiannis Moschovakis, an algorithm is a “recursor”, a monotone op-
erator over partial functions whose least fixed point includes (as one component)
the function that the algorithm computes [44]. He proposes a particular language
for defining recursors. A definition may use various givens: functions or recursors.

Moschovakis gives few examples and they are all small ones. The approach does
not seem to scale to algorithms interacting with an unknown environment. A pos-
teriori the approach applies to well understood classes of algorithms. Consider
for example non-interactive sequential or parallel abstract state machines (ASMs)
discussed below in Sections 5 and 6. Such an ASM has a program for doing a
single step. There is an implicit iteration loop: repeat the step until, if ever, the
computation terminates. Consider an operator that, given an initial segment of
a computation, augments it by another step (unless the computation has termi-
nated). This operator can be seen as a recursor. Of course the recursion advocates
may not like such a recursor because they prefer stateless ways.

We are not aware of any way to derive from first principles the thesis that algo-
rithms are recursors.

5 Formalization of sequential algorithms

Is it possible to capture (= formalize) sequential algorithms on their natural levels
of abstraction? Furthermore, is there one machine model that captures all sequen-
tial algorithms on their natural levels of abstraction? According to [27], the answer
to both questions is yes. We outline the approach of [27] and put forward a slight
but useful generalization.

As a running example of a sequential algorithm, we use a version Euc of Euclid’s al-

gorithm that, given two natural numbers, computes their greatest common divisor
d.

1. Set a = Inputl, b = Input2.
2. If a = 0 then set d = b and go to 1
else set a, b = b mod a, a respectively and go to 2.

Initially Euc waits for the user to provide natural numbers Inputl and Input2.
The assignment on the last line is simultaneous. If, for instance, a = 6 and b =9
in the current state then a = 3 and b = 6 in the next state.
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5.1 Sequential Time Postulate

A sequential algorithm can be viewed as a finite or infinite state automaton.

Postulate 1 (Sequential Time) A sequential algorithm A is associated with
e a nonempty set S(A) whose members are called states of A,

e a nonempty'subset Z(A) of S(A) whose members are called initial states of
A, and

e amap 74 : S(A) — S(A) called the one-step transformation of A.

The postulate ignores final states [27, section 3.3.2]. We are interested in runs
where the steps of the algorithm are interleaved with the steps of the environment.
A step of the environment consists in changing the current state of the algorithm
to any other state. In particular it can change the “final” state to a non-final state.
To make the one-step transformation total, assume that the algorithm performs
an idle step in the “final” states. Clearly Euc is a sequential time algorithm. The
environment of Euc includes the user who provides input numbers (and is expected
to take note of the answers).

This sequential-time postulate allows us to define a fine notion of behavioral equiv-
alence.

Definition 5.1 Two sequential time algorithms are behaviorally equivalent if they
have the same states, the same initial states and the same one-step transformation.

The behavioral equivalence is too fine for many purposes but it is necessary for
the following.

Corollary 5.2 If algorithms A and B are behaviorally equivalent then B step-for-
step simulates A in any environment.

The step-for-step character of simulation is important. Consider a typical dis-
tributed system. The agents are sequential-time but the system is not. The sys-
tem guarantees the atomicity of any single step of any agent but not of a sequence
of agent’s steps. Let A be the algorithm executed by one of the agents. If the
simulating algorithm B makes two steps to simulate one step of A then another
agent can sneak in between the two steps of B and spoil the simulation.

In [27], Z(A) and S(A) were not required to be nonempty. But an algorithm without an
initial state couldn’t be run, so is it really an algorithm? We therefore add “nonempty” to the
postulate here.
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5.2 Small-step algorithms

An object that satisfies the sequential-time postulate doesn’t have to be an al-
gorithm. In addition we should require that there is a program for the one-step
transformation. This requirement is hard to capture directly. It will follow from
other requirements in the approach of [27].

Further, a sequential-time algorithm is not necessarily a sequential algorithm. For
example, the algorithm P in subsection 2.3 is not sequential. The property that
distinguishes sequential algorithms among all sequential-time algorithms is that
the steps are of bounded complexity. The algorithms analyzed by Turing in [54]
were sequential:

The behavior of the computer at any moment is determined by the
symbols which he is observing and his ‘state of mind’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes
to observe more, he must use successive observations. We will also
suppose that the number of states of mind which need be taken into
account is finite.

The algorithms analyzed by Kolmogorov in [39] are also sequential: “An algorith-
mic process is divided into separate steps of limited complexity.”

These days there is a tendency to use the term “sequential algorithm” in the wider
sense of the contrary of the notion of a distributed algorithm. That is, “sequential”
often means what we have called “sequential-time”. So we use the term “small-
step algorithm” as a synonym for the term “sequential algorithms” in its traditional
meaning.

5.3 Abstract State Postulate

How does one capture the restriction that the steps of a small-step algorithms are
of bounded complexity? How does one measure the complexity of a single-step
computation? Actually we prefer to think of bounded work instead of bounded
complexity. The work that a small-step algorithm performs at any single step is
bounded, and the bound depends only on the algorithm and does not depend on
input. This complexity-to-work reformulation does not make the problem easier
of course. How does one measure the work that the algorithm does during a step?
The algorithm-as-a-state-automaton point of view is too simplistic to address the
problem. We need to know more about what the states are. Fortunately this
question can be answered.
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Postulate 2 (Abstract State)

e States of a sequential algorithm A are first-order structures.
o All states of A have the same vocabulary.
e The one-step transformation 74 does not change the base set of any state.

e S(A) and Z(A) are closed under isomorphisms. Further, any isomorphism
from a state X onto a state Y is also an isomorphism from 74(X) onto
TA (Y)
The notion of first-order structure is well-known in mathematical logic [49]. We
use the following conventions:

e Every vocabulary contains the following logic symbols: the equality sign, the
nullary relation symbols true and false, and the usual Boolean connectives.

e Every vocabulary contains the nullary function symbol undef.

e Some vocabulary symbols may be marked static. The remaining symbols are
marked external or dynamic or both?. All logic symbols are static.

e In every structure, true is distinct from false and undef, the equality sign
has its standard meaning, and the Boolean connectives have their standard
meanings on Boolean arguments.

The symbols true and false allow us to treat relation symbols as special function
symbols. The symbol undef allows us to deal with partial functions; recall that
first-order structures have only total functions. The static functions (that is the
interpretations of the static function symbols) do not change during the compu-
tation. The algorithm can change only the dynamic functions. The environment
can change only the external functions.

It is easy to see that higher-order structures are also first-order structures (though
higher-order logics are richer than first-order logic). We refer to [27] for justifica-
tion of the abstract-state postulate. Let us just note that the experience of the
ASM community confirms that first-order structures suffice to describe any static
mathematical situation [1].

It is often said that a state is given by the values of its variables. We take this
literally. Any state of a sequential algorithm should be uniquely determined (in

2This useful classification, used in [23, 25] and in ASM applications, was omitted in [27]
because it wasn’t necessary there. The omission allowed the following pathology in the case
when there is a finite bound on the size of the states of A. The one-step transformation may
change the values of true and false and modify appropriately the interpretations of the equality
relation and the Boolean connectives.
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the space of all states of the algorithm) by the interpretations of the dynamic and
external function symbols.

What is the vocabulary (of the states) of Euc? In addition to the logic symbols,
it contains the nullary function symbols 0, a, b, d, Inputl, Input2 and the
binary function symbol mod. But what about labels 1 and 27 Euc has an implicit
program counter. We have some freedom in making it explicit. One possibility is
to introduce a Boolean variable, that is a nullary relational symbol, initialize
that takes value true exactly in those states where Euc consumes inputs. The
only dynamic symbols are a, b, d, initialize, and the only external symbols
are Inputl, Input2.

5.4 Bounded Exploration Postulate and the definition of
sequential algorithms

Let A be an algorithm of vocabulary T and let X be a state of A. A location ¢
of X is given by a dynamic function symbol f in T of some arity j and a j-tuple
a = (ai,...,q;) of elements of X. The content of ¢ is the value f(a).

An (atomic) update of X is given by a location £ and an element b of X and denoted
simply (£,b). It is the action of replacing the current content a of £ with b.

By the abstract-state postulate, the one-step transformation preserves the set of
locations, so the state X and the state X’ = 74(X) have the same locations. It
follows that X' is obtained from X by executing the following set of updates:

A(X) ={(£,b): b= Contentx: (£) # Contentx(¢)}

If A is Euc and X is the state where a = 6 and b =9 then A(X) = {(a, 3), (b,6)}.
If Y is a state of A where a = b = 3 then A(Y) = {(a,0)}.

Now we are ready to formulate the final postulate. Let X, Y be arbitrary states of
the algorithm A.

Postulate 3 (Bounded Exploration) There ezists a finite set T of terms in the
vocabulary of A such that A(X) = A(Y) whenever every term t € T has the same
value in X and Y.

In the case of Euc, the term set {true,false,0,a,b,d,b mod a,initialize} is a
bounded-exploration witness.

Definition 5.3 A sequential algorithm is an object A that satisfies the sequential-
time, abstract-state and bounded-exploration postulates.
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5.5 Sequential ASMs and the characterization theorem

The notion of a sequential ASM rule of a vocabulary T is defined by induction. In
the following definition, all function symbols (including relation symbols) are in Y
and all terms are first-order terms.

Definition 5.4 If f is a j-ary dynamic function symbol and to,...,?; are first-
order terms then the following is a rule:

f(tl,...,tj) = t().

Let ¢ be a Boolean-valued term, that is ¢ has the form f(¢,...,¢;) where f is a
relation symbol. If P, P, are rules then so is

if ¢ then P, else P;.

If P, P, are rules then so is

do in-parallel
Py
P

The semantics of rules is pretty obvious but we have to decide what happens if
the constituents of the do in-parallel rule produce contradictory updates. In
that case the execution is aborted. For a more formal definition, we refer the
reader to [27]. Syntactically, a sequential ASM program is just a rule; but the
rule determines only single steps of the program and is supposed to be iterated.
Every sequential ASM program P gives rise to a map 7p(X) = Y where X, Y are
first-order Y-structures.

Definition 5.5 A sequential ASM B of vocabulary T is given by a sequential
ASM program II of vocabulary T, a nonempty set S(B) of Y-structures closed
under isomorphisms and under the map 7y, a nonempty subset Z(B) C S(B) that
is closed under isomorphisms, and the map 7 which is the restriction of m; to
S(B).

Now we are ready to formulate the theorem of this section.

Theorem 5.6 (ASM Characterization of Small-Step Algorithms) For ev-
ery sequential algorithm A there is a sequential abstract state machine B behav-
iorally equivalent to A. In particular, B simulates A step for step.

If A is our old friend Euc, then the program of the desired ASM B could be this.
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if initialize then
do in-parallel

a := Inputil
b := Input2
initialize := false

else
if a = 0 then
do in-parallel

d :=Db
initialize := true
else
do in-parallel
a := bmod a
b :=a

We have discussed only deterministic sequential algorithms. Nondeterminism im-
plicitly appeals to the environment to make the choices that cannot be algorith-
mically prescribed [27]. Once nondeterminism is available, classical ruler-and-
compass constructions can be regarded as nondeterministic ASMs operating on a
suitable structure of geometric objects.

A critical examination of [27] is found in [46].

6 Formalization of parallel algorithms

Encouraged by the success in capturing the notion of sequential algorithms in
[27], we “attacked” parallel algorithms in [7]. The attack succeeded. We gave
an axiomatic definition of parallel algorithms and checked that the known (to us)
parallel algorithm models satisfy the axioms. We defined precisely a version of
parallel abstract state machines, a variant of the notion of parallel ASMs from
[25], and we checked that our parallel ASMs satisfy the definitions of parallel
algorithms. And we proved the characterization theorem for parallel algorithms:
every parallel algorithm is behaviorally equivalent to a parallel ASM.

The scope of this paper does not allow us to spell out the axiomatization of par-
allel ASMs, which is more involved than the axiomatization of sequential ASMs
described in the previous section. We just explain what kind of parallelism we
have in mind, say a few words about the axioms, say a few words about the par-
allel ASMs, and formulate the characterization theorem. The interested reader is
invited to read — critically! — the paper [7]. More scrutiny of that paper is highly
desired.
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6.1 What parallel algorithms?

The term “parallel algorithm” is used for a number of different notions in the lit-
erature. We have in mind sequential-time algorithms that can exhibit unbounded
parallelism but only bounded sequentiality within a single step. Bounded sequen-
tiality means that there is an a priori bound on the lengths of sequences of events
within any one step of the algorithm that must occur in a specified order. To distin-
guish this notion of parallel algorithms, we call such parallel algorithms wide-step.
Intuitively the width is the amount of parallelism. The “step” in “wide-step”
alludes to sequential time.

Remark 6.1 Wide-step algorithms are also bounded-depth where the depth is
intuitively the amount of sequentiality in a single step; this gives rise to a possible
alternative name shallow-step algorithms for wide-step algorithms. Note that the
name “paralle]” emphasizes the potential rather than restrictions; in the same
spirit, we choose “wide-step” over “shallow-step”.

Here is an example of a wide-step algorithm that, given a directed graph G =
(V, E), marks the well-founded part of G. Initially no vertex is marked.

1. For every vertex x do the following.
If every vertex y with an edge to x is marked
then mark x as well.

2. Repeat step 1 until no new vertices are marked.

6.2 A few words on the axioms for wide-step algorithms

Adapt the sequential-time postulate, the definition of behavioral equivalence and
the abstract-state postulate to parallel algorithms simply by replacing “sequential”
with “parallel”. The bounded-exploration postulate, on the other hand, specifi-
cally describes sequential algorithms. The work that a parallel algorithm performs
within a single step can be unbounded. We must drop the bounded-exploration
postulate and assume, in its place, an axiom or axioms specifically designed for
parallelism.

A key observation is that a parallel computation consists of a number of processes
running (not surprisingly) in parallel. The constituent processes can be parallel as
well. But if we analyze the computation far enough then we arrive at processes,
which we call proclets, that satisfy the bounded-exploration postulate. Several
postulates describe how the proclets communicate with each other and how they
produce updates. And there is a postulate requiring some bound d (depending
only on the algorithm) for the amount of sequentiality in the program. The length
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of any sequence of events that must occur in a specified order within any one step
of the algorithm is at most d.

There are several computation models for wide-step algorithms in the literature.
The two most known models are Boolean circuits and PRAMs [35]. (PRAM stands
for “Parallel Random Access Machines”.) These two models and some other models
of wide-step algorithms that occurred to us or to the referees are shown to satisfy
the wide-step postulates in [7].

6.3 Wide-step abstract state machines

Parallel abstract state machines were defined in [25]. Various semantical issues
were elaborated later in [26]. A simple version of parallel ASMs was explored in
[8]; these ASMs can be called BGS ASMs. We describe, up to an isomorphism, an
arbitrary state X of a BGS ASM. X is closed under finite sets (every finite set of
elements of X constitutes another element of X) and is equipped with the usual
set-theoretic operations. Thus X is infinite but a finite part of X contains all the
essential information. The number of atoms of X, that is elements that are not
sets, is finite, and there is a nullary function symbol Atoms interpreted as the set
of all atoms. It is easy to write a BGS ASM program that simulates the example
parallel algorithm above.

forall x € Atoms
if {y : y € Atoms : E(y,x) A -(M(y))} =0
then M(x) := true

Note that = and y are mathematical variables like the variables of first-order logic.
They are not programming variables and cannot be assigned values. In comparison

to the case of sequential ASMs, there are two main new features in the syntax of
BGS ASMs:

e set-comprehension terms {t(z) : x € r: ¢(z)}, and

e forall rules.

In [6], we introduced the notion of a background of an ASM. BGS ASMs have a set
background. The specification language AsmL, mentioned in the introduction, has
a rich background that includes a set background, a sequence background, a map
background, etc. The background that naturally arises in the analysis of wide-step
algorithms is a multiset background. That is the background used in [7].
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6.4 The wide-step characterization theorem

Theorem 6.2 (ASM Characterization of Wide-Step Algorithms) For ev-
ery parallel algorithm A there is a parallel abstract state machine B behaviorally
equivalent to A. In particular, B simulates A step for step.

Thus, Boolean circuits and PRAMs can be seen as special wide-step ASMs (which
does not make then any less valuable). The existing quantum computer models
satisfy our postulates as well [20] assuming that the environment provides random
bits when needed. The corresponding wide-step ASMs need physical quantum-
computer implementation for efficient execution.

7 Toward formalization of distributed algo-
rithms

Distributed abstract state machines were defined in [25]. They are extensively used
by the ASM community [1] but the problem of capturing distributed algorithms is
open. Here we concentrate on one aspect of this important problem: interaction
between a sequential-time agent and the rest of the system as seen by the agent.
One may have an impression that this aspect has been covered because all along
we studied runs where steps of the algorithm are interleaved with steps made by
the environment. But this interleaving mode is not general enough.

If we assume that each agent’s steps are atomic, then interleaving mode seems
adequate. But a more detailed analysis reveals that even in this case a slight
modification is needed. See Subsection 7.1.

But in fact an agent’s steps need not be atomic because agents can interact with
their environments not only in the inter-step fashion but also in the intra-step
fashion. It is common in the AsmL experience that, during a single step, one
agent calls on other agents, receives “callbacks”, calls again, etc. It is much harder
to generalize the two characterization theorems to intra-step interaction.

7.1 Trivial updates in distributed computation

Consider a small-step abstract state machine A. In Section 5, we restricted atten-
tion to runs where steps of A are interleaved with steps of the environment. Now
turn attention to distributed computing where the agents do not necessarily take
turns to compute. Assume that A is the algorithm executed by one of the agents.
Recall that an update of a location £ of the current state of A is the action of
replacing the current content a of ¢ with some content b. Call the update trivial
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if @ = b. In Section 5 we could ignore trivial updates. But we have to take them
into account now. A trivial update of ¢ matters in a distributed situation when
the location £ is shared: typically only one agent is allowed to write into a location
at any given time, and so even a trivial update by one agent would prevent other
agents from writing to the same location at the same time.

Recall that A(X) is the set of nontrivial updates computed by the algorithm A at
X during one step. Let AT (X) be the set of all updates, trivial or not, computed
by A at X during the one step. It seems obvious how to generalize Section 5
in order to take care of trivial updates: just strengthen the bounded-exploration
postulate by replacing A with A*. There is, however, a little problem. Nothing in
the current definition of a small-step algorithm A guarantees that there is a AT(X)
map associated with it. (A(X) is definable in terms of X and 74(X).) That is why
we started this subsection by assuming that A is an ASM. Euc also has a AT(X)
map: if X is the state where a = 6 and b = 9 then AT(X) = {(a, 3), (b,6)}, and if Y’
is a state of A where a = b = 3 then A(Y) = {(a,0)} and AT (Y) = {(a,0), (b,3)}.

To generalize Section 5 in order to take into account trivial updates, do the fol-
lowing.

e Strengthen the abstract-state postulate by assuming that there is a mapping
AT associating a set of updates with every state X of the given algorithm A
in such a way that the set of non-trivial updates in A*(X) is exactly A(X).

e Strengthen the definition of behavioral equivalence of sequential algorithms
by requiring that the two algorithms produce the same A™(X) at every state
X.

e Strengthen the bounded exploration postulate by replacing A with A™.

It is easy to check that Theorem 5.6, the small-step characterization theorem,
remains valid.

Remark 7.1 In a similar way, we refine the definition of wide-step algorithms and
strengthen Theorem 6.2, the wide-step characterization theorem.

Remark 7.2 Another generalization of Section 5, to algorithms with the output
command, is described in [7]. The two generalizations of Section 5 are orthogonal
and can be combined. The output generalization applies to wide-step algorithms
as well.

7.2 Intra-step interacting algorithms

During the execution of a single step, an algorithm may call on its environment to
provide various data and services. The AsmL experience showed the importance
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of intra-step communication between an algorithm and its environment. AsmL
programs routinely call on outside components to perform various jobs.

The idea of such intra-step interaction between an algorithm and its environment
is not new to the ASM literature; external functions appear already in the tutorial
[23]. In simple cases, one can pretend that intra-step interaction reduces to inter-
step interaction, that the environment prepares in advance the appropriate values
of the external functions. In general, even if such a reduction is possible, it requires
an omniscient environment and is utterly impractical

The current authors are preparing a series of articles extending Theorems 5.6 and
6.2 to intra-step interacting algorithms. In either case, this involves

e axiomatic definitions of intra-step interacting algorithms,

precise definitions of intra-step interacting abstract state machines,

the appropriate extension of the notion of behavioral equivalence,

verification that the ASMs satisfy the definitions of algorithms,

a proof that every intra-step interacting algorithm is behaviorally equivalent
to an intra-step interacting ASM.
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