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Abstract

It is intuitively obvious that Artifacts -Engineering systems, Mathemat-
ical proofs and Software- actually created by humans have some features
which distinguish them from other objects of a similar nature which could
have been created in principle. A clearer view of this distinction may be ob-
tained by considering the following: There is nothing in the laws of Physics
which could prevent us from constructing systems which do not have well
defined sub-systems. Similarly, laws of logic and the laws of computation
do not require that proofs in mathematics have lemmas and computer pro-
grams have a modular structure! But, as a matter of fact, whenever these
artifacts are the result of human creation, they do inevitably possess these
features. If the task of the Natural Sciences is to provide explanations of
the form, structure and properties of naturally occurring objects starting
from some basic laws, then a science, if it could provide us with similar
explanations about the structure of humanly created Artifacts, should be
called the Science of the Artificial. H.A.Simon, in an eloquent booklet
(The Sciences of the Artificial - MIT press, 1970) pointed out that such
a science, comparable in depth to that of Natural Sciences, did not exist
then; Nor does it exist now.

In this report, I describe my efforts in this direction. Analysis of the
central concept of Hierarchies in turn brings out the importance of un-
derstanding the related concept of ‘auxiliary notions’. These are known

*Mirroring ‘The Dry and the Wet’ - J.A.Goguen, PRG Tech. Monograph - 100, March 92,
Oxford University.



by different names depending on the subject matter - Definitions, Lem-
mas (in mathematics), Cuts, Types (in logic and foundations), Modules
(in software engineering) etc.. The search for the answers to the ques-
tions - What are the desirable characteristics of formal frameworks within
which we can address problems of such generality? Is there a sufficiently
general and mathematical characterization of the concept of auziliary no-
tion? What ezactly is its functional role? - takes us through a tour of
a conceptual terrain involving Category theory, Galois Theory, Theory of
Descent, Topos Theory, Foundations of Mathematics and Algebraic Geom-
etry, Axiomatic theory of Radicals, and topics from Theoretical computer
science like Proof theory, Type theory and Complexity theory. As a result
of this ‘tour’, we are able to identify a set of well defined (sub) problem
areas for future research. Their well-definedness should enable us to ad-
dress the basic questions in depth. Moreover, these problem areas have the
pleasant feature of being simultaneously fundamental as well as having the
potential (in view of the fact that they are about fundamental problems of
Engineering) to be useful in practice.
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"In reply to the question ‘What does mathematics study?’, it is
hardly acceptable to answer ‘structures’ or ‘sets with specified rela-
tions’; for among the myriad conceivable ‘structures’ or ‘sets with
specified relations’, only a very small discrete subset is of interest to
mathematicians and the whole point of the question is to understand
the special value of this infinitesimal fraction dotted among the amor-

phous masses”?

[.R.Shafarevich

1. Introduction

The motivation for the questions raised in this note come from two sources - The
first one is the appearance of the book ‘The Sciences of the Artificial’ [1] around
1970, authored by H.A.Simon, which asks whether a Science of the Artificial can
exist comparable in mathematical depth to that of the Science of the Natural
(The Physical Sciences). According to the author of this book, there still does
not exist a satisfactory answer to this question (Ref Modelling the Tempus -
Horus metaphor) [2].

The second source is a desire to understand a ‘paradoxical’ situation involving
Theory and Practice in Computer Science. On the one hand, Theoretical Com-
puter Science is full of negative results: NP completeness of various interesting
problems, Impossibility results, and complexity (even undecidability!) results in-
volving logics used in Formal verification. On the other hand, useful algorithms
are developed and large scale systems do get built-which perform with more reli-
ability than one would expect them to! Of course, the ‘paradox’ gets resolved by
observing that the criteria and premises used in Theory and Practice are slightly
different - In the area of algorithms, adopting a Probabilistic view (Simplex is
Polynomial on the average, but exponential in the worst case, Distributed con-
sensus is impossible in the Deterministic Asynchronous model, but not so prob-
abilistically..) and exploiting structure (various kinds of BDD methods, Graph
algorithms for various special classes etc...) are some of the heuristics which have
been used informally long before Theory provided (and is providing) a posteri-
ori explanations. A similar situation obtains with respect to System verification
- whereas Verification environenments are developed to tackle arbitrary system
descriptions, in practice only a small subset of systems having certain ‘regularity’
actually get built.

Let us call systems which can in principle be built from a given set of primitive
components Amorphous (the ‘Design Space’) and the ‘regular’ subset Crys-
talline (the space of ‘Structured’ designs)

The crucial questions of a Science of The Artificial are about this ‘regular’

L Algebra I, A.1.Kostrikin, I.R.Shafarevich (Eds), Encyclopaedia of Mathematical Scices, Vol-
ume 11, Spreinger Verlag, 1990.



subset - reasons for its existence, characterisation and study of its internal struc-
ture - hierarchy? modularity. Naturally, then, the precision (= quantifiability?)
with which these questions can be answered within a theoretical framework of
the will determine it’s depth. Currently, Science of the Artificial falls far short
of Natural Sciences in this respect. Books on Software Engineering, for example,
will dutifully record the statement that ‘Hierarchy and Modularity are the main
tools used to control the complexity of Systems’ - and no further quantitative
statements about the nature of this ‘control’ will appear in the book?.

Informal methods of restricting oneself to the crystalline part of a ‘Design
Space’ are designer’s thumb rules, standardisation etc... In the context of Com-
puter Science one could conceive of two different mechanisms which can help the
designer to stay within the crystalline part of the Design Space - The first possi-
bility is by providing a Type System?* - the so called idea of Structured Design.
A second method could conceivably be based on some kind of Semantics - i.e one
provides some kind of Abstract semantics which comes equipped with a test of
membership w.r.t the crystalline part. If the first can be called ‘design for (easy)
verifiability by construction’ then the second one should be called ‘generate and
test for (easy) verifiability’.

Whereas the study of various ‘Type systems’ is an active® area of study cur-
rently, I am not aware of approaches to the problem of constructing efficiently
verifiable systems by the second method - i.e by providing an abstract semantics
which formalises some notion of regularity which in turn has implications on the
complexity of verification.

In the rest of this note, I discuss some issues involved in setting up such a
theoretical framework; during the discussion an effort is made to identify problem
areas which might also prove to be interesting on their own. The note is organised
as follows - In the next section, an overview of Computer Science is provided
to place the aims of the current research programme in context. This section
also contains an analysis of the types of interaction between Mathematics and
Computer Science. In section 3 we attempt to enumerate the desirable features
of a theoretical framework which can serve as the basis for the study of the
Sciences of the Artificial and of Hierarchies in particular. Sections 4 and 5 look
at Galois theory and it’s generalisations with the intention of using it as a model

for structured design. Section 6 is the conclusion®.

2Tt is conjectured that hierarchy confers (evolutionary) advantage even among biological
systems.

3This reflects the state of the art. A workshop to discuss related issues was held at DIMACS
recently ( July, 96)

4Tt is perhaps not surprising that the semantics of parametric types involves the categorical
concept of Natural Transformation - a formulation of a facet of reqularity

5There are many type theoretic approaches which provably bound the complexity of com-
puatation; but not (m)any which bound the complexity of verification.

6The Appendices contain the ‘pre-history’ of this report and the Abstract and Table of
Contents of Version 2, which is currently under preparation.



Remarks on the title of the paper: It is often the case, that the mere act of
attaching names (encapsulation!?) brings further clarity to a situation. Although,
I had some preliminary ideas about the contents of this paper earlier’, things
became clearer after I coined this title! The title itself was arrived at after
reading the report ‘The Dry and the Wet’ by Joseph A.Goguen, and by trying to
fit my own ideas to the context of that report. In fact, this note can be regarded
as a refinement of the ‘Dry’ part of that report. The occurrance of the phrase
‘amorphous’ in the title is due to the influence of the passage from Shfarevich.

2. Computer Science - an Overview

Computers are nowadays being used in many diverse areas - Artificial intelligence
to Accounting procedures, Education to Encryption, Medical instrumentation to
Missile guidance etc.. An attempt to isolate the invariant aspect of Computer
Science from these diverse applications necessarily involves some abstract con-
cepts. We first isolate these concepts - Intension and Extension.

Without going into definitions we illustrate these concepts by few examples:

e Formulae vs Functions

e Matrix vs Linear transformation

e Proofs vs Theorems

o Logic Circuits vs truth tables

e Realisations of Systems vs Specifications

e Syntax vs Semantics

e Operational semantics vs Denotational Semantics
e Presentations vs Algebras

e Triangulations vs Topological Spaces ...

One can easily think of many other pairs which exemplify these concepts.

In such situations, one generally will have a function, called the semantic
function, which maps the space of Intensions to the space of Extensions. Note
that if the space of Intensions happens to have canonical forms - Jordan form,
Disjuntive normal form, Cut-free proofs etc one could possibly have a mechanism
for testing equality, at least in principle, w.r.t this function.

Next, Computer science is defined to be the science of the analysis of the
tension® between intension and extension (see Fig 2.1).. This analysis itself is

" Category Theory and System Design: TIFR/TCS/90-3
8Some examples of this tension in the context of Presentations vs Algebras pair : It is
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carried out with the help of Calculational models, roughly those in which one can
do loop free computations. Although many concepts and problems of computer
science are already definable in this framework, we find that perhaps it is too
narrow, and broaden the class of models to Computational models, where the
computations can involve arbitrary iterations.

The transition from calculational models to computational models entails a
subtle shift in the type of mathematical structures used in studying these models;
In computational models the intension are denoted by ‘terms’ of a rather simple
kind and the simplicity is reflected in the fact that the semantic categories (The
space of extensions) will be merely algebraic. The simplicity also means that
one can think of intensions as loop free programs and hence one can predict the
number of computational steps from the structure of the terms. But, when we
make the ascent to computational models, we generally lose this ability, since
we will be enriching the term structure to model iteration and/or interaction in
the space of Intensional descriptions. This additional complexity will be reflected
on the space of extensions - the categories of extensions will now tend to have
topological aspects too to model partiality and other phenomena. They also will
be required to have the fixed point property.

2.1. Pure Computer Science

A specific computational model is fixed by the specification of the space of In-
tensions, the space of extensions and the associated semantic function. Since
intensions are concrete objects which will have to be physically realized and ma-
nipulated by humans, one will also have certain cost measures on the space of
intensions and a mechanism for specifying ‘large’ intensional objects in a com-
pact way. These aspects lead to three types of questions one could ask about a
particular computational model. These are

o What are the limitations ‘in principle’ of the computational model? In
particular, is the semantic function onto ?

e What are the ‘costs’ associated with carrying out various computations in
this model?

e What ‘human friendly mechanisms’ are availble for specification of inten-
sions for this model?

Study of a variety of computational models with reference to the three types
of questions belongs to the Pure Computer Science.

known that the same ‘abstract’ monoid can have different presentations leading to terminating
as well non-terminating rewrite systems. Is the property ‘having some presentation leading to a
terminating rewrite system’, intensional or extensional? This is a topic of current research[14].
Another example is related to expanding graph families; see Problem 1.1 in [15].



2.2. Applied Computer Science

The vitality of Pure computer science depends on the variety of computational
models it studies. Where does this variety come from? Attempts to apply com-
puters in various aspects of human activity generate this variety. An overview of
these applications, collectively called Applied Computer Science, organised
by function, is provided in Fig 2.1.

2.3. The relation between the Pure and Applied CS.

Thus, we have a situation, where attempts to utilise computers in various ap-
plications generate the need for the study of computational models relevant to
those applications, and a set of questions about utilisation of these models in
practice. This pair - model, set of questions - is handed ‘over the counter’ to the
Pure part of Computer science. It, in turn, is expected to provide an analysis of
the computational model and answers to the relevant questions. This is the ideal
situation, which may not always hold! Sometimes, theoreticians may modify or
simplify the model for the sake of tractability; else, they may keep the model in-
tact, but proceed in a theoretically interesting direction, not necessarily relevant
to practice.

2.4. The Three layers of Pure Computer Science

We have already described the first (outer) layer as the study of three types of
questions with reference to a fized computational model. Recall the each compu-
tational model has five components - Intensions, Extensions, Semantic function,
Cost functions and Structuring mechanisms. Once one has a variety of com-
puational models, however, theoreticians naturally become interested in the the
category of these models. Questions related to the amount of structure preserved
by various possible definitions of morphisms in this category of computational
models can be interpreted as questions currently studied in theoretical computer
science - Relative computational power, P vs NP, Questions about language em-
beddings etc.. Studies of this kind form the second inner layer of Pure Computer
Science. A theoretician also likes to have a conceptual toolbox of sufficient so-
phistication. Thus, he may observe that, Mathematical structures used in Pure
computer Science have a particular flavour and might be interested in under-
standing these structures in their own right. This kind of study forms the third
and innermost layer of Pure Computer Science and at this point it overlaps with
certain parts of Mathematics (MR Review classification 3 to 8 and 18)

This is perhaps a good place to examine the relationship between Mathematics
and Computer Science in general.



2.5. Mathematical Structures in Computer Science

The use of Mathematical structures in Computer Science can be classified by
three increasingly wider interpretations of the phrase Mathematical Structure:

At the first level we have the application of structures which already exist in
current mathematical practice. Most of such usage arises from the Applied part
of Computer Science; Since one can see from Fig 2.1 that the applied part spans
a variety of disciplines, most parts of mathematics belong here! The classical
structures will have to be studied from a computational perspective (involving
perhaps a passage back in time!), however, in contrast to the structural and
axiomatic view of modern mathematics.

At the second level we have structures which are weakenings and generalisa-
tions of those at the first level: These are not arbitrary weakenings however; The
particular kind of weakenings are characteristic of the transition from a Platonic
view of mathematical structures to a more Constructive view. Thus, we move
to Intutionistic logic instead of Classical (Heyting algebras instead of Boolean),
Domains instead of Sets, Sober spaces instead of Hausdorff etc. It is fair to
say that the constructivist philosophy owes a debt to Computer Science for it’s
revitalisation.

Lastly, we have the idea of Mathematical ‘structure’ as captured by Category
Theory: here we refer to various coordinatisations of the space of mathematical
structures - Stone Gamut [3], Spectral classification, Sketch hierarchy [4] etc. Is
this aspect of the concept of mathematical structure useful to Computer Sci-
ence?! The research programme outlined in this note can be seen as an attempt
answer this question positively. It can also seen to be ‘interdisciplinary’ within
Theoretical computer science (see Fig 2.1).

3. Desiderata for a Science of the Artificial.

What are the desirable features of a formalism which can serve as a basis for the
Science of the Artificial?

e Since it has to deal with a design problems in widely varying contexts, the
mathematical structures appearing in it should admit as wide a class of
interpretations as possible.

e Since it is intutively obvious that the notion of ‘structure’ plays an im-
portant role in the construction of artifacts, the theory should support a
formulation of this concept in as objective way as possible. Moreover it
should admit a definition of ‘relative structure’.

o Artifacts have a ‘stratified’ structure- the theory should support the emer-
gence of non-transitive relations between structures in a natural way.

10



e Within the theory one must be able to show that the requirement that com-
plexity of comprehension be bounded is one of the reasons for stratification.

As a tentative step, we choose Category Theory as the substrate and (gener-
alized) Galois theory as the model for a Science of the artificial.

4. Why Category theory?

The paper ‘A Categorical Manifesto’ [11] motivates the use of Category theory
in Computer Science. Here, we make some remarks on the ‘structural’” aspect.

The philosophy of reductionism is part of the methodology of Science; to
understand a complex object one tries to decompose it into certain other primitive
objects (which presumably have already been understood) and then analyse the
manner in which these primitives have to be put together to reconstruct the
original object. The information about the ‘manner in which the primitives have
to be put together’ is called the ‘structure’ of the object (relative to the class of
primitives). In this sense, the problem of understanding a complex object has
been reduced to the problem of understanding the structure (since the primitives
are already ‘understood’). Various structure theories in Algebra for examples of
this methodology. This methodolgy is particularly relevant to computer science,
because almost all the complexities of the objects come from the structural part,
the primitives themselves being really primitive! Thus, it is apparent that the
concepts of ‘structure’ and ‘structured objects’ are basic to Computer Science
and that computer science could benefit from an axiomatic theory of structured
objects.

How will an axiomatic theory of structured objects look like? One can draw
an useful analogy with geometry; Just as in axiomatic geometry, where the prim-
itive concept of point is left uninterpreted and only meaningful statements about
points are those which can be made with reference to a collection of points, in the
axiomatic theory of structured objects - i.e the Theory of Categories - the concept
of structured object is left uninterpreted and any statement about these objects
can only be made through the relations - the morphisms - allowed in the theory.
Just as in geometry, where we can get different geometries by varying the ax-
iomatisations of the allowed relations, in the theory of Categories we get various
categories by similar means. This analogy can be extended further: In geometry
we define point sets by equations. In the theory of categories we have the method
of specification by diagrams. The role of geometric constructions (which specify
equationally defined subsets from given and/or already constructed subsets) in
geometric problem solving is well known from high school geometry. This role
is played by diagram based arguements in Category theory. Finally, in suitable
geometries, one can use the technique of linear approzimation, derivatives etc.. in
the solution of certain class of problems. Similarly, in suitable categories (Abelian

11



categories - which are axiomatisations of the ‘space’ of structured objects pos-
sessing some crucial aspects of linearity), we have the method of ezact sequences,
resolutions’ and derived functors (which measure the degree of departure from
exactness) - the general idea behind Homology theories.

It may be mentioned, in passing, that the structural viewpoint is useful in
Natural Sciences as well1°.

Is there an instance where reasoning at the ‘abstract’ structural level helps in
solving ‘concrete’ problems? This question brings us to the next section.

5. Why Galois Theory?

5.1. Galois theory as a model of step-wise refinement.

Everybody knows what Galois Theory tells us - that a general equation of degree
greater than four can’t be solved by radicals. This is a negative result. But the
theory tells us more -

e There are equations degree greater than four which can be so solved and

e There exists a methodology for identifying and solving them.

The phrase ‘step-wise’ refinement probably didn’t exist when Galois developed
his theory - but it would have been an accurate description!

Let us recall the situation - We have a space of equations - a space of inten-
stons in our terminology - some of which can be solved by radicals and arithmetic
operations. Galois theory provides a ‘semantics’ to these equations - The Galois
Groups. Then we are able to test this semantics to ascertain whether the equation
is solvable in the sense indicated above - checking it for (group theoretic!) solv-
ability. Not only that, by successively extracting maximal normal sub-groups,
we are able to obtain subproblems (resolvents) and thus providing a step-wise
refinement method to solve the original equation.

It should be clear that if we think of Equations as Specifications, the classical
Galois theory provides a nice role model for a ‘Science of the artificial’- it not
only provides for step-wise refinement, even indicates what is a wise step!

At this point, one might raise the objection that the classical Galois Theory
operates nicely in the structured universe of Fields. Will it be useful in the weak
world of Specifications? No doubt, deep and intricate theorems of the classical
setting will not be available to us, but perhaps we can extract some useful part

9The questions related to monoids having presentations with terminating rewrite systems-
referred to in an earlier footnote- are actually being approached via their resolutions.

1%f00t note added during Oct “97: Tn [12] it is argued that a kind of variational principle on
mathematical structures might be operating in the evolution of Physical theories. In [13], it is
argued that the technical concept of compatibility, which plays a crucial role in the structure
theory of Integrable systems, is basically a property of morphisms w.r.t bilinear structures.

12



of it. It should be pointed out even in the classical era, Galois Theory had
been applied to a different setting - the Picard-Vessiot Theory for Differential
equations - thus providing an early demonstration that the ideas behind Galois
Theory transcend it’s original goal.

Fortunately, successive generations of mathematicians have looked at Galois
Theory at various levels of abstraction and expanded the settings in which it’s
three main ideas - classification, correspondence and solvability - can be formu-
lated [9]. If the Semantic Categories used in Computer Science admit of a ‘Galois
structure’ to be imposed on them, then the possibility of using Galois -theoretic
ideas in computer science contexts is opened up!!.

What about Complezity aspects? It is proposed to equate ‘complexity of com-
prehension’ with the ‘complexity of provability of system properties in associated
formal systems’ of reasoning. We face a stumbling block here however. Current
methods of measuring the complexity of these logics do not take a suficiently
pragmatic view of the situation - recall the remarks of the first section about sat-
isfiability and BDD methods. So, until the time we develop a sufficiently flexible
method of measuring complexity (roughly, we are looking analogues'? of Ergodic
hypothesis to bridge the microscopic and the macroscopic), it is intended to focus
on the structural aspects of the situation. Perhaps there is a route through Alge-
braic Information Theory (of Goppa) or some version of Kolomogorov complexity.
It is worth mentioning here that even the classical Galois Theory had associated
notions of ‘ambiguity’ which definitely have information theoretic flavor.

We think of the current complexity theory as being one dimensional; Since
we do use structuring to control ‘complexity’ even when the objects involved are
completely intractable from the point of view of standard complexity theory, we
need a more general complexity theory to understand this phenomenon. In par-
ticular, if we are to understand the value of structuring, then this understanding
should be independant of the position of the class as a whole in the standard
complexity theory. Consider, for example, the following hierarchies; the hierar-
chy of Generalised Horn formulae in the class of all Propositional formulae, Until
Hierarchy in all Temporal formulae and Higher Order algebras in HOL. In each of
these cases, we start with a nice subclass (Horn formulae, Zeroth level of the until
hierarchy, Equational logic) which are ‘tractable’ and we build structured classes
by extensions. Note the position of the base cases in the complexity hierarchy -
in the first case are in Poly time, in the second we are in Decidability, in the last
case even Undecidability!

Coming back to Galois theory, it is unreasonable to expect the full ‘equa-
tion solving” machinery to carry over to arbitrary computer science settings. It
is more reasonable to expect the semantic aspects of Galois theory to be more

I1E.Engeler in 1981 has shown that Galois Theory generalised to FOL can be used prove
some lower bounds. I have not seen further work in this direction since.

12Perhaps concepts like ‘almost everywhere equivalence of logics’ currently being studied in
Descriptive Complexity theory is relevant here.
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generally applicable; by semantic aspects, I mean the structure induced by the
radical on the Category of Groups. This kind of structure is classically axioma-
tised by Kurosh-Amitsur theory of radicals (and its variants). Fig 5.1 shows the
conceptual terrain of related aspects. Some of the related references are [[5] to

[9]]

5.2. A format for application of Generalised Galois Theory.

Choose your domain of application. It would have a formalism to specify systems
and implementations or realisations. Organise these into appropriate Categories.
Check that these categories have enough structure to enable one to define a
‘Galois structure’ on them. This means we have rigorous means of identifying
the Crystalline part with respect some chosen subcategory of Primitives. (Usually
a set of primitive components and their specifications will be at hand.). Using
some appropriate notion of Entropy associate some complexity measures with
the implementations. Setting up thresholds on these measures will automatically
induce a hierarchical structure on the implementations (see Fig 5.2 ).

One could conceive of Software tools which would aid the user in computing
the maps indicated in the figure.

6. Conclusion

We have outlined a framework for application of Category Theoretic concepts
(The Generalised Galois Theory and the Theory of Radicals mentioned in the note
need category theoretic notions for their formulation). It would be interesting to
fix a domain of application!® and carry out the program according to the format
described in Fig 5.2. Since I am quite familiar with the world of VLSI design,
I intend to choose this as the domain of application and use the method of
specification via Sketches [10] to address these issues in the future.

13Viewing even the classical Galois Theory in the context of this note may raise some interest-
ing questions: Is there a type system for solvable polynomial equations? Is there an information
theoretic interpretation of Galois theory?

14
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A. The Background

A.1. A paradoxical situation in Computing

The following situation seems paradoxical - On the one hand, Theoretical com-
puter science is full of negative results- proofs of high computational complexity
of many relevant problems, undecidability of various logics applicable to verifi-
cation etc. On the other hand, the practice of computing does not seem to be
affected by these negative results! Simplex method is still used widely and Com-
plex systems are built which perform with sufficient reliability. In this context,
it is worth mentioning the the title of the invited talk by Prof C.A.R. Hoare
in the International Conference of Software Engineering (March,96) - The Role
of Formal Techniques: Past, Current and Future or How Did Software Get so
Reliable without Proof?. After examining the situation, he concludes that use
of principles which have proven effective in all other branches of engineering is
responsible for the ‘unreasonable’ reliabilty. So, what are these ‘principles’ and
how do they manage to avoid the complexity pitfall? Can these questions be
tackled in a scientific manner?

I had started to think about these (apparently philosophical) questions seri-
ously from about 1990. I had earlier put down a possible approach in an internal
Technical report- Category Theory and System Design and have been pursuing
these questions via this approach since then. Some further thoughts on this were
published in the FATCS bulletin Algebraic specification column in 1992, in an
abstract titled ‘ Reasonable Hierarchies’ submitted to the Mathematics of Hierar-
chies and Biology Workshop in 1996, and in the report The Amorphous and the
Crystalline being writen up currently.

A.2. Basic Premise

A basic premise underlying my appraoch can be stated rather forcefully by adopt-
ing the following quotation by I.R.Shafarevich (taken from the preface of his book
on Algebra).

“In reply to the question ‘What does mathematics study?’, it is hardly ac-
ceptable to answer ‘structures’ or ‘sets with specified relations’; for among the
myriad conceivable structures or sets with specified relations, only a very small
discrete subset is of interest to mathematicians and the whole point of the ques-
tion is to understand the special value of this infinitesimal fraction dotted among
the amorphous masses”

This quote (suitably rephrased) could very well have been made by an engi-
neer!
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“In reply to the question ‘What do engineers design?’; it is hardly acceptable
to answer ‘systems’ or ‘networks of components with specified interconnections’;
for among the myriad conceivable ‘systems’ or ‘networks of components with
specified interconnections’, only a very small discrete subset is of interest to
engineers and the whole point of the question is to understand the special value
of this infinitesimal fraction dotted among the amorphous masses”

Thus a basic premise is that the class of systems actually built are a very
small subset of systems which could have been built in principle; moreover, this
distiction can be captured mathematically. Almost everybody will agree to the first
part of the premise readily and many will be highly sceptical of the second part!
However, if one beleives that objective facts can be captured mathematically, one
can hardly avoid the second part.

A.3. Artifacts are piecewise (almost) linear

My current position which is eloborated in the accompanying report is (one which
most engineers will empathise with) that linear and mildly nonlinear systems are
much easier to reason about and that artificial systems are piecewise (almost)
linear in a very general sense.

To make this point in widest possible settings however one has to relativise
and generalise the concept of linearity. The use of the mathematical theory of
Categories is essential to achieve this - the generalisation process modelled by
the transitions from Linear to Abelian to Fzact to Regular Categories and the
relativisation modelled by the concept of ‘object in a category’.

A.4. Current work

Currently, I am working on the developemnt of the theory further for measuring
the degree of ‘non-linearity’ and showing that this measure is related to the
complexity of verifying properties of the system. A future goal of the theory is to
give a foundation for the design CAD tools for computing ‘Verification Metrics’
and use these tools in a ‘Design for Verifiability’ Synthesis system.
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B. Version - 2.

B.1. Abstract

It is intuitively obvious that Artifacts - Engineering systems, Mathematical proofs
and Software - actually created by humans have some distinguishing features
relative to objects of a similar nature which could have been created in principle.
A clearer view of this distinction may be obtained by considering the following
- There is nothing in the laws of Physics preventing the construction of systems
which do not have well defined sub-systems. Similarly, laws of logic and the laws
of computation do not require that proofs have lemmas and programs have a
modular structure! But, as a matter of fact, whenever these artifacts are the
result of human creation, they do inevitably possess these features. If the task
of the Natural Sciences is to provide explanations of the form, structure and
properties of naturally occurring objects starting from some basic laws, then,
a science, playing a similar role with respect to artifacts, should be called the
Science of the Artificial. H.A.Simon, in an eloquent booklet (The Sciences of
the Artificial- MIT press, 1970 ) pointed out that such a science, comparable in
depth to that of Natural Sciences, did not exist then. Nor, as far as [ am aware,
does it exist now.

In this report, I describe some of my efforts in this direction!?. Analysis of
the central concept of Hierarchies in turn brings out the importance of under-
standing the related concept of auziliary notions. These are known by different
names depending on the subject matter- Definitions, Lemmas (in mathematics),
Cuts, Types (in logic and foundations), Modules (in software engineering) etc..
The search for the answers to the questions - What are the desirable character-
istics of formal frameworks within which we can address problems of such wide
scope? Is there a suitably general and mathematical characterization of the con-
cept of auxiliary notion? What exactly is its functional role? - takes us through
a tour of a conceptual terrain involving Category theory, Galois Theory, Theory
of Descent, Topos Theory, Foundations of Mathematics and Algebraic Geometry,
Axiomatic theory of Radicals, and topics from Theoretical computer science like
proof systems, type theory and complexity theory. As a result of this ‘tour’,
we are able to identify a set of well defined (sub) problareas for future research.
Their well- definedness should enable us to address the basic questions in depth.
Moreover, these problem areas have the pleasant feature of being simultaneously
fundamental as well as having the potential ( in view of the fact that they are
about fundamental problems of Engineering) to be useful in practice.

14An preliminary talk on this topic was given to the members of the Categories and Combi-
natorics group, Univesity of Sydney, Nov 96.
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An article, authored by E.W.Djijkstra, which also served as an inspiration for
this work should be mentioned here. It is titled ‘On a methodology of Design’.
It appeared slightly later than book of Simon (and in fact, refers to it) in the
‘MC-25 Informatica Symposium’ of the Mathematical Centre tracts series from
Amsterdam. The notion that both mathematics and computer science belong to
the species of the Sciences of the Artificial, and hence the methodology of math-
ematics, interpreted in a general sense as the methodology of abstraction, should
be useful in Computer science, is stressed there. In this article, however, we have
interpreted the phrase ‘methodology’ in a technical sense as the methodology of
structural linearisation.
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