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Scope

The document reviews the ontological aspects of majority of terms used in systems’ design
community. It proposes a semantic framework that encapsulates the fundamentals of
heterogeneous system design. The document then goes on to describe the elements of system
design process from the purview of this framework.
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Document Organization

The document is organized as follows. A section of introduction brings out in detail, the purpose
of our work. It is followed by reviewing an operational classification of systems, which is to be
used later. Here, the concept of system modelling is introduced gradually. Elements such as
model of computation, its constituents, relationship to languages and themselves, as well as an
example operational semantics is introduced. Now, the design process is elaborated using the
new systems modelling concept. Factoring for optimization, heterogeneity(the major treatment)
and details about design methodologies is introduced. The design elements such as analysis,
synthesis, refinement and abstraction are treated in the same section. Finally, the emerging
fields of hardware-software Codesign and Reconfigurable Systems’ design are explained using
the new model.
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1 Introduction

Systems have been employed by both nature, and humans, to perform specific functions. There
is a sense of order in all natural processes, which one can observe; even when there exist
apparently random, or chance events. This is because of the tendency to fill in our lack of
understanding of nature, with explanations that tend to replace noise with meaningful pattern
and effects with probable causes. Earth’s climatic system, human immune system etc. are
examples of natural systems(otherwise known as physical systems), which exhibit a specific
pattern of behaviour.

Human race itself has been involved in creation of systems, mainly as aids for the day-to-day
work it has to carry. Starting with simple mechanical systems such as a crowbar and the
flint(stone)-based spark ignition, the evolution of such systems has come to a point where they
can be as complex, as their natural counterpart. Internet is an example of such a
communication (network) system. Such systems are also frequently called Artificial Systems,
mainly to underline the fact that they are man-made.

Structurally, artificial systems are a collection of objects called components, or subsystems. The
components can be heterogeneous in nature, and their interaction may be regulated by some
simple or complex means. Note that it is only (complex) artificial systems, which require a
structure; for providing a structure(divide-and-conquer) is the human’s way of dealing with
complexity.

Human-made systems can be classified into many categories; prominent amongst them are
electronic systems, power systems and mechanical systems. This document focuses on
electronic systems, or (embedded) electronic component of a complex system, such as the
information processing systems. Any reference to the term, system, has also to be taken as an
artificial system. Electronic systems are getting more prevalent, because they demonstrate
richness of functionality, superior performance, safety/reliability and low-cost aspects.

Microelectronics domain, especially VLSI, has had the “more specialized/guided/formal” set of
design methods so far. The design of microelectronic systems consists of realizing(synthesis)
the desired functionality(using circuits etched on a wafer), while satisfying certain design
constraints(optimization). Optimization is done to maximize certain system quality(qualities) for
competitive advantages. Such optimizations lead to design tradeoffs; some quality is gained on
the expense of the other. Computer-aided design methodologies, which have been successfully
used in reducing design times and performing optimization for integrated circuit designs, can
also be applied/scaled for system design purposes. The terms “design space”, “design trade-
off”, “design space exploration” etc. have been carried over from the IC design domain into the
broader system design domain.

There is been at least one comprehensive work on similar area already[22], and few useful
tools and frameworks based on that(PTOLEMY, POLIS) are already being in use now. Though it
covers a lot of “what all exists”, the authors feel that there is still a scope of debating, “why all
the gamut exists”, or in other words, ontology. That is the question, which is tried for treatment
in this short document.

There have also been papers pointing out the disparity in the various definitions floating about
many of the terms used by design community. Also, there have been specific papers, which
have tried to formally address semantic definitions of these, in order to bring precision. Our
approach is novel in the sense that we propose a generalized semantic framework that
encapsulates all the aspects of heterogeneous system design; and hence provides opportunity
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to look into all possible design terminologies, with it's aid. Going a step further, we propose a
way to use this framework for all system-related design, analysis and verification tasks.
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2 Systems Classification

Much of the background established in this section deals with information-processing systems.
Information processing systems are automatic, electronic machines whose function is to
generate a set B of output information items(e.g., the results of computation on the data),
from some set A of input information items(for example, data, and at times, a program
representing a computation in some form). The mapping is formally represented by a function F
:A > B.

Before we move into describing our modelling framework, it is important to classify the
information-processing systems. Different elements of the framework will be used in the
corresponding design methods for these systems. A traditional classification provided in [14] is
detailed out as follows.

2.1 Transformational Systems

These systems take a body of input data, and transform it into a body of output data.
Generation of the correct result is the primary concern of these systems, and hence issues such
as program termination gain importance. Initially, the term information-processing systems
used to refer to these systems only.

A continuous-time processing view of these systems is that they have all inputs ready when
invoked and the outputs are produced after a certain computation period. After the
computation, the system halts, till the next set of inputs is provided. Hence, the model of such
system is required to specify only the functional/transformational aspect.

. Transformational ———»
System

Inputs Outputs
Ready Ready ffme
-

X

Figure 1: Transformational Systems

2.2 Reactive Systems

These systems are repeatedly prompted by the environment, and their role is to continuously
respond to external inputs, at the speed required by the environment. Such a system never has
all its inputs ready--the inputs arrive in endless and perhaps unexpected sequences. Hence, in
general, it does not compute or perform a function, but is supposed to maintain a certain
ongoing relationship, so to speak, with its environment. Such systems do not lend themselves
naturally to descriptions in terms of functions and transformations, making it virtually
impossible to write a transformational program for them. However, meta-models such as
tagged-signal model[25] exist for reactive systems, for a purpose described in section 3.3.2.
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A model of such systems thus requires specification of behaviour, which includes both the
functional and timing aspects[8]. It will be clearer later(section 3.5), that such systems can
also utilize temporal logic expressions to specify timing constraints in the model itself.

In fact, most controllers(control-dominated systems) are by definition reactive, not
transformational, with application domains ranging from process control, military, aerospace,
and automotive applications to signal processing, ASIC design, medical electronics, and similar
embedded systems. Real-time systems also get classified under reactive systems.

—

T
T Reactive
— System ’

time
—

Figure 2: Reactive Systems

2.3 Interactive Systems

These types of systems use additional inputs from the user, to determine the output. This
makes such systems as an extension of the classical transformational systems, and an old
definition[27] merges these into transformational systems. Unlike reactive systems, such
systems react with the environment at their own speed(respond to the user only when they
can), gathering more inputs, and also providing control(to user) to manipulate the sequence of
steps towards eventual output, which the user wants. Such finer distinctions make them a
separate class than both transformational and specially reactive systems(unlike few authors,
who treat reactive and interactive systems as functionally similar).

Graphical user interfaces and operating system are examples of such systems. These systems
are also frequently termed under human-computer interaction systems, though the user need
not be a human being.

This document will not focus on interactive systems.

Few other categories, such as concurrent, distributed and parallel systems are introduced[12]
while dealing with systems that necessarily exhibit some kind of concurrence in their
computation. We do not use any such distinction; and hence we omit the details of these as
well.
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3 Systems Modelling

Much of the usage of models can be attributed to usage of formal methods. A formal method in
system development is a method that provides a formal language for describing an artefact
(e.g. specifications, designs, prototypes, to be introduced later) such that formal proofs are
possible, in principle, about properties of the artefact so expressed. The benefits of proving, for
example, that unsafe states will not arise, can justify the cost of using such approach.

It will be clearer in section 4.5 that formal proving(known as formal verification activity) needs
the artefact description to be rigorous. While formal methods can never dislodge the
requirement of gathering the system requirements from general users in a non-formal way, the
design process can benefit if these informal and hence non-rigorous requirements were
converted into a formal specification. Defining what a system should do, and understanding the
implications of these decisions, are one of the most troublesome problems in design of complex
systems. Hence, usage of formal methods here also, can have major benefits. In fact,
practitioners of formal methods frequently use formal methods solely for recording precise
specifications, not/not just for formal verifications.

As we can sense from the definitions of the various classes of systems, not many systems are
simple enough to be directly(formally) represented as a function mentioned in the beginning of
section 2. Similar to a given non-linear transfer characteristic, and design of a corresponding
circuit required; the design process of such systems becomes complex. In such cases, the
power of heterogeneous systems’ modelling is used to assist the design and verification
process. Such models are often captured using particular model of computation.

3.1 Motivation for Model of Computation

Different papers have touched upon the definition of model of computation: [17], [19], [22],
[24], [25] and [26]. None of these deals with the historical perspective of it. To understand
that, we need to understand it with respect to the notion of computation.

3.2 Computations and Computational Models

Informally, an algorithm(for a function f) is a finite set of instructions which, given an input x,
calculates and yields after a finite humber of steps, an output y = f(x). When these steps
include arbitrary branching and looping steps to control the formation of output, then the
algorithm implies a computation rather than a calculation. The algorithm must specify how to
obtain each step in the calculation/computation, from the previous steps and from the input.
The algorithm may only yield a partial function!. An algorithmic partial function, which is
defined on all arguments(i.e., which is total), is called computable or effectively calculable
function.

Certain classes of computable functions can be obtained using certain types of
steps/procedures/operations; these are the computational models corresponding to those
classes of functions. For example, to specify the motion functions(trajectory etc.) of a ball in a
Euclidean space, analysis was carried out, and a Newtonian model of computing these
functions(the type of steps are the laws of mechanics here) was born. Another example could
be the way arithmetic as a model was born: various types of counting

1 e P
Hence, non-deterministic for certain inputs.
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systems(integers/rational/irrational etc.) can be modelled using same
steps(brackets/division/multiplication/subtraction/addition).

Thus, these models define a framework for composing certain types of computations(global
actions)(as a sequence of steps, or local actions), much in the same way as axioms are
combined in proving theorems. The composition carries some semantics, and hence the
framework can only encompass those compositions, whose semantics is expressible. Such a
restriction eliminates the possibility of arbitrary compositions: something into which the
designers are never interested. Further, the composition style can have space-time flavour. If
the local action(steps) are combined in time(one after the other), then the model of
computation has a sequential nature(e.g., Von Neumann model). In contrast, If the local
action(steps) are combined in time(one after the other), then the model of computation has a
parallel nature(e.g., CSP).

3.2.1 Power of Computational Models

These models can be classified® according to their computational power, i.e. how large is the
class of functions and languages they can cope with. Historically, the initial work done around
Turing’s time was to figure out a model with “universal power”, i.e. model for universal
computation. Many different people came up with different models for universal computation at
the same time: notable among them are Turing’s Machine, Recursive Functions and Lambda
Calculus. The same people also proved the equivalence and inter-convertibility of all of
these(Hence the name, Church-Turing Thesis), something that is at the core of heterogeneous
system design methodology, to be introduced later.

But to perform, or rather model and understand computation behind other kind of
scenarios(such as many computers in a room, doing coordinated computation such as pointer-
jumping), the sequential model of computation fell short. Hence distributed computing was
born, which is a different model of computation, and different powers. Similar example can be
taken in quantum computation, arising out of needs of neural systems’ modelling.

Further, these models can also be characterized by their behaviour, or the class of computable
functions they represent. Such representation of steps lends them to a domain of application
for computation(an example being signal processing, for data flow model of computation). The
introduction and usage of domain-specific languages(introduced in section 3.5.1) is an outcome
of development of such models.

Thus, to summarize, a model of computation is a domain-specific(or domain-independent),
often-intuitive understanding of how the computations(in that domain) are done. They arise out
of attempts to understand certain physical phenomenon(such as ball-motion), or attempts to
use computer in various applications. The components of model of components will be clear in
the following sections.

3.3 Relation to System Models

The above definition of model of computation can be concretely instantiated, when looked from
the angle of various types of systems. It is easy to analyze it first from the perspective of
transformational systems, such as a compiler.

2 Chomsky’s hierarchy is an example of such classification.
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3.3.1 Modelling Transformational Systems

A formal design of system starts from formally specifying the desired behaviour(informal
designs such as that used in certain software development communities need not follow this
paragraph). To describe system behaviour with a level of precision, we need to think of the
system as a collection of simpler subsystems, or pieces, and the method or the rules for
composing these pieces to create system functionality. Example of this is the arithmetic model:
it deals with a set of objects called integers etc., and operations become the composition rules.
Such a specification models the desired behaviour. A model is a formal system consisting of
objects and composition rules. Thus, whenever a transformational system is tractable, it can be
represented as a composition in a suitable model of computation. Most simple systems of this
kind need only one model of computation, and a representative language for specification of all
their pieces.

The notion of composition physically manifests as interaction pattern between objects. In real
life, a model of computation typically imbibes sense of concurrency, sequential behaviour and
data communication, to name a few types of interaction patterns amongst (computing) objects.
Note that interaction patterns noted here are properties of computational models pertaining to
system design only; computational models such as arithmetic(used to express calculations)
need not exhibit such patterns. Henceforth, we will be using the term model of computation
only in context of system design.

3.3.2 Modelling Reactive Systems

Though the primary concern of reactive systems is to react to the environment with the speed
of it, according to us, even the simplest systems such as an alarm clock has an element of
computation hidden behind it(such as the counter). It is that computation, which is functional,
and hence tractable®. Perhaps for this reason, not only we need to model communication
behaviour of such systems, but also the functional behaviour[17]. By considering time itself as
an input(or output) parameter®, it is possible to depict certain reactive systems as a
transformational system.

In any case, a functional specification for such system is represented as a set of components®,
which can be considered as isolated monolithic blocks, interacting with each other and with an
environment, which is not part of the specification.

Because of the complexity of (reactive) systems prevailing now-a-days, it makes sense to use
domain-specific models of computations to specify sub-behaviours only. Such systems are
termed as heterogeneous systems. We will be focusing on heterogeneous system design,
section 4.2 onwards.

It is important to differentiate between models used to represent functionality, with the models
used to represent intermediate design stages of the system. The models there tend to be
successively more detailed in terms of implementation information, and the visibility of “which
computation” gets subdued. Perhaps the worst confusion arises from the usage of the following
terms: abstraction hierarchy of models, synthesis mapping and refinement mapping. A more
generalized model covering all such definitions, with hopefully more clarity, will be introduced in
the remainder of this document.

* Models of computation such as CSP and CFSM observe this “local computation” phenomenon; see section 4.6.

4 E.g., Synchrony Hypothesis

3 Simple systems such as 8051-based timer used in alarm-only device(hypothetical) may just have a singleton set of
components
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3.3.3 Modelling Interactive Systems

Interactive systems also have their idiosyncratic behaviour. Some categories of behaviour
commonly observed in interactive systems are: performing an activity in a repeatable way,
performing a set of activities in any order assuring that each activity will be performed
once(e.g., clicking of start/stop/refresh buttons of a web browser), etc. Also required for
specifying models is way to capture the dataflow between users and the various elements of
the system® itself.

In modelling interactive systems, visual formalisms have been observed to reduce the gap
between users and analysts. Object-oriented methods like UML offer one of these formalisms’.
Especially in UI design, UML or the object-oriented methods are now quite prevalent. Even
Petri-nets have been quoted as usable model of computation for interactive systems[36].

3.4 Using Model of Computation

Given that a model of computation has primitives to compose functions, one needs to
understand how it is used in the process of system design. Let us understand it first from the
view of simple systems(or a particular view of system), ones that will not require® more than
one model of computation for detailing, due to their homogeneity.

3.4.1 Enumeration of Behaviour

A typical system design task is an enumeration of the behaviour instances that it is supposed to
produce. It the set of behaviours carry some structure, the term behaviour space can be used
in the context.

Given a behaviour space, one can determine the suitable model of computation which denotes a
particular kind of behaviour, and hence can be used for, e.g. by formal verification or
simulation-based verification to check the consistency of the design. The behaviour can be
deterministic, or non-deterministic in the automata-theoretic sense. Even the non-deterministic
behaviours can be captured using formalism of model of computation; such capturing is further
elaborated in [25].

Behaviour is defined as the unordered set of behavioural units(extensional definition). When the
input and output spaces are defined by a set of (important) variables, then a (determinate)
behavioural unit is an ordered tuple of values for the input and the corresponding output
(vectors). This is the operational view of behaviour. The set of all possible behaviour units
denotable by a model of computation is the corresponding behaviour space®. When the system
is physically excited with a particular input vector, it generates a simulation run for the system.
Such a run yields an element(point) of the set of all possible behaviour units of the system?°.
Note that such variables should adhere to observability criterion(some authors denote

® The destination of dataflow tends to be different, for each dialogue between the user and the system.

7 Harel’s StateCharts is the model of computation behind UML

8 There are times when same system(view) can be represented in two or more models of computation; in one, the
representation is succinct, while in the others, not. We are ignoring this detail here; though it helps to make a succinct
model in general.

? Only if the units show some structure, the points can be organized in some space. E.g., model of computation for signal
processing can imply a linear space of behaviour.

10 A system will typically implement a part of the overall behaviour space of the computational model, which need not
be a sub-space. If the behaviour is determinate, it will have an alternate functional representation.

"Ti TATA Consultancy Services Page 17 of 51
TATA



Elements of System Design

behaviour in terms of internal state change, or a snapshot, of a system, which is defined but
not observable for all types of systems!?).

A denotational view at the term behaviour tells that it is a view, which captures both the
function and the timing aspects of any system(already pointed out in section 2.2).

3.4.2 Providing Specification

One can also represent the desired system behaviour as a formal specification(for computation)
within the model of computation. For details of specification languages, see section 3.5; at this
point it is sufficient to say that such a formal representation requires a (formal) specification
language. A sentence!?, or a syntactical structure'?, in a specification language represents a set
of behaviour units(in other words, subset of the power set of behaviour units denotable by a
model of computation). Hence, a set of sentences representing the system behaviour, actually
imply set of such subsets. A functional input-output relation(behaviour), when specified using
some language, is known as the system functionality.

A misnomer for behaviour is the algorithm, and to the extent, specification[17]. Actually, an
algorithm is outcome of an implementation decision, and hence cannot represent either. Our
definition of behaviour and specification makes it clear that using algorithm is indeed a
misnomer. As another contradiction to above statement, sometimes the algorithm(for system)
is standardized, in which case behaviour and specification get (reverse-)derived from the same!

Formal specification languages are based on mathematical/logical semantics, and hence the
sentences of specifications in them can be used to reason about(validating) extensional
properties of the system, or the behaviour. Like the (truth) satisfaction criterion of logic
formulae, a specification covers a system, if there exists a satisfaction relation between the set
of sentences of the specification, and the set of expected behaviours.

3.4.3 Providing Structure

One can construct physically, an implementation'* of the system, by providing a structure
consisting of (countable) sets of components of various types, and their interconnections as
well as interaction patterns(e.g., scheduling strategy). While the specification tells how the
system will work(behave), the design process is incomplete till it is described, how the system
will be manufactured. Many-a-times, especially for simpler systems, the design process is
interchangeably used for the implementation (sub-)process, which is a loose usage. An
implementation of a component, or an artefact, subdues certain information about it, such as
design constraints, standards, performance goals, etc., which are part of the design process.

While we discuss the difference between the terms, architecture and implementation, in a later
section, it is important to state that implementation within a model of computation does not

"' E.g., the state of an executing program over a processor is supposed to be the snapshot of all its variables/registers and
the program counter.

12 Abstractly represents notion of equation between two sets of variables, whose solutions are points in the behaviour
space.

1% Similar to notion of a non-terminal in context-free grammars

4 We will differentiate between architecture and implementation in a later section: a difference that is important, but can
only be understood while dealing with multiple models of computation.
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necessarily imply an “executable” artefact!®. This is because the (high-level) structure may not
have all the details required for execution.

A usage diagram for model of computation can be viewed as follows.

Specification Implementation

Figure 3: Using Model of Computation

3.4.4 An Example

Finite-state automata[2](the corresponding languages being regular languages) is a typical
example of a model of computation, used in design of control-dominated systems, and also
components such as user interface.

The behaviour space for this model of computation is the set of all regular sets B C YL Ty is

the k-element alphabet for input/output. B is a particular collection of strings formed out of o,
hence the behaviour units involved here the strings itself. The behaviour of an individual FSA is
thus a regular set.

The specification of an individual FSA is done via the notion of /anguage: the language
describes the intension of the regular set in some way. For example, { w: w consists of equal
number of O’s and 1's }, and 01* + 10*(the regular expression notation) are two different
(types of) specifications for automata.

The structure, or the implementation of an FSA is provided by the five-tuple notation: A = (Q,
¥, 8, o, F). Visually, it is also represented as a graph. The structural elements of the FSA
implementation are the states and inputs symbols. There can be multiple implementations of a
FSA: DFA, NFA and e-NFA are equivalent implementations. A more detailed structure can be
captured in the Esterel-Lustre common format, OC.

The usage diagram for the FSA thus looks as following.

15 .
Unless one uses an interpreter.
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Figure 4: Using Model of Computation for FSA

3.5 Languages and Models of Computation

To do formal specification, modelling(or specification) languages are required in each model of
computation. But the scope of what can be specified using a language need not be restricted to
elements of single model of computation. Some good discussion on languages and models of
computation can be found in [17], [24].

It is important to distinguish between programming languages and specification languages.
Programming languages have been conceived primarily to express algorithms, which, as said
earlier, is an outcome of implementation decision. Hence, programming languages should be
seen as a tool to describe implementation details. In terms of generality, programming
languages support many models of computation, and hence sometimes be classified into a
separate, heterogeneous model of computation[24]. Specification languages are used to
capture a set of properties of the system; for the model to be able to represent, what is to be
designed for. Hence, not only specification languages focus on providing aid for specifying one
or more properties of the system(such as temporal aspect of behaviour), but also they can be
abstract and incomplete. This is perfectly valid, for the purpose of modelling is to look at useful
abstractions of a system. We will focus here on specification languages.

The semantics of a language maps a given(syntactically correct) specification into a point of the
behaviour space corresponding to the model of computation. The mapping may not be
surjective: it depends on the level of abstraction, or the degree of incompleteness, that the
specification language exhibits. This degree is captured using the term expressiveness of a
language. Expressiveness implies which behaviour units can be described using a particular
language. Intuitively, there can be preorder relation between the languages based on
expressiveness[15]. Such partial order of languages is denoted by language embeddings. It is
such partial order, which is exploited while doing design (process) using a set of specifications.
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3.5.1 Domain-specific Languages

A domain-specific language (DSL) is a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain. Hence, in different domains, more
succinct models can be designed.

The initial work on models of computation was mostly domain independent, i.e. universal model
of computation. Scott introduced denotational semantics, and it resulted in domain-specific
models of computation. Correspondingly, the new-generation languages such as SILAGE differ
from the GPL such as 'C'.

Because these languages are declarative and hide much of the implementation details, some of
them can be considered more as specification languages than programming languages. Hence,
one of the (many) important advantages of these languages is that they enable more properties
about programs to be checked. In contrast to a GPL, the semantics of a DSL can be restricted
to make decidable some properties that are critical to a domain. For example, Unix command
make reports any cycle in dependencies and thus totally prevents non-termination (assuming
the individual actions do not loop).

3.6 Ordering using Expressiveness of Models of Computation

Just like the expressiveness of language can form a partial order, a set of models of
computation may themselves be partially ordered.

The “order” relationship gets formed due to the notion of relative computational power(defined
in section 3.2). The computational power, i.e. what functional aspect and what temporal aspect
a model of computation can cover(we are looking from system design perspective throughout)
can be understood(if not a quantitative comparison) using denotational and other semantics of
the model of computation[17],[22] and [25].

A reflection of such order can be seen in the so-called abstraction-based hierarchy of models of
computation(an example being the stages of design flow in hardware-only system, or digital
circuits’, design). Though that hierarchy is based only on the level of implementation details
which can be captured in models of computation, it will be clear in section 4 that even
specifications can be refined. This is possible only when the model of computations involved
have a known subset sequencing'® in terms of computational power(MoC; < MoC, < MoC; < ...
c MoGC,).

At times, the order of subsuming is not very evident, or perhaps cannot be quantified. In such
cases, analogies can be used to approximate the order. For example, differential
equations(model of computation for analog domain) which govern a sequential circuit may not
be comparable to finite automata. But, differential equations can be approximated into
difference equations, which drive the design of an FSA for the sequential circuit. Hence, they
are comparable. Of course, analog equation subsumes finite automata, due to additional
semantics(there can be non-linear differential equations).

Diagrams such as Gajski and Kuhn’s Y-state diagram, and their extensions become a
specialization of such a formulation(a planar diagram can be developed for the order mentioned

'S Note that only reflexivity and transitivity are required from the relation: not the anti-symmetry, and hence the
sequencing forms a preorder rather than partial order.
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above). Once we introduce the mapping functions amongst the three views of usage, as
depicted in Figure 3, in section 4, this statement will become intuitively clear to the reader.

Interested people can also look into meta-models of computations, such as X-framework[11],

or the tagged-signal model[25]. Such meta-models form the basis of comparison of models of
computation. A category-theoretic formulation will be introduced in section 4.3.4.

3.7 Operational Semantics and Model of Computation
To be able to specify runtime behaviour of a specific model, the following aspects can be used:

. Nature of components from which the system will be constructed (e.g. cyclic, sporadic,
protected, passive)’

o Scheduling paradigm under which the system is executed and the associated
mechanisms(e.g., interleaving or non-interleaving semantics).

. Means of communication between components/objects (e.g. mailboxes)(not required for
S0S)
. Means of synchronization between components/objects (e.g. clock edge,

semaphores)(not required for SOS)

. If applicable, the means of distribution and inter-node communication (e.g., shared
memory, RPC)(not required for SOS)

. Means of providing timing facilities(clocks)(not required for SOS)
. Means of providing asynchronous transfer of control(interrupt controlling)(not required
for SOS)

This list is only suggestive; there is no general method to define the semantics(of any kind) for
any model of computation.

'" E.g., intensional definition of sets in E-R model of computation for databases.
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4 Design Using Formal Models

A significant application of formal models in designing systems arose from the semiconductor
design area. There has been evolutionary change in the functionality packaged in an IC.
Previously, there used to be a lot of printed circuit boards(PCBs) doing various individual
functions. This required a lot of hardware integration skills. But as the Moore’s law defines the
temptation of chip making companies to pack more and more electronic functions on the same
chip, the world within the chip moves from just being a computational component, to a
complete system. Such an evolution brings the idea of dealing with models and synthesis,
which come from hardware domain. Thus, the digital circuit design for VLSI is moving into what
is known as digital systems’ design, with integration level still as high. This is what is known as
the system-on-chip design movement in semiconductor area'®. However, it is not that all
components get inside one chip. It is the system design process, which takes such architectural
decisions.

We will first try to look at designing systems using one model of computation. By this, we imply
the dominant view of a system, which can be one, such as FSA in an FSA simulator. Note that
the structure we come up with is not the final implementation. For that, refinement is required
to make it either a hardware or software piece, something, which we introduce in later sections.
For notational purposes, we will call such systems simple.

4.1 Simple Design

Figure 5: Mappings within Model of Computation

Mapping a specification into an implementation, or structure, within a model of computation is
known as synthesis step®®. It is also possible to map(at least in few cases) a set of orthogonal
behaviours, of a behaviour space, into the required structure of the system. For example, using
the Shannon’s expansion theorem, and using multiplexers, complex logic circuits can be built

'8 Also to note that applications of system design methodology is not restricted to chips only; embedded systems as
simple as a digital wristwatch can be designed using this. In fact, Esterel, a language to specify reactive systems has been
already used in design of digital wristwatches.

' We reserve a term, “heterogeneous synthesis”, to be used in context of heterogeneous system design.
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inductively from 1-variable systems, using finite number of synthesis steps. Another example of
such atom-level synthesis is the usage of (trivial) state-walker design pattern. A computation
function can be designed for each such atom(can be FSA/procedure/circuit), and notions of
combining them in parallel(using e-transitions/switch-case/multiplexer) be used to make them
all running together. Such a synthesis in most probability will not be optimal: element-by-
element design may ruin the cost requirements(see next section).

4.1.1 Cost Functions

No structure can be designed, without having certain cost constraints as requirements. We
quote here a few examples.

= Transformational systems such as compiler may not have run-time specified as cost, but
most reactive systems will show stringent run-time costs.

= A software processor(running a RTOS) can be characterized from the performances point of
view by its utilization rate (acceptation level can be less than 80%).

= A communications node such as a bus can be characterized by its throughput, a shared
memory by its read/write latencies.

» Code size is another cost, which is measured in case of automatic software generation.
» Clock cycles taken per instruction execution can be taken as cost for a microprocessor.

* The cost can be business-driven: life-cycle cost(time-to-market), monetary cost(product
pricing), speed, reliability, size, weight etc.

It is imperative, that the costs need to be captured during the time of specification. The
specification process captures primarily the properties of computation involved(can be used for
formal verification), and secondarily, the cost properties(sometimes as constraints). The design
process, hence, also needs to analyze the cost of a particular structure.

For this purpose, we introduce two domains in our diagram: the evaluation and the
approximation domain. These domains can be extensionally defined as sets of integers, reals
etc, and the cost functions become the mapping to such domains. If a cost is measurable(the
domain of the mapping observes either a total order, or a lattice), then the functions can be
evaluated. In a particular model of computation, certain cost can just be approximated(such as
delay calculation in a DFG). In such case, the actual cost can mostly be evaluated(e.g., delay
calculation after a gate-level model evolves from DFG, post scheduling/binding), when sufficient
implementation details are available in another model of computation, into which we have
refined our structure(see section 4.3.2).

Thus, we introduce side functions to these domains: they can be performance evaluation or
constraint?® analysis. The model is analyzed to derive value for these constraints. One might
need to look at intensional aspects of the domain of the mapping(say, for property verification),
or at the extensional aspects(say, performance evaluation). There can be secondary
parameters, rather the just properties of computation, which give rise to these costs. Implicit
overheads of event handling, access time to driver are examples.

20 . . . . .
The constraints can be min/max delay constraints, execution rate constraints etc.

"Ti TATA Consultancy Services Page 24 of 51
TATA



Elements of System Design

[21] provides an example treatment on constraint specification and analysis. Recent
frameworks such as METROPOLIS also provide support for this, explicitly.

The evaluation domain can also have members as properties that the design must specify. For
example, presence of a dead state in an FSA points to something wrong in the synthesis
algorithm. These are the condition evaluations; i.e. the conditions, which are supposedly true
for some model expressing a type of computation.

Abstract interpretation is one of the ways of realizing the approximation functions. Once
approximated, techniques such as model-checking(refer section 4.5) can be combined as well,
for property analysis[37].

Spedﬁcation w

Approx. Evaluation
Domain Domain

Figure 6: More Meaningful Structure of Model of Computation

4.1.2 Sources of Cost

The problem can also be thought of describing the domain for the cost function. The cost is
calculated for a particular implementation, or a structure; though specification/behaviour
analysis can also provide approximate costs, or bounds on the (range of possible structures).

Irrespective of the model of communication, the major quantifiable resources constituting any
information-processing system are processing power, communication bandwidth and storage
capacity. This is because these are terms are also embedded in the notion of computation.
Their representation is known as the info-action triangle?![10].

?! The term info-action is used to denote any of the information handling actions listed above.
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Figure 7: Info-actions and companies built upon them??

Let us take a simple, sequential machine system. The processing power is representative of the
power of individual elements: e.g., 2-input AND gate has less processing power than 3-input
AND gate. The communication power manifests as the bandwidth of internal busses. The
storage manifests as the capacity of registers.

As another example for a non-trivial data-flow graph[3], in which the processing and
communication resources are obvious, but not the memory resource, it can be found
represented in the loop-back edges of the graph.

Thus, these terms are polymorphic; in various models of computation, they arise under
different guises. A few exceptions are, for example, a resistive network. Though memory is
present in terms of parasitic inductance and capacitance, it does not play significant role in the
computation represented.

We conjecture that these resources are implicit constituents of any known cost function, in any
model of computation. As an example, the communication aspect of a system/computation
impacts the wire/bus/protocol cost(in a distributed system) of a particular structure. A high-end
processor may impact the monetary cost, simply because it is very expensive. A memory-
intensive design can impact the reaction speed of a system to a stimulus, simply because i/o
operations tend to take more time?3,

As noted in [10], the costs associated with these resources are functions of the “state of the
art” of the core technologies associated with these areas. Since this “state of the art” is
continuously changing due to the advances in scientific understanding and technological
innovation, it is clear that these costs themselves are a function of time.

Since these constituents impact cost, one would ideally like to minimize each one of these.
They cannot be but minimized to zero; the lower-bound theory ensures that they can be
designed to meet time/space complexity asymptotically. As an example, the Myhill-Nerode
theorem tells that there need to be a minimum number of states in a FSA designed for a
regular language. This impacts the size of memory, which is correspondingly required for

2 Adapted and extended from Wavelet Analysis, The scalable structure of Information, H. L. Resnikoff and R. O. Wells
Jr., Springer 1998

 The invention of B-trees as data structure for efficient search was driven by the fact that secondary storage devices, on
which huge amount of data can be stored(required for certain database applications), are slow in responding, and hence
disk i/0 operations needed to be minimized.
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computation. As another example, in a plastic cell configuration for Reconfigurable
computing(see section 4.9), the processing can be just as less as lookup table function.

The three resources mentioned above, though conceptually independent, admit the existence of
techniques, which allow one resource to be traded off for the others. This is quite important
from an economic point of view, since at a given point in time the relative costs of the
resources do show a large variance. Supposing we are in need of a resource B which is costlier
than A and C. In such a situation, it may be economical to use A and/or C in conjunction with
techniques which trade off B for A and/or C.

Tradeoffs are a way of life in doing optimal designs: there are resource tradeoffs not just to
optimize a single property, but also there are tradeoffs to optimize a property at the expense of
other. Hardware literature gives a nice picture of such optimizations: an example being the
delay-area trade-off(arising out of a lower bound on area-time complexity).

4.1.3 Choices during Design

Most of the arrows in Figure 6 imply one-to-many mappings that lead to availability of choices
during design process.

Since the behaviour is fundamental to a model of computation, it can be captured by more than
one specification in the same model. For example, 0"1" and {w: w has equal number of 0s and
1s} are essentially the same specifications for some language. Hence, the relation between
behaviour and implementation is a one-to-many relation.

Similarly, a specification may have many correct implementations. Such an implementation is
said to satisfy the specification. The reason driving many correct implementations is the
optimality of solution, given the constraints. There can be many optimal solutions; such a
phenomenon is known as Pareto Optimality in design community.

Finally, behaviour to structure mapping is one-to-many. The notion of model of computation for
the overall design can be intuitively described as composing the required computation, or
behaviour, in terms of various computing elements(executing certain types of steps, or sub-
computations). There can be many such compositions, the better design will correspond to the
degree of satisfaction of constraints specified. Hence, one might think of this mapping as many-
to-many as well.

All the mappings can be partial: not all behaviours are expressible using formal specification
notations. Similarly, not all behaviour/specification are implementable. An example is the
existence of synthesizable subset in VHDL behavioural modelling.

By modifying Figure 6, we have the following figure, in which arrowheads denote the direction
of the many-side of the mappings.
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Figure 8: Complete Structure of Model of Computation

4.2 Motivation for Heterogeneous Systems’ Design

The systems we discussed in last section are far too simple to be used in practical life. In
general, the systems are heterogeneous, implying that there is co-existence of a large nhumber
of components of disparate type, function and properties.

As an example, a banking system involves transformational payroll programs, interactive
access to database of clients, and reactive automatic teller machines and man-machine
interfaces. Another example is of a compiler, that may be seen as a transformational from the
outside, but internally it may be constructed in an interactive style out of concurrent processes
which communicate via data streams; or a client-server application is interactive, but the
calculation of the server’s return upon the client’s request may be a transformational step such
as just returning the contents of a requested file.

A formal capturing of heterogeneity can be done using the concept of model of computation.
Not all systems are simple enough to exhibit monolithic behaviour in one particular model of
computation. For example, a simple numeric calculator not only requires a model in which a
sets of "modes” and transitions can be handled, but also a model in which calculations, it's
primary function, can be done. In such a case, perhaps a marriage of FSM model for mode-
manipulation, and “arithmetic” model for representing numeric calculations will be sufficient.

This gives us an opportunity to think, that there can be choice for sub-systems or components
as to which computational model is most suitable(e.g., type of FSM for representing the Ul
component). The next section is devoted on such details.

There are times, when the presence of human-friendly mechanisms[28] nudges a person to
make the specification in a different model of computation. For example, ‘C’ derivatives:
HardwareC/SpecC etc., or the C++ derivative: SystemC. In such a case, we anyway need to
deal with multiple models of computation. We cover this angle as well.
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4.3 Tackling Heterogeneity

4.3.1 Multi-modelling

We already hinted the usage of multiple(see section 4.6 for details) models of computation. We
elaborate here using an example of a mobile handset. The RF transmitter/receptors can be
designed using analog electronics as the computational model. The baseband processing of
signals can be designed using the dataflow family models of computation such as synchronous
dataflow. The protocol stack can be designed using models such as CFSM, or in a little more
crude way, Harel’s StateCharts. The middleware components such as event manager can be
represented using semantics of entity-relationship model, and the applications can be driven by
a normal FSM.

Another fundamental requirement of having multiple model is to accommodate components,
which are external IP. By this term, we imply a component, which has been specified and
developed by others, and purchased for the sake of making a bigger system.

Given such a thrust, we also need to look at how these models combine together. Furthermore,
we need to look at what it means by combining models of computation.

4.3.2 Cost Distribution

We now refer back to section 4.1.2, and notice a few things about the cost or property
mappings. One thing to notice that certain costs and properties(barring the ones in info-action
triangle) are only measurable in a limited(or one) model of computation. For example, number
of dead states can only make sense to be evaluated in FSA model, though the presence of
significant number of such states can adversely affect the overall performance of a
heterogeneous system, in which it is a component.

What is consistent, however, is the presence of the info-action triangle, which, according to our
conjecture, drives all these cost mappings. The limit to which they can be reduced is dependent
on the model of computation(e.g., in a plastic cell configuration, processing can be really
reduced). Still, once the trade-off between these within a model of computation hits a wall, in a
heterogeneous system, one can further try to redistribute these costs by appropriately choosing
the models of computation. E.g., the whole cost of memory can be reduced by choosing an
appropriate set of models of computation.

Design of heterogeneous systems based on info-action cost distribution, though obvious and
intuitively appealing, according to our limited study, has not been explored. Hence concrete
examples cannot be provided.

4.3.3 Refinements

Refinement literally means that crude oil still produces refined oil! Refinement(and abstraction)
mappings are one aspect of combining multiple models of computation. Refinement implies
defining vertical mapping between same aspect of two MoC: say a structure in MoC 1, mapped
to structure in MoC 2. Refinements can be concatenated: this forms the design methodology.
The terms initial MoC, intermediate MoC and final MoC have their meanings implied, thereby.

There is an associated notion of abstraction level. Refinement is defined as mapping from an
(more) abstract MoC to a less abstract MoC. The level of abstraction can be measured by
comparing implementation details[8]. Furthermore, the MoC in question theoretically should
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also be related. The relation implies that the behaviour space should be preserved(in at least
one direction), while refinement, though this relation may not be as straightforward to state.
Finally, the abstraction level perhaps is defined only within a particular flow chosen; the same
MoC may be less abstract, or more abstract, depending on which MoC it is compared with.
Hence, the hierarchy of abstractions used in a flow might look independent of each other.

Why is refinement done? Or how is it identified, that an artefact in a particular MoC needs to be
translated into another MoC as intermediate, before having a specific MoC as final? We point
here few of the reasons:

I. One of the reasons is the availability of tools for verification/simulation at a particular level
of abstraction. There are instances of such trials: e.g., usage of VHDL(RTL/behavioural)
simulator for doing co-simulation in POLIS, while the specification language is in ESTEREL.
Multiple specifications can be refined to such a level, where commercial tools are available.

On the negative side, such a refinement, e.g. refinement to VHDL, implies restricted symbolic
debugging capabilities. This is because the correspondence between the refined VHDL code and
the original specification can be fairly loose.
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Figure 9: An Example Refinement

"ﬁ TATA Consultancy Services Page 30 of 51
TATA



Elements of System Design

II.  The other reason is exploiting the partial order of MoC, wherever possible, for better
calculation of associated costs. Partial order can give rise to refinement of properties(both
intensional and extensional), which can be measured at some MoC, and which can be close
approximate of a final calculation.

One hidden problem in this case is that one MoC can be refined into more than one(can
participate in multiple partial orders). In that case, one has to decide which one to choose.
Parameters such as familiarity with a particular model of computation are used to help resolve
the tie in practice.

III. By refining few models to a particular MoC, insertion of external IP can become easy.
Bringing them to a single platform saves the overhead of thinking and using the interaction
semantics. Non-sophisticated tools can be used at this particular MoC level.

Iv. For formal verification of some property, abstraction mapping(opposite of refining) are used
at times. This implies that certain properties are dropped from consideration. There are
instances of CFSM being converted into synchronous FSMs?**. When we explicitly focus on
proving one property, the job can be eased by omitting the non-relevant details.

V. At times, an intermediate MoC is defined for portability reasons. That is, a model is
translated into another model in another MoC, from which components can be translated
independently into multiple MoCs. E.g., the CDFG created by 'C' compilers. The CDFG can then
be synthesized into the instruction-set model of computation for various processors.

There are many types of refinements, all driven out of formal methods. Interested person can
look into [12].

Figure 9 depicts a simple refinement process.

4.3.4 Category Theoretic Formulation of Problem

The best way to mathematically formulate the above two issues into a single problem is by
using Category Theory[4], which is a general theory of structures. It deals with describing
precisely many similar phenomena, or specifically, constructions with similar properties. One
can thus transport, and study the set of all models of computation using Category Theory. By
doing so, one essentially studies the semantics of various models of computations, and the
relationship(such as embeddings) amongst them.

As an example, a category can be formed to deal with study of class of all vector spaces, and
linear transformations amongst them.

Quoting [4], a category is denoted as a quadruple (®, H, id, 0), where
*= O denotes a class of similar structures, such as class of vector spaces

= His a set of relation between two members of ®: members of H(A,B), where A,B € ® are
known as morphisms.

= Idis an identity morphism for each object A: ida: A — A.

2% CFSM is more detailed MoC here.
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= o is the composition law for morphisms. If f: A - B, and g: B — C, then gof: A —» C.
Composition is the fundamental primitive in Category theory, in the same sense that
membership is the fundamental primitive in Set theory.

By looking carefully, it makes sense to treat each MoC as a Monoid. That is, the refinement
relations(wherever applicable) between them, which form the morphisms, will be associative,
and there will be an identity element. The identity element maps the set(in our case, a MoC) to
the same MoC, thus forming a loop. One of the interpretations of such loop is local optimization,
which may lead to a different structure within the same MoC. The morphisms can be
interpreted as interaction between two MoC, i.e. how two structures in two different MoC
interface with each other, and cope with the dynamics of such interfacing(paramount problem
in composing heterogeneous systems). In real life, such morphisms are implemented using
transducers.

Point work has existed so far, marrying two models of computation at time. Category Theoretic
approach promises a “grand unified model of computation”.

The issues with doing such unification are perhaps expected: notable among them are

= OQut of the universal set of computational models, few subsets form a set(non-zero) of
partially-ordered computational models. The partial order relationship is a kind of embedding.

= A particular computational model may be part of more than one subset. In such a case,
work can still be done to form a total order out of these two partial orders.

Pioneering work has already been done on these lines: one can refer to [25] and [30].

4.3.5 Terms and Details

Now, we introduce few terms related to system design.

4.3.5.1 Design Task

A design task is a bare-bones definition of the system to be designed: it is like a customer
telling: “Gimme a reference design of a digital camera having 256 KB flash, auto focus ability,
...". The design task may further mandate re-use of certain pre-designed components. The
design task may also have a collection of specifications(only a part of the overall system
behaviour) of for re-use purposes.

4.3.5.2 Design Methodology

Typically known in the industry as the job of an architect, this involves breaking up the design
task into design subtasks. The design subtasks imply modelling and designing components in
the MoC decided for them, e.g. auto-focus algorithm on a DSP processor. To make a choice of
componentization and their bindings requires understanding of various application domains. The
design subtasks also utilize refinements, wherever required.

If we were to visualize a vertical tiling of various MoC, as depicted in Figure 9, then we can see
that a design methodology forms a path in the graph. The jumps in the graph consist mainly of
synthesis and refinement steps(Harel[27] was the first to note these). There is also at least one
node with in-degree as 1, and multiple out-degrees. This is the node where the high-level
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architecture is defined. This node can be the source itself, or can be a virtual node, where we
simply start with predefined set/architecture of components.

A few figures, based on the reasons cited in section 4.3.2, are shown below.

Thus, formally speaking, a methodology is a set of models and transformations, possibly
implemented by CAD tools, that refines the abstract, functional or behavioural specification into
detailed implementation description ready for manufacturing. Typically, in the hardware
verification domain, the machine derived from a high-level system description like RTL or
behavioural spec is termed the specification, and the description corresponding to the low-level
difficult system description, perhaps at the gate or the switch-level, is termed the
implementation. Such incomplete definition gives rise to confusion, for it does not reflect the
essence of behaviour-preserving refinements. For example, compiling a Lustre specification into
gate-level netlist(using it's compiler), with FSA as intermediate MoC, resembles a vertical,
diagonal refinement, which can lead to confusion.
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Figure 10: General Methodology
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Figure 11: Methodology for reason V

Mostly the refinements are done structurally; but it has to explicitly or by simulation, guarantee
that the behaviour is also consistent(equivalent), or it gets refined as well. The independent
hierarchies(functional/behavioural and structural) are defined in [8].

The design flow need not start at all from a specification. The requirement can be changing a
structure in one MoC to another. For example, someone gives a digital filter, and wants it to be
converted from DSP code, to sequential circuitry, and then to hardware. This is driven by the
fact that the customer foresees some kind of constraint satisfaction/cost advantage, for which
the implementation is being changed. There can be point conversions also, driven by similar
constraints. By adopting such definition, we counter the myth that the design methodology is a
sequence of steps that transforms a set of specifications, described informally, into a detailed
specification that can be used for manufacturing. Such a definition implies that intermediate
steps are characterized by a transformation from a more abstract description, to a more
detailed one[22], which is not always the case in industry(author’s experience).
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Figure 12: Methodology for reason I and III

4.3.5.3 Design Process

The design process comprises of the complete details("how”) of all the sub-tasks under the
design methodology adopted for the required design task. It includes defining configuration
management, quality matrix, tools to be used at various stages and in various MoC,
checkpoints during refinement and the method used, the choice of language for software
components, to name a few. Needless to say, this is the point where abstraction stops, and
reality sinks in!

4.4 Elements of Methodologies

Methodologies exist for hardware-only design[3], software-only design[12], mix-mode IC
design(having both analog/digital hardware), hardware-software Codesign, and the emerging
field of Reconfigurable systems’ design. We look here at details of design methodologies, in
general.

4.4.1 Models and Specifications

What is provided at times, or is rather available in case of heterogeneous systems is the
collection of requirements, mostly stating input/output tuples for the system in some form, in
the name of design task. The analysis step from this should lead to regrouping them into
subsets of related requirements. If it is possible, then the design task is said to have a
behaviour space. In the degenerate case, the set of independent requirements in practice being
finite, they form a space by themselves: we do not cover such case in our definition. In such a
case, one can write down specifications(as some type of logical formulae), in some specification
language, which will relate to each of these subsets. It is from these subsets, the author’s
experience says, that one can derive the first hints of a possible architecture. A variation of this
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problem is also known as the hardware/software partition problem, to be introduced in section
4.8; and this is currently an active area of research.

From these specifications, models are prepared, which then go into the design flow. For
complex systems, it is inevitable that specification and implementation views of an evolving
model have to be intertwined or interplayed, during the development activities, at different
moments and also at distinct levels of abstraction. For instance, the whole system can be seen
as a module and a state machine devised for it. We can later decompose the system in sub-
systems and create, for each one, an activity diagram that represents the respective function.
The sub-systems can by themselves, be decomposed in objects, which can have their life-cycles
represented by a Petri net. We can go as many levels as we want, and as modellers, we are
always changing specification/behaviour rather, into structural view, and vice-versa.

4.4.2 Design Flow

Design flow refers to the patterns shown in section 4.3.5.2. A design flow need not be a vertical
line: though any strand of vertical line implies that models show an embedding. There can be
many models of computation, which will play part of intermediate models of computation. A set
of models of computation will be the final models: after reaching an implementation/structure
here, the designer/architect will not bother about any further conversion to any such structure.
At these MoC, implementation details are very clear, and each component also has a clearly
defined function/behaviour.

The design flow can branch out at any point(see Figure 11) into multiple MoC. This introduced
additional interfacing requirements, which can be broadly grouped into synchronization(e.g.,
software scheduling) and communication(e.g., transducer design) requirements.

Integrating reusable blocks of IP into a particular model requires compatible abstraction levels
between the reused IP and the rest of the model, or at least bridges between levels. For
example, most of today's IP blocks are available either at the register transfer or transaction
level for hardware, and either source or object code for software. Bring to same MoC can help
in joint verification(an important requirement) of the entire model.

Existing design tools are basically of two sorts:

e Mainly focusing on functional design, the first come from the specifications domain to reach
the detail design of the components(top-down process).

e Mainly focusing on platform design. This introduces a re-use based design process, and
hence tends to be bottom-up.

The current problem in industry also lies in the fact that different people follow different design
methodologies tailored by the experience of their development communities. Still, these
methodologies can be broadly grouped under three categories.

4.4.21 Top-down Approach

In top-down approach, a comprehensive model is captured using a single specification
language, such as SpecC/SystemC. At the topmost level, both the behaviour and the structure
may be highly unspecified(lacking details). The behaviour of such a model is then decomposed.
Decomposition includes the delegation of part of behaviour(function) to an architectural
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component. As a side observation, the structure of this graph resembles the structure of a DFA.
A detailed picture of this approach is given in [27].

The advantage of such an approach is that one can postpone the decision of binding: an
algorithm can be implemented on a DSP, or on a general-purpose microprocessor. Such a
binding is done after approximating and analyzing the various cost factors of such
configurations.

Such a unified modelling language is developed has the potential of being far too expressive
and generalized. In that case, verification of models and ease of synthesis/refinement becomes
very tough.

4.4.2.2 Bottom-up Approach

A behaviour can also be composed, from elementary components, and found to be equivalent
to what is desired. This way, one can choose a required composition of behaviour from an
available set of elementary behaviours(computational elements). Bottom-up flow requires
organization of specification, such that components can be identified(equivalent notion is
identification of strongly connected, directed sub-graphs)[35].

Platform-based approach of system design falls under this category. The term platform implies
a set of reusable, general-system(components). Following [31], it is important to distinguish
between special-purpose systems, from general-purpose systems. This is because for these,
the design methods and constraints differ widely. While special-purpose systems are designed
with specific purpose in mind, and hence have stricter design constraints, general-purpose
systems are developed with no single application in mind, and hence focus shifts on designing a
system framework, which can best match multiple targets.

The above is a simplified view: applications, or rest of the system components(which need not
share functions, and hence do not have re-usable behaviour elements) need to be designed,
which tailor the use of the services offered by the platform. Thus, the system design can be
divided in two distinct processes: the bottom-up design of the platform, and top-down design of
the application. The first process aims at offering a development platform to application
developers, while the second aims at deploying an application on a platform.

The bottom-up approach has not been worked upon, much. Also, software development of
systems, from the author’s experience, is moving towards component-based design techniques
across the industry. A recent work on such cross-fertilization of ideas can be found in [35].
Much more work is still to be seen in this direction.

4.4.2.3 Mix Approach

Many researchers are doubting whether top-down approach will work, because it is very difficult
to combine multiple MoC in single framework([25] has combined a limited set of MoC). Hence
there are other approaches that explicitly use more than one MoC. Here the choice of MoC is
made before the modelling phase starts. Each component is then modelled in an MoC specially
targeted towards that type of computation. The cost of altering the choice later is too high, and
hence in this approach, the choice is typically not altered. The integration offered by this
approach is less deep, but simulation is used to validate the design and integration of the
various MoC(an example being co-simulation).
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This approach should not be confused with bottom-up approach, where pre-implemented
components are re-used, and made part of a bigger specification(e.g., an application
framework). In mix approach, the participant specifications are almost functionally complete in
themselves(e.g., specification of a equalization unit in DSP).

The practical patronage to mixed approach arises from the fact that system development
features, mostly business-requirement driven, various preconceived, unavoidable limitations on
the structure, distribution, capabilities and interconnections of their components. Hence natural
decomposition, though a better choice, may not be possible; some components of overall
behaviour, or structure may be forced for re-use. Availability of design tools also at times
restricts a component to be sticky to a particular MoC.

There are shades of mixing in certain top-down methodologies[17]. Such approaches are
dominantly top-down, which has elements of bottom-up(for IP re-use).

4.4.3 Architecture Exploration

Architectural design(or exploration) is the assignment of a type system(intension) of
components(e.g., binding/allocation in hardware design) to a set of specifications. The dotted
arrows in Figure 11 depict an example assignment. This is actually a macro-architectural
exploration(area having architectural description languages). Micro-architectural exploration is
of camouflaged nature(typically performed by tools), and is closely linked to refinement
mapping. An implementation, or structure within a computational model, is termed as
architecture, if it is refined into another structure in another MoC that demonstrates more
implementation details.

The term architecture exploration has outgrown its initial usage, and is now used in a related
problem known as partitioning, in heterogeneous systems. Partitioning is an inverse mapping:
portions of specifications are assigned structural components, the collection of which is deemed
architecture. Thus, it implies assigning multiple MoC, and may be few architectural templates to
portions of specifications.

A partition is optimal if it is found leading to optimization of certain cost functions. Also, it
needs to satisfy certain properties, which show eternality, rather than local or global optimality.

Once a first "blueprint architecture" is obtained from prospective architecture exploration,
confirmative exploration can help fine-tune characteristics of various components. Usage of
cycle-accurate models is an example of this. In the worst case, a complete validation may point
unsatisfactory properties, and architecture may need to be redone.

4.4.3.1 Relation to Design Flow

Design flows can never be just top-down, or bottom-up. Loop backs, or iterations are required
for various purposes. As an example, already discussed, there can be insertion of IP in a
predominantly top-down design, which partially constrains the choice of components. Wherever
there are iterations, they are due to something being tried for optimization. These iterations are
known as explorations, and can lead to changes in both macro-architecture as well as micro-
architecture. Choosing components, and performance analysis to provide feedback, are
essential elements of this task.

The position of MoC in the design flow graph, in which the model is changed for next iteration,
is sometimes termed as (micro-architectural)exploration level. It is imperative, that different
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exploration levels propose a trade-off between the architecture exploration cycle period
(defined by the simulation speed and time to make changes in the architectural model) and the
level of details obtained.

The macro-architecture is intensional, hence many architectures can satisfy the cost(behaviour)
constraints, in the same sense of intension and extension. Such a case leads to the notion of
pareto-optimal designs. It is also non-local[39], and hence it can be explored only when a
cohesive specification is analyzed for MoC-specific components and their interconnection. That
is, architectural exploration should to be tried to be done at the higher levels in the design flow
graphs; after components and respective MoCs are fixed, one only needs to bother about the
design process in each MoC. If one has to really wait for one set of implementation to be ready,
then one may critically fall short of time to investigate and explore all the possible configuration
of components.

Design process within a MoC can be either synthesis or compilation, depending on the MoC. The
synthesis should not be confused with refinement mapping across MoC; and similarly, analysis
should not be confused with abstraction mapping across MoC.

Architecture exploration and choice of design flow are subtly intertwined. The degree of
constraints imposed on architecture hints at the possible choice. Current synthesis-based
methods almost invariably impose some restrictions on the target architecture in order to make
the mapping problem manageable. It may be due to vendor restrictions on components,
interfacing constraints.

4.4.3.2 Exploration in Top-down Flow

This is the ideal case, which actually hardly happens(author’s experience). In this case, there
are no preconceived components, and hence the architect is free to choose his choice of
components, analyze and perhaps complete redefine his original choice.

Uniform modelling languages such as Spec-C and System-C make perfect choice for the
specification purposes. Such approaches have suffered a bit from the angle of tool support
required for high-level cost approximation, and also refinement/synthesis.

4.4.3.3 Exploration in Bottom-up Flow

We take the example of platform-based design here. In bottom-up approach, platform
development and application development, are two distinct sub-processes. We assume that the
system hardware is already defined: it's either a ready-to-use commercial platform or a reused
(in-house or external) design. If that is not the case, then the flow will be a top-down flow(a
slight variation in case system hardware is to be derived from an existing design).

These two processes necessarily meet at some point, when the platform is ready to host an
application, and the application ready to be hosted on a platform. Performance analysis and
architectural exploration takes place at such point. The system architecting activity consists in
optimally allocating system parts to the existing programmable and configurable hardware
components. Experience, design by analogy and very often non-technical (economical,
commercial, etc.) imperatives guide designers in their initial architectural decisions. Also,
exploration can be done by trial and error and by executing “what-if” scenarios.

Architectural exploration is possible if the same functions can be simulated on different
hardware platforms, which implies defining a separate model(similar to that offered by an ADL)
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from the functional model for representing the system hardware(property-based models). The
choice of abstraction level for having such models affects the reliability of the exploration result.

4.4.3.4 Exploration in Mix Flow

In this approach, the specifications written in individual MoC are taken. A co-simulation can be
done over this collection, an example being the usage of PTOLEMY[17]. Few specifications have
the prefixed choice of being mapped to implementation within the same MoC, without further
evaluation. This is like saying that GUI is implemented in software, come whatever may. Other
specifications are grouped together, and re-partitioned(in precise words, re-targeted) in
different set of MoCs. E.g., spec A and spec B are made into spec C(in which A and B are
invisible), and repartitioned into specs D, E and F. Further simulations are done, and
architecture exploration moves.

4.4.4 Analysis

The refinement process also involves mapping constraints, performance indices and properties
to the lower level so that they can be computed for the next level down. Not just that, the
synthesis within a model of control(from e.g. a spec to a structure) is mandated to preserve the
properties.(1.3.4, [8]).

As pointed out, approximation and evaluation steps are part of analysis of a model. For any
design flow, if the analysis is done as early on, as possible, good amount of re-work due to
iterations can be saved. But, in design flow, early-on models(if there exist such models) tend to
be abstract structurally and behaviourally, and hence the analysis is more of approximations.
An advantage is that approximations are quick to be evaluated, and hence more exploration
can be packed on a level, which is higher in abstraction.

4.4.5 Synthesis

We restrict our definition of synthesis to be specification to behaviour mapping within a model
of computation.

Algorithm design falls as a part of synthesis task. Since it is often application-dependent, it can
only be done in suitable model(s) of computation(1.3.2, [8]).

Not all constructs of a specification language are synthesizable. Hence, a structure(model) can
be synthesis model(outcome of synthesis) or simulation model(). Typically, synthesizable
models have constructs which form subset for simulatable models(read: synthesizable subset).
Only the implementation, or the design process, is with respect to a composition of objects:
which means functions and computation.

4.4.6 Refinement

We have already talked about refinement in section 4.3.2. The refinement can be either
structural or behavioural; we talk about them next.

For reactive systems, refinement becomes even more tricky; how will concurrence be refined,
so that the refinement process does not lose its meaning, is still subject to active research. For
transformational systems, the refinement mostly becomes functional, or structural,
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decomposition. A composition of complex functions, using primitive recursive functions, is an
inverse example of this.

4.4.6.1 Behavioural Refinement

Behaviour refinement is a process of fine-tuning the system’s performance by
supplying/providing more information about its behaviour. Behaviour implies the dynamics, and
hence it is either the temporal, or the data-type? properties, which get refined. What is
preserved here is the set of so-called external signals[27]. In fact, that is the only thing, which
seems to be preserved during structural refinement as well.

An example of behaviour refinement is the program transformations used in programming
languages domain. Though physically the rules/transformations are changes in structure, loop
unrolling introduces refinement of the behaviour(additional behaviour, that the program does
not loop, but still does the same computation). It is known, that these transformations are valid
refinements, and hence no special verification is required during such steps of the refinement
process.

Another example of behavioural refinement can be taken from the observation that the
execution time of a CFSM transition(when next a CFSM will transit) is unknown a priori(the
semantics of the MoC has globally asynchronous property). But, with refinement involved in
synthesis from initial specification, more precise timing information gets added. This happens
as more and more design choices are made(e.g., partitioning, processor selection, compilation).
Yet another example is the Lustre compiler, which designs(a refinement) FSA to satisfy a Lustre
specification(intermediate step), and outputs a FSA structure in the form of an OC-format file.

Such kinds of refinements do not seem to be used often in practice. What is seen is that
synthesis is done first, followed by structural refinements. Ideally, the synthesis and
(behaviour) refinement steps can be mixed[27], but the authors could not find a concrete
example of this.

Across two models of computation of disparate kind, it may not be possible to define any
behavioural refinement. In such case, only simulations and bi-simulations can perhaps prove
the equivalence.

4.4.6.2 Structural Refinement

Structural refinement is done to bring the system closer to its final form, by supplying more
information about its implementation. Also, the whole objective of design process is to do
behavioural refinement(to successively have more optimal behaviour). To do so, structural
refinement is used.

Structural refinement hence also needs to preserve, or refine interface behaviour. The interface
consists of input/output events/signals/channels etc. The processes, or components can
themselves be defined in terms of these inputs/outputs[25], and hence any such
preservation[27] is imperative. Such refinement also gives some semantics to development of
interfacing elements between MoC?*®(see section 4.6).

25 1y : . :

Richer set of data types/operations represent more expressive model for computation.
26 N .

E.g., a scheduler can be looked as a synchronization process, while a transducer, or a relay network can be looked as
communication process.
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The so-called “laws”, or requirements of structural refinement can be defined easily for models
of computation, which are semantically close enough(such as gate and transistor level). [16]
provides a set of requirements in terms of constraints over the abstraction and refinement of
models. The models themselves are expected to have related entity-relationship semantics of
their own(still, two different models of computation). If such laws cannot be discovered, then
the refinement process cannot be automated, and post-design validation of refinement step
might be the only thing possible.

In the software architecture domain, an excellent extension of structural refinement has been
noted in [12]. It also provides an example analysis of preservation of behaviour, after the
structural refinement(the behavioural equivalence proof). It does so, by using model-checking
techniques to analyze the properties of refinement.

Life may not be just behaviour-preserving sequence of structural refinements. Hardware design
flow tends to be like that, for it was defined for a functional (sub-)system. At times, the flow
may be warped, and hence it will need explicit verification of whether one particular
decomposition preserves or refines the behaviour also.

As with the behavioural refinement, structural refinement may not always possible. Say, an
analog structure cannot be refined into a digital structure. But given two such structures, their
output waveforms can be observed to be consistent. Then, we can claim that since the
behaviour is consistent, the models are structurally equivalent, or they exhibit
abstraction/refinement properties.

4.5 Verification of Design

Formal techniques can be used to do verification of all the steps involved in a design
methodology. The following figure shows the relation of verification techniques to a single
model of computation.
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Figure 13: Directed Graph for a Model of Computation
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One can exploit the properties of the model of computation to reduce the verification cost. For
heterogeneous systems, design for verifiability is pretty important concern; otherwise, the
power of using modelling does not help reduce the production cost of the system.

In a design (methodology) flow graph, verification needs to be done at various steps. At times,
it helps in deducing properties of refinement. In other cases, it provides with better, or closer to
the actual, approximation of various costs, and in certain cases, evaluation. There are a lot of
such techniques, which can be fit in our methodology diagram[29].

At the end(when the implementation finishes), a complete validation is required to be done.
The verification only enhances the probability that the right choice(s) has been made; in the
worst case, using verification tool will end up being more duration-costly affair. The results of
complete validation might not be directly comparable to result of approximate verification done.
This is because cycle-accurate models, and details processor models, etc. are used to do the
detailed validation. Hence, to choose what costs/properties to verify at various stages of
refinement, has to be carefully decided(so that the disparity is not too much). Such refined
costs can be used to perhaps do few more exploration cycles.

Both property- and cost-analysis are part of verification process. The data for analysis is
obtained by analysis/abstraction mapping.

4.6 Computation Models and Interconnections

At least two partial-order subsets of models of computation exist: the control-dominated
models(e.g., CFSM, FSA, StateCharts), and data-dominated(e.g., DFG, Synchronous DFG).

Also, there exist a lot of models of computation(why? See [22]). For our design purposes, we
need to figure out the semantics of interconnections for such models(wherever it exists).
Physically, interconnect is realized using separate interface component. The behaviour aspect of
interface block can be a protocol, and structure can be port /queue model, etc.

We just mention a few(limitation of the study of the authors) models of computation relevant to
system design. There are many papers, which describe and review each one of these, and
hence we do not make any similar attempt. Certain application domains for these are quoted in
a table in [19].

A good future exercise will be to elaborate the structural, behavioural and specification view of
each of these MoC. For example, a and b are elaborated here. A complete picture will be to
figure out design flows possible, and the missing design flows across the planes depicted by
MoC. It shall also include a good survey of what are the cost factors involved in each plane, i.e.
the evaluation and approximation domains, the relation of these to the views in a plane, and
the relationship with their siblings across the planes. May be for a and b, such relationship
should be elaborated here.

1. Von Neumann(sometimes compared to RAM model)
2. SDL process network
3. Neural Network
4, Program State Machine
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5. Petri Net

6. Kahn Process Networks
7. (Normal) FSM/FSA

8. Behavioural FSM

9. Co-design FSM(CFSM)

10. Timed Automata

11. Hierarchical concurrent FSM(StateCharts)
12. FSM with datapath

13. Synchronous Dataflow

14. Dataflow

15. Synchronous/Reactive
16. Actors
17. Process Algebra

18. Concurrent Sequential Processes

19. Calculus for Communicating Systems

20. Programming language such as ‘C’. They have a universal model of computation.
21. Differential Equations

22. RTL, or sequential

23. Logic-level, or combinatorial(almost same as gate-level)

24. Transistor-level

4.7 Trends in Evolution of Methodologies

Though industry still works its way through methodologies evolved by its own experience(at
least, the author has been part of two such cases), any particular design flow can never come
to a stage of monopoly. Still, there are trends in evolution of these, which are driven both by
the industry and the academia. We note (just) a couple of them. The note has been made by
looking at academic and industrial documentation. From academia’s part, at least five
developments deserve mention here: PTOLEMY[6], POLIS[7], SPEC-C[24], SYSTEM-C[5], and
MATISSE[33].

Usage of formal models is being pushed[24], and hence, implicitly the top-down design flow. It
has got distinct advantages. Such a unified modelling language is developed has the potential
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of being far too expressive and generalized. In that case, verification of models and ease of
synthesis/refinement becomes very tough. Metropolis[34] claims to be trying to overcome this.

POLIS extends the definition of algorithm development from system design perspective.
Algorithm development for POLIS in not just functional elaboration, it is temporal elaboration as
well. Which implies, that in a loop, macro-architectural exploration is done, and tested, and
hence the algorithm for implementation purposes develops itself. POLIS also shows integration
of MoC-specific formal verification technique. Since reliability is a major aspect in
avionics/control dominated systems, POLIS integrates a technique for such verification, and
also tries to make rest of the flow independent of the MoC.

Easy insertion of pre-developed components(known as IP blocks) is also being targeted. Spec-C
and POLIS have both covered this aspect.

MATISSE and METROPOLIS try to attack, what according to us is driving the disparity in
industrial practices of methodology: robust support for property and constraint analysis. A good
approximation can reduce the iterations during explorations, and a good support for doing so
can help bring smiles on faces of few marketing executives!

4.8 Hardware-Software Co-design

Hardware-software Codesign stands for concurrent realization of components in hardware as
well as software.

4.8.1 Evolution

The major thrust on such design has come from the advent of embedded systems. Embedded
systems are informally defined as a collection of programmable parts surrounded by ASICs and
other standard components that interact continuously with an environment through sensors and
actuators. The programmable parts include micro-controller and digital signal processors, to
name a few?’.

The original methods of system design were to use hard-wired technology, which could be as
compact as an ASIC, or a group of individual components forming a board-level solution. The
solution is known as a hardware solution.

With the advent of microprocessors, which separated the algorithm specification from the
hardware required to execute it, a new domain of software systems has cropped up. This
second method is based on software-programmed microprocessors. Processors execute a set of
instructions to perform a computation. By changing the software instructions(to execute a
different algorithm), the functionality of the system can be altered without changing the
hardware.

What works have contributed to this field, in some kind of chronological order, from various
disciplines of research, is excellently presented in [18].

?7 Future will see FPGA-based Reconfigurable components as well
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4.8.2 Business Aspect

Software had to be treated as another primary component in chip design; this mainly happened
due to Moore’s law. Generally, software is used for features and flexibility®, while hardware is
used for performance. Also, certain computations can only be expressed in one way, e.g. user
interface part of the system.

In the end, it should result in shorter time-to-market and reduction in the design effort and
costs of the designed products(e.g., non-reusable engineering costs). In fact, [17] claims that
70% of the cost of system designing is going to be attributable to software in near future.

4.8.3 Definition

Hardware/software is an adjective applied to systems whose eventual implementations will
contain a hardware portion and a software portion; the software portion, of course, must
contain the hardware(e.g., microprocessor or micro-controller), on which to run the software.

Hardware and software are two different implementation domains. They exhibit different types
of execution constraints for software and hardware implementations: concurrency for hardware,
mutual exclusion for software. This is because hardware related models are often combined into
saying that they are synchronous models of computation, doing parallel computation; this is in
the sense that they are governed by a global clock. While, software models are often combined
into saying that they are asynchronous models of computation, doing sequential computation.

Codesign is an all-encompassing term that describes the process of creating a mixed(in this
case hardware/software) system.

The concurrent development of systems now-a-days demands development of ASICs, standard
hardware components, selection of programmable components, and development of application
software, which will run on them[17].

The difficulties that feature in Codesign are the result of the two contradictory driving forces
described above: increase in complexity and decrease in time and costs. Complete hardware
and software multiprocessor systems are integrated into a single silicon circuit called System-
on-Chip (SoC), thus increasing complexity. Also, systems integrate an ever-increasing number
of external ready-to-use components (or IP blocks), to save time. Thus, most of the design
issues with heterogeneous system design apply here as well. As another example, architecture
exploration gets refined into partitioning.

The major concerns in co-design are[18]

1. To provide analysis methods to check for the constraints/costs such as performance, power
and size, etc. Such methods increase the predictability of the design process. There are
methods to do such analysis, the most common one is known as co-simulation. As an example,
the POLIS framework uses PTOLEMY as the co-simulation engine to do the cost analyses.

2. Synthesis methods, so far practically restricted to (rapid) prototyping, to let researches and
architects/designers to evaluate many potential design methodologies.

3 Flexibility of software allows late design changes and simplified debugging opportunities.
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3. To search modules within the specification for the hardware/software partition(see section
4.8.5).

4.8.4 Modelling

Current methods prevalent in industry, for designing embedded systems, require specifying and
designing hardware and software separately. A specification, often incomplete and written in
non-formal languages, is developed and sent to the hardware and software engineers.
Hardware-software partition is decided a priori and is adhered to as much as is possible,
because any changes in this partition may necessitate extensive redesign. Designers often
strive to make everything fit in software, and off-load only some parts of the design to
hardware to meet timing constraints. The problems with these design methods are:

e Lack of a unified hardware-software representation sometimes leads to difficulties in
verifying the entire system, and hence to incompatibilities across the HW/SW boundary.

e A priori definition of partitions, which leads to sub-optimal designs.

e Lack of a well-defined design flow, which makes specification revision difficult, and directly
impacts time-to-market. The “concurrency of development” being the key idea here, the
evaluation and optimization of the entire system design gets a bit postponed due to time taken
for models to emerge.

It is here that modelling can be used to advantage. Usage of models dominantly comes from
hardware design. In software-only systems, the design process is interchangeably used for the
implementation(sub-)process, which is a loose usage. This is because usage of modelling and
analysis before detailed design is a paradigm coming up now(the OO way, or the usage of UML
now). There is also an interesting proposal to make concurrency of development the secondary
requirement[17], thus allowing the trade-off and exploration to becoming primary requirement,
and hence tended early on.

4.8.5 Partitioning

Lying below the formal co-design issue is the problem of efficient allocation of functions, which
constitute of system behaviour®. It is a specialization of choosing an architecture fitting into
the specified constraints(see section 4.1.1). Formally and generically, it is the method of
expressing a computation amongst various models of computation.

The suitable architecture evolved here consists of a hardware platform, executing some system
and application software (modules). The software part is a set of application-specific software
routines, running on a dedicated processor or ASIP, while the hardware part consists usually of
one or more ASICs.

Before choosing whether a part of a system should be designed in software or hardware,
designers have to represent what the system does (its functions) with no considerations
whatsoever on its nature (software or hardware). Functions of a system can be designed and
verified independently from any technological considerations by creating a functional model.
Functional design helps designers concentrate on the application, with no limitations induced by
physical considerations. This leads to identification of modules.

29 . Lo .
In stricter sense, system behaviour is expressed as a set of relations.
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Co-design is not just the problem of hardware-software partition; or choice of macro-
architecture. At times, one has to tinker forcibly with a natural partition, due to things as vague
as re-use of IP(specifications). Also, if multiple specifications are used, then one also needs to
validate, whether the implementations of components, put together, function so as to satisfy
the specifications(equivalent stage in hardware design flow is sign-off).

4.8.6 Performance Measurement

Performance estimation for software components is very tough, because not only we must
consider the structure of the program(control flow, loop etc.), but also the performance of
software environment(OS overhead, compiler optimizations, input data patterns/properties)
and of the hardware environment(CPU type, caching, pipelining, pre-fetching). Hence at system
level, mostly a few performance constraints can be optimized for(such as design/exploration of
memory architecture), before the true hardware/software architecture level design issues such
as hardware synthesis, software compilation and inter-processor communication synthesis.

4.8.7 Virtual Prototyping

Platform-based Codesign can do a different kind of modelling to alleviate the delay in
verification: usage of virtual prototypes of the platform. Virtual prototyping comes from floor-
planning requirements(back propagation in top-down design flow) in ASIC as well as FPGA. But
it can exist at any level of abstraction[8].

In platform based design methodology, concept of developing a virtual prototype of the
platform helps in Codesign. The resulting platforms are capable of executing application
software on top of the virtual hardware at speeds of millions of cycles per second. Hence, they
enable early software development, in advance of a first silicon prototype, and concurrent with
hardware development.

4.9 Issues in Reconfigurable Systems’ Design

An introduction to Reconfigurable systems can be found in [38]. Reconfigurable systems have
been conceived to overcome the drawbacks, which happen due to having hardware, or software
components in the design of the system.

Point to note is that reconfigurability is there in every model of computation. A dynamic
change(denoted by path) in the behaviour in a particular model of computation can induce a
dynamic change in structure, much in the same way as a static change(at design time) can induce.

As an example, a reduction in battery power level can shut down some of the system
components(power-aware scheduling problem), which is equivalent to adjustment in the
system structure. In this case, the interconnect was tinkered in order to induce a change in
structure. Another adjustment, which can be done is to change the weight and number of
coefficients of a high-performance channel equalizer in the base-band segment of the mobile:
due to the parametric nature of the components/structure, the function gets tuned to the
changed dynamics of behaviour(no need to bother about interconnect).

The worst kind of structural changes can perhaps happen, when one has to change the macro-
architecture: for an example, the hardware/software partition, or the binding to a set of models
of computation. This might be a very complex activity, and may not be practically
realizable/useful at all.
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