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Figure: One of the early Moog Modular Synthesizers
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Audio Synthesis?

I What comes to your mind when you hear ‘Audio Synthesis’?

I More generally, it involves us specifying controlling parameters
to a synthesizer to obtain an audio output

I What are the main parameters which govern the audio
generation(at a high level)?
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Audio Synthesis?

I What comes to your mind when you hear ‘Audio Synthesis’?

1. Timbre

2. Pitch

3. Loudness
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Audio Synthesis?

I What comes to your mind when you hear ‘Audio Synthesis’?

I Early analog synthesizers used voltage controlled oscillators,
filters, amplifiers to generate the waveform, and ‘envelope
generators’ to shape it

I Data-driven statistical modeling + computing power
=⇒ Deep Learning for audio synthesis!
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Generative Models for Audio Synthesis

I Rely on ability of algorithms to extract musically relevant
information from vast amounts of data

I Autoregressive modeling, Generative Adversarial Networks and
Variational Autoencoders are some of the proposed generative
modeling methods

I Most methods in literature try to model audio signals directly
in the time or frequency domain
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Our Nearest Neighbours

I [Sarroff and Casey, 2014] first to use autoencoders to perform
frame-wise reconstruction of short-time magnitude spectra

X Learn perceptually relevant lower dimensional
representations(‘latent space’) of audio to help in synthesis

× ‘Graininess’ in the reconstructed sound

I [Roche et al., 2018] extended this analysis to try out different
autoencoder architectures

X Helped by the release of NSynth [Engel et al., 2017]
X Usability of the latent space in audio interpolation

I [Esling et al., 2018] regularized the VAE latent space in order
to effect control over perceptual timbre of synthesized
instruments

X Enabled them to ‘generate’ and ‘interpolate’ audio in this space
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Our Nearest Neighbours

I Major issue with previous methods was frame-wise
analysis-synthesis based reconstruction which fails to model
temporal evolution

I [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016]
autoregressive modeling capablities for speech extended it to
musical instrument synthesis

X Generation of realistic and creative sounds
× Complex network which was difficult to train and sample from

I [Wyse, 2018] also autoregressively modelled the audio, albeit
by conditioning the waveform samples on additional parameters
like pitch, velocity(loudness) and instrument class

X Was able to achieve better control over generation by
conditioning

× Unable to generalize to untrained pitches
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Why Parametric?

I Rather than generating new timbres(‘interpolating’ across
sounds), we consider the problem of synthesis of a given
instrument sound with flexible control over the pitch and
loudness dynamics

I Pitch shifting without timbre modification uses a source-filter
model with the filter(spectral envelope) being kept constant
[Roebel and Rodet, 2005]

I A powerful parametric representation over raw waveform or
spectrogram has the potential to achieve high quality with less
training data

1. [Blaauw and Bonada, 2016] recognized this in context of
speech synthesis and used a vocoder representation to train a
generative model, achieving promising results along the way
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Dataset

I Good-sounds dataset [Romani Picas et al., 2015], consisting of
individual note and scale recordings for 12 different instruments

I We work with the ‘Violin’ played in mezzo-forte loudness,
and choose the 4th octave(MIDI 60-71)
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Figure: Instances per note in the overall dataset

I Average note duration for the chosen octave is about 4.5s per
note
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individual note and scale recordings for 12 different instruments

I We work with the ‘Violin’ played in mezzo-forte loudness,
and choose the 4th octave(MIDI 60-71)

Why we chose Violin?
Popular in Indian Music, Human voice-like timbre

Ability to produce continuous pitch!
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Dataset

I We split the data to train(80%) and test(20%) instances across
MIDI note labels

I Our model is trained with frames(duration 21.3ms) from the
train instances, and system performance is evaluated with
frames from the test instances.
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Non-Parametric Reconstruction

I Framewise magnitude spectra reconstruction procedure in
[Roche et al., 2018] cannot generalize to untrained pitches

I We consider two cases - Train including and excluding MIDI 63,
along with its 3 neighbouring pitches on either side
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I Repeat above across all input spectral frames, and invert
obtained spectrogram using Griffin-Lim [Griffin and Lim, 1984]
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Non-Parametric Reconstruction

Figure: Input MIDI 63, 1 1

Figure: Including MIDI 63, 2 2 Figure: Excluding MIDI 63, 3 3


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}


1.728
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Parametric Model

1. Frame-wise magnitude spectrum → harmonic representation
using Harmonic plus Residual(HpR) model
[Serra et al., 1997](currently, we neglect the residual)
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I Output of HpR block =⇒ log-dB magnitudes + harmonics
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Parametric Model

2. log-dB magnitudes + harmonics → TAE algorithm
[Roebel and Rodet, 2005, IMAI, 1979]

I TAE =⇒ Iterative Cepstral Liftering

A0(k) = log(|X (k)|),V0 = −∞
while(Ai − A0 < ∆){
Ai (k) = max(Ai−1(k),Vi−1(k))

Vi = FFT (lifter(Ai ))

}

f0
Magnitudes

TAE

CCs

f0
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Parametric Model

I No open source implementation available for the TAE, thus we
implemented it following procedure highlighted in
[Roebel and Rodet, 2005, Caetano and Rodet, 2012]

I Figure shows a TAE snap from [Caetano and Rodet, 2012]

I Similar to results we get! 1 4 2 5


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


3.216


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}


2.256
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Parametric Model

0 1 2 3 4 5
−80

−60

−40

−20

Frequency(kHz)
M
a
g
n
it
u
d
e(
d
B
)

60
65
71

I Spectral envelope shape varies across pitch

1. Dependence of envelope on pitch
[Slawson, 1981, Caetano and Rodet, 2012]

2. Variation due the TAE algorithm

I TAE → smooth function to estimate harmonic amplitudes
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Parametric Model

I No. of CCs(Cepstral Coefficients,Kcc) depends on Sampling
rate(Fs),pitch(f0)

Kcc ≤
Fs
2f0

.

I For our network, we choose the maximum Kcc(lowest pitch) =
91, and zero pad the high pitch Kcc to 91 dimension vectors
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Generative Models

I Autoencoders [Hinton and Salakhutdinov, 2006] - Minimize
the MSE(Mean Squared Error) between input and network
reconstruction

• Simple to train, and performs good reconstruction(since they
minimize MSE)

• Not truly a generative model, as you cannot generate new data

I Variational Autoencoders [Kingma and Welling, 2013] -
Inspired from Variational Inference, enforce a prior on the
latent space.

• Truly generative as we can ‘generate’ new data by sampling
from the prior

I Conditional Variational Autoencoders
[Doersch, 2016, Sohn et al., 2015] - Same principle as a VAE,
however learns the conditional distribution over an additional
conditioning variable
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Generative Models

� Why VAE over AE?

� Continuous latent space from which we can sample points(and
synthesize the corresponding audio)

� Why CVAE over VAE?

� Conditioning on pitch =⇒ Network captures dependencies
between the timbre and the pitch =⇒ More accurate envelope
generation + Pitch control
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Network Architecture

CCs
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I Network input is CCs → MSE represents perceptually relevant
distance in terms of squared error between the input and
reconstructed log magnitude spectral envelopes

I We train the network on frames from the train instances

I For evaluation, MSE values calculated ahead is the average
reconstruction error across all the test instance frames
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Network Architecture
I Main hyperparameters -

1. β - Controls relative weighting between reconstruction and
prior enforcement
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Figure: CVAE, varying β

I Tradeoff between both terms, choose β = 0.1
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Network Architecture

I Main hyperparameters -

2. Dimensionality of latent space - networks reconstruction ability
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Figure: CVAE(β = 0.1) vs AE

I Steep fall initially, flatter later. Choose dimensionality = 32
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Network Architecture

I Network size : [91, 91, 32, 91, 91]
I 91 is the dimension of input CCs, 32 is latent space

dimensionality

I Linear Fully Connected Layers + Leaky ReLU activations

I ADAM [Kingma and Ba, 2014] with initial lr = 10−3

I Training for 2000 epochs with batch size 512
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Experiments

I Two kinds of experiments to demonstrate networks capabilities

1. Reconstruction - Omit pitch instances during training and see
how well model reconstructs notes of omitted target pitch

2. Generation - How well model ‘synthesizes’ note instances with
new unseen pitches
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Reconstruction

I Two training contexts -

1. T(×) is target, X is training instances
MIDI T - 3 T - 2 T - 1 T T + 1 T + 2 T + 3
Kept X X X × X X X

2. Octave endpoints
MIDI 60 61 62 63 64 65
Kept X × × × × ×
MIDI 66 67 68 69 70 71
Kept × × × × × X

I In each of the above cases, we compute the MSE as the
frame-wise spectral envelope match across all frames of all the
target instances.
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Reconstruction

60 62 64 66 68 70 72

1

2

3

4

5
·10−2

Pitch

M
S
E

AE
CVAE

I Both AE and CVAE reasonably reconstruct the target pitch
1 6 2 7 3 8

I CVAE produces better reconstruction, especially when the
target pitch is far from the pitches available in the training
data(plot above) 4 9 5 10 6 11

I Conditioning helps to capture the pitch dependency of the
spectral envelope more accurately
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Reconstruction

I To emulate the effect of pitch conditioning with an AE, we
train the AE by appending the pitch to the input CCs and
reconstructing this appended input as shown below

f0

CCs
cAE

f
′

0

CCs
′

Figure: ‘Conditional’ AE(cAE)

I [Wyse, 2018] followed a similar approach of appending the
conditional variables to the input of his model

I the ‘cAE’ is comparable to our proposed CVAE in that the
network might potentially learn something from f0
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Reconstruction
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I We train the cAE on the octave endpoints and evaluate
performance as shown above

I Appending f0 does not improve performance. It is infact worse
than AE!
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Generation

I We are interested in ‘synthesizing’ audio!

I We see how well the network can generate an instance of a
desired pitch(which the network has not been trained on)

Z

D
ec

o
d

er

f0

Figure: Sampling from the Network

I We follow the procedure in [Blaauw and Bonada, 2016] - a
random walk to sample points coherently from the latent space
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Generation

I We train on instances across the entire octave sans MIDI 65,
and then generate MIDI 65

I On listening, we can see that the generated audio still lacks the
soft noisy sound of the violin bowing

1 12 2 13 3 14

I For a more realistic synthesis, we generate a violin note with
vibrato 4 15
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Putting it all together

I We explored autoencoder frameworks in generative models for
audio synthesis of instrumental tones

I Our parametric representation decouples ‘timbre’ and ‘pitch’,
thus relying on the network to model the inter-dependencies

I Pitch conditioning allows to generate the learnt spectral
envelope for that pitch, thus enabling us to vary the pitch
contour continuously
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Putting it all together
I Our model is still far from perfect however, and we have to

improve it further

1. An immediate thing to do will be to model the residual of the
input audio. This will help in making the generated audio sound
more natural

2. We have not taken into account dynamics. A more complete
system will involve capturing spectral envelope(timbral)
dependencies on both pitch and loudness dynamics

3. Conducting more formal listening tests involving synthesis of
larger pitch movements or melodic elements from Indian
Classical music

I Our contributions

1. To the best of our knowledge, we have not come across any
work using a parametric model for musical tones in the neural
synthesis framework, especially exploiting the conditioning
function of the CVAE!

2. The TAE method has no known PYTHON implementation, so
we plan to make our code open-source to the MIR community
for research
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Audio examples description I

1. Input MIDI 63 to Spectral Model

2. Spectral Model Reconstruction(trained on MIDI63)

3. Spectral Model Reconstruction(not trained on MIDI63)

4. Input MIDI 60 note to Parametric Model

5. Parametric Reconstruction of input note

6. Input MIDI 63 Note

7. Parametric AE reconstruction of input

8. Parametric CVAE reconstruction of input

9. Input MIDI 65 note(endpoint trained model)

10. Parametric AE reconstruction of input(endpoint trained model)

11. Parametric CVAE reconstruction of input(endpoint trained model)

12. CVAE Generated MIDI 65 Violin note

13. Similar MIDI 65 Violin note from dataset
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Audio examples description II

14. CVAE Reconstruction of the MIDI 65 violin note

15. CVAE Generated MIDI 65 Violin note with vibrato
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