Report on Programming Assignment 3

Gaurang Naik
123079009
Collaborator: Aniruddh Rao

October 7, 2014

1 Experiment Setup

The setup for the assignment is as shown in figure 1. There are two systems connected to each other over the
CSE LAN interface. These machines are designated the names C (for Client) and S (for Server) respectively.
The IP address of C is 10.129.5.195 and that of S is 10.129.5.194. At each machine, three virtual interfaces
are created (using ifconfig eth0:x 192.168.y.x, where y=6 for S and y=7 for C and x=1,2,3). Thus, there are
three virtual interfaces at each machine C (C1, C2 and C3) and S (S1, S2 and S3).

With no soultion implemented, the virtual interfaces at C cannot connect to the virtaul interfaces at S.
This is because C has no idea as to what the private IPs of S mean, and vice versa. The objective of this
assignment is to implement a solution at C and at S, so the virtual interfaces at C and S can communicate

with each other.
ethO:l@ @ eth0:1

192.168.7.41 192.168.6.41
CSE Network
eth0:2 eth0:2
192.168.7.42 192.168.6.42
ethO: ethO:
@ 10.129.5.195 10.129.5.194 @
eth0:3
eth0:3
192.168.7.43 192.168.6.43

Figure 1: Topology of clients and servers

For testing the communication between the Clients and the Servers at C1, C2, C3 and S1, S2, S3, I have
tested the Client Server application implemented in PA1. As mentioned in the assigment description, the
client and server were modified to operate on a particular IP interface.

1.1 Solution using iptables

The first solution for providing connectivity between C1, C2, C3 and S1, S2, S3 has been implemented using
iptables. The iptables commands are executed at nodes C and S.

The idea behind the iptables implementation is shown in figure 2. The entire solution can be broken
down into three steps.

iptables rules at C

SNAT:
192.168.7.0/24 ---> 10.129.5.195
DNAT:
192.168.6.41:5000 --> 10.129.5.194:6001
192.168.6.42:5000 --> 10.129.5.194:6002
@ 192.168.6.43:5000 ---> 10.129.5.194:6003 @
eth0:1 eth0:1
192.168.7.41 192.168.6.41
@ CSE Network @
eth0:2 eth0:2
192.168.7.42 192.168.6.42
etho: etho:
@ 10.129.5.195 10.129.5.194 @
eth0:3 eth0:3
192.168.7.43 192.168.6.43
iptables rules at S
DNAT:

10.129.5.194:6001 ---> 192.168.41:5000
10.129.5.194:6001 ---> 192.168.41:5000
10.129.5.194:6001 ---> 192.168.41:5000

Figure 2: Solution using iptables

1. In order that the virtual interfaces of C (C1, C2 and C3) can communicate with the outside network,
we first need to perform a Source Network Address Translation (SNAT) at node C. The same thing
can be achieved by using MASQUERADE at node C. Once this is done, virtual interfaces of C can
communicate with S.

2. Now, C has no clue what to do with packets destined to S1, S2 and S3. Therefore, a Destination NAT
(DNAT) is implemented at C, which translates all packets destined to S1, S2 and S3 to the gateway S.
At this stage, C1, C2 and C3 appear to communicate with S1, S2 and S3. However, they simply talk
to the gateway S. Each virtual interface is identified uniquely by using different port numbers while
performing DNAT. As shown in figure 2, any packet arriving from 192.168.6.41:5000 will be translated
t0 10.129.5.194:6001; any packet arriving from 192.168.6.42:5000 will be translated to 10.129.5.194:6002
and so on.

3. Now that packets destined to S1, S2 and S3 reach S successfully, a DNAT is implemented at S. Any
packet arriving at port 6001 of S is translated to 192.168.6.41:5000, any packet arriving at port 6002
of S is translated to 192.168.6.42:5000 and so on. Thus, packets destined to S1, S2 and S3 arrive at
the respective interfaces correctly.

Note that the solution is very rigid. I was unable to make a more generic solution. The servers have to
be necessarily listening on port 5000 to make communication possible.

1.2 Solution using tun

The second solution for providing connectivity between C1, C2, C3 and S1, S2, S3 has been implemented
using the tun interface. tun interfaces were created nodes C and S.
An overview of the working of this solution is shown in figure 3.

ethO:l@ @ eth0:1

192.168.7.41 192.168.6.41
tunc.c CSE Network/\ tuns.c /\
@ c S @ eth0:2
eth0:2 :
192.168.7.42 U Uﬁ 192.168.6.42
tunl: ethO: ethO0: tun2:
192.168.8.1 10.129.5.195 10.129.5.194 192.168.8.2 @
eth0:3 eth0:3

192.168.7.43 192.168.6.43

Figure 3: Soultion using tun

The virtual interfaces now do not communicate with the inteface eth0Q. Instead, all packets from the virtual
interfaces are routed to the tun interface using the route command. At C and S, a user space application runs
which simply exchanges data between the tun interface and the ethQ interface. This application is simply a
modification of the sample code provided as reference in the assignment description.

A script file is used to create a persistent tun interface at C and S. A select() loop runs in the application
which checks if any data arrives on the tun or ethO interface. The application uses the tun file descriptor
and the socket descriptor and to check data arriving on either interface. Any data received from the tun
interface is sent to the ethO interface and vice versa.

Any IP packet sent to the tun interface is captured by the user space application, which sends this IP
datagram over a TCP socket. As a result, one IP datagram gets encapsulated into another IP datagram,
hence the tunneling. At the receiver side, the user space application reads data from eth(interface over
the TCP socket and sends this data to the tun interface. This is how the decapsulation occurs. The tun
interface sends the packet to the appropriate destination virtual interface.

2 Wireshark Analysis of iptables implementation

The Wireshark capture for the iptables implementation at S is as shown in figure 4.

As seen in figure 2, all packets to be sent to 192.168.6.4x are sent to port 600x (x = 1, 2, 3) of S. This
can clearly be seen in figure 4. The communication happens between ports 6002 and 6003 (6001 not seen in
image) of S and randomly allocated ports of C. This is as a result of iptables DNAT implementation at C.
Also, due to the SNAT implementation at C, all packets arriving from C1, C2 and C3 seem to arrive from
C (10.129.5.195). Finally, the DNAT implementation at S sends the packet to appropriate interface (S1, S2
or S3).

The highlighted packet in the trace contains a response from the server (of PA1l). The contents at the
bottom show the response (Ok anirudh).

3 Wireshark Analysis of tun implementation

The Wireshark capture for the tun implementation at S is as shown in figure 5 and 6.

Here, the captures have been taken on the tun interface and also on the eth0 interface. The ethO interface
capture (figure 5) shows that the TCP connection was set up only once between C and S. At the tun interface
(figure 6), a TCP connection using SYN, SYN ACK and ACK was set up for each flow (C1-S1, C2-S2, C3-S3).

B & e EEXCE Q¢ IT LEB el @EHX @

Filter: v | Expression...

No. Time Source Destination krotocol Length Source Port DestinationPort Info
936.579223 20:89:84:a0:e2:45 74:86:7a:42:62:db ARP a2 Who has 10.120.5.1947 Tell 10.129.5.195
10 36.579645 74:86:7a:42:62:db 20:89:84:a0:2:45 ARP 60 10.129.5.194 is at 74:86:7a:42:62:db
1150.743677 10.120.5.195 110.129.5.194 TcP 4 47318 6003 47318 > x11-3 [SYN] Seq=0 Win=20200 Len=0 MS5=1460 SACK F
1250.744076 10.120.5.194 110.129.5.195 TP 4 6003 47318 x11-3 > 47318 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS:
13 50.744133 10.120.5.195 10.129.5.194 cp 66 47318 6003 47318 > x11-3 [ACK] Seq=1 Ack=1 Win=20312 Len=0 TSval=18
14 52336395 10.120.5.195 10.129.5.194 cp 69 47318 6003 47318 > x11-3 [PSH, ACK] Seq=1 Ack=1 Win=20312 Len=3 Tsv.
15 52.336789 10.129.5.194 10.129.5.195 cp 66 6003 47318 x11-3 > 47318 [ACK] Seq=1 Ack=4 Win=14502 Len=0 TSval=18
16 52.336827 10.129.5.194 10.129.5.195 cp 77 6003 47318 x11-3 > 47318 [PSH, ACK] Seq=1 Ack=4 Win=14502 Len=11 TS\
17 52.336901 10.120.5.195 10.129.5.194 cp 66 47318 6003 47318 > x11-3 [ACK] Seq=4 Ack=12 Win=29312 Len=0 TSval=1{
18 54.160877 10.120.5.195 10.129.5.194 cp 72 47318 6003 47318 > x11-3 [PSH, ACK] Seq=4 Ack=12 Win=20312 Len=6 TSv
19 54.161346 10.120.5.194 10.129.5.195 ce 77 6003 47318 x11-3 > 47318 [PSH, ACK] Seq=12 Ack=10 Win=14502 Len=11 T
20 54.161442 10.120.5.105 10.129.5.194 Tcp 66 47318 6003 47318 > x11-3 [ACK] Seq=10 Ack=23 Win=20312 Len=0 TSval=
2157.161308 10.120.5.105 10.129.5.194 cp 79 47318 6003 47318 > x11-3 [PSH, ACK] Seq=10 Ack=23 Win=20312 Len=13 T
22 57.161789 10.120.5.194 10.129.5.195 cp 77 6003 47318 x11-3 > 47318 [PSH, ACK] Seq=23 Ack=23 Win=14502 Len=11 T
2357.161887 10.120.5.105 10.129.5.194 cp 66 47318 6003 47318 > x11-3 [ACK] Seq=23 Ack=34 Win=20312 Len=0 TSval=
24 60.617873 10.120.5.105 10.129.5.194 cp 69 44183 6002 [TCP segment of a reassembled PDU]
25 60.618268 10.120.5.104 10.129.5.195 cp 66 6002 44183 x11-2 > 44183 [ACK] Seq=1 Ack=4 Win=14502 Len=0 TSval=182
26 60.618305 10.120.5.194 10.129.5.195 cp 77 6002 44183 [TCP segment of a reassembled PDU]
27 60.618379 10.120.5.105 10.129.5.194 cp 66 44183 6002 44183 > x11-2 [ACK] Seq=4 Ack=12 Win=29312 Len=0 TSval=18
28 62.379306__10.120.5.195 10.129.5.194 Tce 72 44183 6002 [TCP_segment of a reassembled PDU]

b Frame 19: 77 bytes on wire (616 bits), 77 bytes captured (616 bits)

» Ethernet II, Src: 74:86:7a:42:62:db (74:86:7a:42:62:db), Dst: 20:89:84:a0:e2:45 (20:89:84:a0:e2:45)

» Internet Protocol Version 4, Src: 10.129.5.194 (10.129.5.194), Dst: 10.129.5.195 (10.129.5.195)

» Transmission Control Protocol, Src Port: x11-3 (6003), Dst Port: 47318 (47318), Seq: 12, Ack: 10, Len: 11
b Data (11 bytes)

0000 20 89 84 a0 e2 45 74 86 7a 42 62 db 08 00 45 00
0010 00 3f af 49 40 00 40 06 6a e9 0a 81 05 c2 0a 81 .7.
0020 05 c3 17 73 b8 d6é ed 4d 7f 10 ca 95 96 a6 20 18
0030 00 72 ea 4a 00 00 01 01 08 0a 00 1b d3 98 00 1c .r.
0040 3a bf 4f 4b 20 61 6e 69 72 75 64 68 0a 10K ani rudh.

@ File: "part1-c.pcap” 7911 Bytes 00:... - Packets: 60 Displayed: 60 Marked: 0 Load time: 0:00.117 Profile: Default

Figure 4: Wireshark capture for iptables (client)

Figure 6 clearly shows communication occuring between the virtual interfaces of C and S. Packets are
sent and received by IP addresses 192.168.6.4x and 192.168.7.4x (x = 1, 2, 3).

4 Comparison of two solutions

As mentioned before, the solution using iptables is rigid. The code written allows for communication between
the client and server only on port 5000 of the virtaul interfaces. That is, S1, S2 and S3 can hear only on
port 5000. And packets sent from C1, C2 and C3 will go through only for those destined to port 5000 of
S1, S2 and S3. However, a more generic code could be written for the same purpose making the code more
flexible. Also, the solution provided would only work for TCP connections. In order to specify the ports,
iptables command require you to sepcify the protocol. In order to use another protocol, say ping, instead of
TCP, the protocol needs to be changed to icmp instead of TCP.

As far as the signalling overheads are concerned, when the iptables solution is used, C and S would have
to establish a TCP connection for each client-server pair. If there are large number of clients and servers,
then this overheads would be significant. On the other hand, using the tun interface, C and S set up a TCP
connection only once. TCP connections between the virtual interfaces of C and S are established through the
tunneled packets. So all TCP SYN, SYN ACK and ACK packets between say C1 and S1 appear as normal
IP packets at C and S ethQ interface. The actual number of TCP connections established in the tun-based
solution is one more than the ip-tables based solution (1 TCP connection between C and S, and 1 TCP
connection for each virtual client-server pair). As a result, the total number of packets sent and received by
C and S is more in the tun based solution than the IP based solution. Thus, if signalling overheads at C and
S are concerned, the overheads are larger in iptables-based solution. However, the actual number of packets
exchanged between C and S are more in the tun-based solution.

B xe ¢ »3 T4+ EE s SEHEX @

v | Expression... Clear Apply Save Filter

Sourc

Protocol Destina

n Port Info

129.5.195

94 TCP 60001 42672 > 60001 [ACK] Se Win=229 Len=0 TSval=2036330 TSec

7 56.660915 16.129.5.195 . .5. 60001 42673 > [ACK] Win=29312 Ler TSval=2056494 TSecr=20;
10 67.712300 10.129.5.195 .194 TCP 60001 42673 > 60001 [PSH, Win=29312 Len=2 TSval=2053257 TSei
11 67.712387 16.129.5.194 -195 TCP 42673 60001 > 42673 [ACK] ! in=14592 Len=0 TSval=2026851 TSecr=26!
12 67.712775 10.129.5.195 194 TCP 60001 42673 > 60001 [PSH, Win=29312 Len=6@ TSval=2053257 TSt
13 67.712888 16.129.5.194 .195 TCP 42673 60001 > 42673 [ACK] 4592 Len=6 TSval=2026851 TSecr=2(
.713025 . 5. N 60001 >

67.713257 .129.5 60001 42673 > 9312 Len=0 TSval=2053257 TSecr=2(
16 67.713296 10.129.5.194 10.129.5.195 TCP 42673 60001 > 42673 [PSH, ACK] Segq=3 Ack=63 Win=14592 Len=60 TSval=2026851 T!
17 67.713752 16.129.5.195 10.129.5.194 TCP 60001 42673 > 66001 [ACK] Seq=63 Ack=63 Win=29312 Len=0 TSval=2053257 TSecr=.
18 67.713837 10.129.5.195 10.129.5.194 TCP 60001 42673 > 60001 [PSH, ACK] Seq=63 Ack=63 Win=29312 Len=2 TSval=2053257 T!
19 67.751854 16.129.5.194 10.129.5.195 TCP 42673 60001 > 42673 [ACK] Seq=63 Ack=65 Win=14592 Len=0 TSval=2026861 TSecr=:
20 67.752240 10.129.5.195 10.129.5.194 TCP 60001 42673 > 60001 [PSH, ACK] Seq=65 Ack=63 Win=29312 Len=52 TSval=2053267 ~
21 67.752351 16.129.5.194 10.129.5.195 TCP 42673 66001 > 42673 [ACK] Seq=63 Ack=117 Win=14592 Len=0 TSval=2026861 TSecr:
22 73.904638 10.129.5.195 10.129.5.194 TCP 60001 42673 > 60001 [PSH, ACK] Seq=117 Ack=63 Win=29312 Len=2 TSval=2054805 -
23 73.904699 16.129.5.194 10.129.5.195 TCP 42673 60001 > 42673 [ACK] Seq=63 Ack=119 Win=14592 Len=0 TSval=2028399 TSecr:
24 72 0As183 1A 170 = 108 18 170 s 104 TrD AAQAT A7A72 < AAAAT [DGH AFK] Gan—110 Ark—A2 Win-10217 |an—AA TSwal-IASARAS

»Frame 14: 68 bytes on wire (544 bits), 68 bytes captured (544 bits)

»Ethernet II, Src: Dell_42:62:db (74:86:7a:42:62:db), Dst: Compalln_a@:e2:45 (20:89:84:a0:e2:45)
»Internet Protocol Version 4, Src: 10.129.5.194 (10.129.5.194), Dst: 10.129.5.195 (10.129.5.195)
»Transmission Control Protocol, Src Port: 66001 (66001), Dst Port: 42673 (42673), Seq: 1, Ack: 63, Len: 2
»Data (2 bytes)

0000 20 89 84 a0 e2 45 74 86 7a 42 62 db 08 €0 45 09
0010 €0 36 fe 9c 40 €0 40 06 1b 9f @a 81 05 c2 6a 81
0020 ©5 €3 ea 61 a6 bl b3 23 1c 02 e9 b6 58 7T 80 18
0030 00 72 70 €5 60 00 €1 61 08 6a 00 le ed 63 €0 1f
0040 54 89 00 3c

@® File: "/home/anirudh/cs641-pas3... Packets: 187 - Displayed: 183 (97.9%) - Load time: ... Profile: Default

Figure 5: Wireshark capture for tun (client) at eth0 interface

Blaaoe aExeceg Qe - 3T L& EE ol #EEX @

Filter: | ™= Expression... Clear Apply

No. Time Source Destination Protocol Length Source Port Destination Port | Info
34/ 40.42188200(192.168.7.43 192.168.6.43 TcP 40 56691 5000 56691 > 5000 [RST] Seq=15 Win=0 Len=0
35 44.41609900(192.168.7.41 192.168.6.41 1PA 55 51711 5000 unknown 0x0a [Malformed Packet]
36 44.45571200(192.168.6.41 192.168.7.41 Tcp 52 5000 517115000 > 51711 [ACK] Seq=1 Ack=4 Win=14592 Len=0 TSval=2722
37 44.45575000(192.168.6.41 192.168.7.41 1PA 63 5000 51711 unknown 0x20 [Malformed Packet]
38 44.45579000(192.168.7.41 192.168.6.41 Tcp 52 51711 5000 51711 > 5000 [ACK] Seq=4 Ack=12 Win=29312 Len=0 TSval=274
39 48.81285500(192.168.7.41 192.168.6.41 1PA 59 51711 5000 unknown 0x41 [Malformed Packet]
40 48.85175100(192.168.6.41 192.168.7.41 1PA 63 5000 51711 unknown 0x20 [Malformed Packet]
41 48.85180800(192.168.7.41 192.168.6.41 Tcp 52 51711 5000 51711 > 5000 [ACK] Seq=11 Ack=23 Win=29312 Len=0 TSval=27
42 53.75263000(192.168.7.42 192.168.6.42 1PA 62 5373 5000 unknown 0x6c [Malformed Packet]
43 53.79189400(192.168.6.42 192.168.7.42 Tcp 52 5000 53732 5000 > 53732 [ACK] Seq=1 Ack=11 Win=14592 Len=0 TSval=272
44 53.79197800(192.168.6.42 192.168.7.42 1PA 63 5000 53732 unknown 0x20 [Malformed Packet]
45 53.79204100(192.168.7.42 192.168.6.42 Tcp 52 53732 5000 53732 > 5000 [ACK] Seq=11 Ack=12 Win=29312 Len=0 TSval=2
46 56.91860500(192.168.7.42 192.168.6.42 1PA 56 53732 5000 unknown 0x65 [Malformed Packet]
47 56.95971700(192.168.6.42 192.168.7.42 1PA 68 5000 53732 unknown 0x6f [Malformed Packet]
48 56.95979400(192.168.7.42 192.168.6.42 TcP 52 53732 5000 53732 > 5000 [ACK] Seq=15 Ack=28 Win=29312 Len=0 TSval=2

50 57.00030900(192.168.6.42

IPA 63 5000 53732 unknown

0x20 [Malformed Packet]

0x20

.00080200(192.168. 53732 unknown

b Frame 34: 40 bytes on wire (320 bits), 40 bytes captured (320 bits)
» Raw packet data
» Internet Protocol Version 4, Src: 192.168.7.43 (192.168.7.43), Dst: 192.168.6.43 (192.168.6.43)

3

0000 45 00 00 28 e4 39 40 00 40 06 7 ef cO a8 07 2b E..(.98. @...... -

0010 €0 a8 06 2b dd 73 13 88 9f ac 24 6d 00 00 00 00 $m.. .

0020 50 04 00 00 6c 24 00 00

@ File: "pa3-part2-tun-c.pcapng” 19... - Packets: 61 Displayed: 61 Marked: 0 Load time: 0:00.107 Profile: Default

Figure 6: Wireshark capture for tun (client) at tun2 interface

