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Abstract

Natural scenes contain higher-order statistical structures that can be encoded in

their spatial phase information. Nevertheless, little progress has been made in

modeling phase information of images, and understanding efficient representation

of the image phases in the brain. In order to capture spatial phase structure under

the efficient coding hypothesis, here we introduce a generative model of natural

scenes by assuming independent source signals in a complex domain and non-

uniform phase priors for the complex signals. Parameters of the proposed model

are then estimated under the maximum-likelihood principle. This approach

extends existing methods of independent component analysis for complex-valued
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signals to the one that utilizes phase information. Using simulated data, we

demonstrate that the proposed model outperforms conventional models with a

uniform phase prior in blind source separation of complex-valued signals. We

then apply the proposed model to natural scenes in the Fourier domain. Real

and imaginary parts of the learned complex features exhibit a pair of Gabor-like

filters in quadratic phase structure with a similar shape. The proposed model

significantly improved the goodness-of-the-fit from the model with a uniform

phase prior, indicating that the structured spatial phases are important for

removing redundancy in natural scenes. These results predict the presence of

phase sensitive complex cells in the visual cortex.

1. Introduction

One of the successful guiding principles to understand visual systems in

the brain is the efficient coding hypothesis [1]. According to this hypothesis,

organizations of a visual system are adapted to regularities in natural scenes

that an animal encounters. The efficient coding hypothesis has successfully5

guided us to construct physiologically plausible statistical models of neurons

in early visual cortices [2, 3]. However, most of the previous models extracted

information contained only in amplitudes of an image in the Fourier domain, and

were blind to its phase structure. Contrary to the assumption of the previous

models, it is well known that the phase of an image contains significantly more10

perceptual information than the amplitude of an image [4]. Perceptually salient

features such as edges and bars are encoded in the ventral visual cortex based

on their phase congruency [5, 6, 7, 8]. It has also been shown that some complex

cells in macaque primary visual cortex,V1 , are sensitive to the image phases

[9, 10, 11, 12]. Nevertheless, constructing models of a visual system that utilizes15

the characteristic phase information in the natural scenes remains to be a

challenging problem.

The classical linear generative models represent the natural images by linearly

combining features (i.e., projection fields), and by weighting them using different
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coefficients [2, 13]. The coefficients of the features are learned from natural images20

so that they become as independent as possible, according to the efficient coding

hypothesis. Nevertheless it is known that their dependency cannot completely

removed. It was pointed out that the residual dependency in the coefficients is

conveniently described by using scalar and circular components [14, 15, 16]. This

suggests to use complex representation (a pair of real and imaginary features) of25

the natural images [15, 17, 18]. A successful complex representation model may

explain why nearby simple cells in the primary visual cortex are phase quadratic

[19, 20], and support psycho-physical studies which suggested image phases may

be detected by combining responses of simple cells possessing two odd and even

symmetric features [19].30

In this study, we present a linear generative model of complex representation

of natural images using a superposition of complex features (a pair of features).

While we consider independent priors for the amplitude and phase of the coeffi-

cients, our attention is particularly paid to the phase distribution. MaBouDi

et al. previously demonstrated that local phases of natural scenes detected by35

Gabor filters are characterized by not only uniform but also non-uniform phase

distributions [16]. Motivated by this finding, we model the phase distribution

using a mixture of von Mises distributions, and provide inference algorithms

under the maximum likelihood principle. We then demonstrate the utility of

this approach by both blind source separation of simulated data and analysis of40

natural scenes.

2. Complex-valued Independent Component Analysis

In this section, we present a complex-valued independent component analysis

(ICA) that performs blind source separation of complex-valued data, assuming

specific statistical structure on their amplitudes and phases.45

Let X be a column vector of dimension N with its elements being complex

values (X ∈ CN×1). Following the conventional real-valued ICA model, the
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complex ICA aims to find independent complex sources S that satisfies

X = AS. (1)

Here A (A ∈ CN×N ) is a complex mixing matrix whose columns represent

complex basis functions (features). S = [s1, s2, . . . , sN ]
T (S ∈ CN×1) is complex

source signals. They are complex coefficients of the complex basis functions

in the generative model defined for complex-valued signals. Each element of

S, namely si, is given by si = sRi + jsIi (j =
√
−1), where sRi and sIi are50

the real and imaginary components of the coefficient. This equation is also

written as S = WX, where W = A−1 is called a de-mixing matrix. In the

following, we provide a model that assumes structured amplitude and phase for

the independent source complex signals.

We assume that a sample is generated by the complex linear model using

the complex coefficients that are sampled from an independent distribution of S,

namely ps(S) =
∏N
i=1 psi (si). Using the de-mixing matrix W , the Jacobian of

the above linear transformation is given as det (W ) [21]. W is defined as,

W =

WR −W I

W I WR

 , (2)

where WR and W I are the real and imaginary component of W , respectively.

Thus given ps(S), the probability density function of X is obtained as,

pX(X) = det (W )

N∏
i=1

psi(si). (3)

The complex ICA aims to infer the basis matrix A (or its inverse W ) and source55

signals S under the assumption of their independence.

In this study, we propose to model each complex coefficient by polar coordi-

nates, and impose independence between the amplitude and phase components.

Namely, we rewrite the complex coefficients as si = rie
jϕi , where ri = |si| and

ϕi = arctan
sIi
sRi

are the amplitude and phase components of si, respectively.

Then the model of the probability density function of si is given as

psi(si) =
p(ri, ϕi)

ri
=

1

ri
pri(ri)pϕi

(ϕi). (4)

4



Throughout this paper, we assume that the amplitude distribution pri(ri) follows

the gamma distribution with the shape parameter being 2,

pri(ri; βi) = β2
i rie

−βiri , (5)

where βi > 0 is a scale parameter. This distribution resembles the amplitude

distribution obtained from responses of complex Gabor filters to natural scenes

[16], and imposes sparseness on the complex coefficients. We let the shape

parameter be 2 because we found that the optimization algorithm to estimate60

the complex features under the maximum likelihood principle results in the

algorithms proposed by previous studies (see below). While the previous studies

utilized only amplitude information (a flat phase prior), our approach based on

the maximum likelihood principle allows us to use different types of phase priors,

and compare their performance. In the following sections, we derive optimization65

algorithms for two types of prior distributions for the phases of the complex

coefficients of the complex basis functions.

Circular complex-valued ICA (circular cICA). In this approach termed a circular

cICA (circular cICA), we assume a uniform phase distribution, pϕi
(ϕi) = 1/2π.

The goal is to estimate the linear transformationW such that the elements of the

complex coefficient vector, S, are as independent as possible through an iterative

optimization procedure. We estimate the parameters of the circular cICA model

under the maximum likelihood principle. Let Xobs = (X1, X2, . . . , XT ) be

T complex-valued samples whose dimension is N . Given that the samples are

independent, Eq. 3 gives the log-likelihood function of the model parameters,

l(W , β; Xobs) =

T∑
j=1

N∑
i=1

log psi(〈Wi,X
j〉) + T log detW , (6)

where 〈Wi,X
j〉 is the dot product between the i-th column of W and Xj . By

considering psi(si) from Eq. 4 with prior knowledge of the amplitude distribution

(Eq. 5) and a uniform phase distribution, we obtain

l(W , β; Xobs) =

T∑
t=1

N∑
i=1

[2 log βi − βirti ]− TN log 2 π + T log detW . (7)
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Note that this log-likelihood function generalizes the cost function used in the

Fast complex ICA (Fast cICA) [22]. Moreover, since this model assumes a uniform

phase distribution for the complex random variables, it is applicable for separation

of circular complex random variables [23]. The maximum likelihood estimates

(MLEs) of the model parameters can be obtained by gradient ascent algorithms

in the complex domain, following the Wirtinger calculus. The Wirtinger calculus

was briefly summarized in Appendix 1. The final expressions for the gradients

are given as

∂l(W , β)

∂βi
=

T∑
t=1

(
2

βi
− rti), (8)

∂l(W , β)

∂W ∗
m,n

= T
(
W−1

)H
m,n
−

T∑
t=1

βmX
t
n
∗
stm

2rtm
. (9)

where ∗ displays the conjugate of a complex variable and H denotes the hermitian

(conjugate transpose) of a complex matrix. See Appendix 2 for the detailed

derivation of the gradients.70

Phase-aware complex-valued ICA (phase-aware cICA). The circular cICA model

does not use phase information that may be contained in data such as image

patches. For example, it was previously reported that higher-order statistics of

natural scene is additionally encoded in non-uniform bimodal phase distributions

[16]. In this section, we extend the complex ICA, and construct a model that75

utilizes the non-uniform phase distributions.

In this approach, we model the phase distribution by a mixture of uniform

and von-Mises distributions (see one example of the mixture model of phase

distribution in Fig. 1):

pϕi(ϕi;κi, λ) = λ vM(ϕi;κi, 0) + λ vM(ϕi;κi, π) + (1− 2λ)
1

2π
(10)

Here vM(ϕi;κi, 0) is a von-Mises distribution for a circular variable ϕi with zero

mean and a concentration parameter κi. The von-Mises distribution with mean

µi is defined as,

vM(ϕi;κi, µi) =
eκicos(ϕi−µi)

2πI0(κi)
,
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Figure 1: A mixture model of phase distribution. The red and blue dotted curves exhibit two

von Mises distributions with the same concentration parameter κ, but with different peaks

at µ = 0 and µ = π. The grey dashed line shows the uniform distribution. The black curve

represents a mixture model of phase distribution that is composed of these three distributions.

where I0(.) is the Bessel function of order 0. Given the observations of spatial

phase distributions in natural scenes [16], we consider symmetric bimodal phase

distributions with two peaks separated by π. Here we assume that the peaks of

the phase distribution are located at 0 and π because the peak phase location is

redundant when the features are learned from the data. Note that this model

becomes the uniform phase distribution if λ = 0 or κi = 0 and non-uniform if

λ 6= 0 and κi 6= 0. For simplicity we further assume equal contributions from

each component (λ = 1/3). Then the phase distribution that can cover a uniform

and a spectrum of bimodal phase distributions is simplified as

pϕi
(ϕi;κi) =

1

3π I0(κi)
cosh(κi cosϕi) +

1

6π
, (11)

This model of the structured phase distribution incorporates additional informa-

tion regarding the phase of source signals as opposed to the the previous circular
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cICA. Thus we call our proposed model the ‘phase-aware complex-valued ICA’

(phase-aware cICA) model. Note that this model becomes the circular cICA80

with uniform phase distribution when κi = 0.

The log-likelihood function of the phase-aware cICA model is

l(θ;Xobs) =

T∑
t=1

N∑
i=1

[2 log βi − βirti + log

(
1

3π I0(κi)
cosh(κi cosϕ

t
i) +

1

6π

)
]

+ T log det W , (12)

where θ = (W ,κ,β) is the set of model parameters. The gradients of the likeli-

hood function of the phase-aware model with respect to the model parameters

are derived analytically in Appendix 3, and the final expressions are given as

∂l(θ)

∂κi
=

T∑
t=1

I0(κi) sinh(κi cosϕ
t
i) cosϕ

t
i − I1(κi) cosh(κi cosϕti)

I0(κi) cosh(κi cosϕti) +
I0(κi)2

2

, (13)

∂l(θ)

∂W ?
m,n

= T (W−1)Hm,n

−
T∑
t=1

[
βmX

t
n
∗stm

2 rtm
+

1
3πI0(κm) sinh (κm cosϕtm)κm sinϕtm

jXt
n
∗stm

2rtm
2(

1
3π I0(κm) cosh(κm cosϕtm) + 1

6π

) ]. (14)

Here, I1(.) is the Bessel function of order 1. For β, the gradient is the same as

in Eq. 8.

3. Results

Performance comparison using simulated data. In this section, we evaluate85

efficiency of source separation by variants of the cICA’s, using an artificially

generated dataset. For this goal, we generated a dataset X by mixing 10

independent complex-valued source signals with a gamma-distributed amplitude

and uniform or non-uniform phase S, using a random invertible mixing matrix

A. We considered two different types of the complex-valued source signals90

using the polar coordinates: In one data set, phases were sampled from a

uniform distribution; in the other data set, phases were sampled from a bimodal

distribution (Eq. 10). Amplitudes were sampled from Eq. 5 in both cases. In
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total, we generated 20 data sets for each case. The mixing matrix and parameters

of the probability density function of sources were chosen randomly for each95

data set.

We then applied three cICA methods to estimate the de-mixing matrix W .

We evaluated their performance as follows:

1. A set of samples with various sizes (1000, 5000, 10000, 15000, and 20000)

was generated from the above mentioned distributions.100

2. The Fast cICA model was applied to the dataset to obtain the de-mixing

matrix W .

3. The circular cICA model was applied to the data to learn the de-mixing

matrix W , starting from a random complex matrix.

4. The phase-aware cICA model was applied to the data to learn the de-mixing105

matrix W .

If the source signals are perfectly separated by these algorithms, the product of the

mixing matrix, A, and the estimated transformation W must be a permutation

of the identity matrix. This matrix P = WA is called a performance matrix.

Examples of the performance matrices P obtained from the fast cICA, circular

and phase-aware cICA models are shown in Fig. 2.A. The performance matrix

of the phase-aware cICA model is closer to the permutation of identity matrix

than the performance matrix of the circular cICA model, which indicates that

the phase-aware cICA performs better in source separation. To evaluate the

quality of the separation, the Amari index [24] was calculated:

AI =

N∑
m=1

(

N∑
n=1

|Pm,n|
maxk |Pm,k|

− 1) +

N∑
n=1

(

N∑
m=1

|Pm,n|
maxk |Pk,n|

− 1), (15)

where Pm,n is a (m,n)-element of the performance matrix P . It quantifies

how close the performance matrix is to a permutation of the identity matrix.

The lower Amari index indicates better quality in separation (zero for perfect

separation).110

The separation was tested using the circular cICA, phase-aware cICA, and

Fast cICA [22]. Figure 2.B shows performance of the models for separating
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mixed independent complex-valued signals when they are applied to mixed

complex signals generated by a combination of the bimodal and uniform phase

distributions. Overall, the performance of all three models increases with the115

sample sizes, and the performance of the phase-aware cICA (the red plot) is

the best among the three (the lowest Amari index). Model selection by Akaike

information criteria also supports the better performance of the phase-aware

cICA (Fig. 2.C). When applied to mixed complex signals generated by the

uniform phase distribution (i.e., circular complex variables), the circular and120

phase-aware cICAs outperformed the Fast complex ICA (Supplementary Figure

1). Importantly, the performance of the phase-aware cICA approaches that of

circular cICA whose assumption coincides with the data, indicating that the

phase-aware cICA can successfully estimate the uniform phase distribution in

the data.125

Application of phase-aware cICA to natural scenes. In this section, we apply

the phase-aware cICA model to natural scenes. We used the Hans van Hateren’s

repository of natural scenes [25] provided by Olshausen and Field [26]. We

randomly selected 50, 000 image patches with size 10×10 pixels from the natural

scenes. We then computed the Fourier transform of each patch, and obtained the130

complex representation of natural scenes. After the mean values of each complex-

valued patches were subtracted, we performed the complex whitening algorithm

on the data, based on the complex principle component analysis (complex PCA).

See Appendix 5 for details of the FFT and complex PCA. Finally, we applied

the algorithms (circular cICA and phase-aware cICA) to the whitened natural135

patches to obtain the complex-valued features and source signals. In Appendix

5, we also explain how this procedure constructs a generative model of the

real-valued image patches that imposes structured amplitudes and phases in its

complex representation. For comparison, we also analyzed the natural scences

by the Fast cICA.140

To achieve convergence on learning as quickly as possible, we used the Adam

optimiser for the gradient search of Eq. 7 and 12 as implemented in [27] with
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the suggested default parameters and a suitable initial learning rate. Further,

learning of the phase-aware model could be accelerated if we start from the

converged features of the circular cICA, and then simultaneously learn the

features and shape parameters, κi (i = 1, . . . , N). However, it turns out that

the gradient of the shape parameters is zero if we start learning the phase-aware

model from the uniform phase (κi = 0). The stability analysis (Appendix 4)

reveals that the uniform phase distribution is a local minimum if sample phases

satisfy

〈cos2 ϕti〉t >
1

2
, (16)

where 〈·〉t = 1
T

∑T
t=1 ·. Because cos2 ϕi has a peak at ϕi = 0 or π, this means

that the model of a uniform phase distribution (κi = 0) is a local minimum (the

expectation is larger than 1
2 ) if the empirical distribution of ϕti is concentrated

within ±π4 of the phase 0 or π. To the contrary, if {ϕti}Tt=1 are concentrated

outside of these ranges, the model with a uniform phase distribution is a local145

maximum.

Following this stability analysis, we propose to add independent weak positive

noise sampled from a distribution such as a uniform or Gamma distribution to

κi (i = 1, . . . , N). This makes the gradients non-vanishing, and leads to the

optimal κ according to the distribution of ϕti of the source signals obtained150

during learning. Accordingly, we optimize the phase-aware model as follows:

1. We first run the circular cICA optimization until it converges to obtain

the optimal values of β and W.

2. We optimize the phase-aware cICA with initial values given by the circular

cICA, while initial values of κ are sampled from an uniform distribution155

[0, ε], where ε is a small value.

The likelihood increase is shown in Figure 3. This improvement is significant

(p < 10−3) by the likelihood-ratio test with the degree of freedom N (i.e.,

dimension of the shape parameters, 100 in our case). The significant improvement

of the goodness-of-fit by the phase-aware model indicates that structured spatial160

phase information is important in the redundancy reduction of natural scences.
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Figure 4 shows the features extracted from the natural scenes. In order

to show the features for real-valued images, we show the complex features

obtained after performing inverse of the complex ICA and then the inverse

Fourier transform to the learned de-mixing matrix W (See Appendix 5). Both165

the real and imaginary parts are shown. As a comparison, we show the features

obtained from the Fast cICA applied to the same natural patches. By comparing

the complex features obtained from the Fast cICA and phase-aware cICA (Figure

4), we conclude that the phase-aware cICA model provides features that are

more close to the receptive fields of neurons in early visual cortex than the Fast170

cICA model. Further, many pairs of the components are in quadrature phases,

which could explain observed topographic relations between nearby simple cells

[19].

4. Conclusion

In this study, we introduced a generative model for complex representation175

of natural scenes, which is generally applicable for separation of non-circular

complex source signals. We demonstrated that, in blind source separation of

complex-valued signals, the proposed model outperforms the other methods that

do not consider the phase information because the proposed model adaptively

infers the underlying phase distribution. Applied to the natural scenes, we found180

that the components of learned complex feature are similar to Gabor filters,

and that some pairs of components had quadrature phases. These results are

consistent with proposals in signal processing to use quadrature pairs of Gabor

filters [28, 29]. Under the efficient coding hypothesis, it explains characteristic

of the simple-cell receptive fields and observed topographic relations between185

nearby simple cells [19]. In sum, superior performance of the phase-aware model

and the efficient coding hypothesis suggest that visual systems are adapted to

model spatial phase statistics in natural scenes.
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Figure 2: Model’s performance of Fast cICA, circular cICA and phase-aware cICA

models. A) The performance matrix was computed as a product of a mixing matrix and

a de-mixing matrix estimated by the three proposed algorithms (Left: Fast cICA, Middle:

circular cICA Right: phase-aware cICA). The data were generated from a mixtures of 10

independent complex-valued signals, using a non-Uniform phase distribution. The performance

matrices are normalized by the absolute maximum value in each column. The performance

matrix of the phase-aware model is closer to the permutation of the identity matrix. This

comparison shows that the phase-aware cICA performs better than the Fast cICA and circular

cICA. B) The Amari indexes of the models are plotted as a function of the sample size (a

mean of 20 data sets( ± SD). The complex source signals were sampled from a non-uniform

phase distribution (see Figure A1 for results of uniformly distributed phase signals). Zero

values of the Amari index indicates the best performance of the model in separation of source

signals. C) The Akaike information criterion (AIC) of both circular cICA and phase-aware

cICA models were calculated from the likelihood values. This comparison exhibits a better

representation of signals by the phase-aware model for all sample sizes.
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Figure 3: Comparison of log-likelihood functions for the circular cICA and phase-aware cICA

when initialized with the circular cICA optima
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Figure 4: Complex features learned from natural scenes The whole set of Real (Left)

and Imaginary (Right) components of complex features obtained by the Fast cICA and phase-

aware cICA are represented in the panel A and B, respectively. Both models were applied

to the patches with 10*10 pixels randomly selected from natural images. The complex basis

functions of phase-aware cICA are very close with the receptive field of neurons observed in

V1 area of early visual cortex.
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