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ABSTRACT

With the advent of data-driven statistical modeling and abun-
dant computing power, researchers are turning increasingly to
deep learning for audio synthesis. These methods try to model
audio signals directly in the time or frequency domain. In the
interest of more flexible control over the generated sound, it
could be more useful to work with a parametric representation
of the signal which corresponds more directly to the musical
attributes such as pitch, dynamics and timbre. We present Va-
Par Synth - a Variational Parametric Synthesizer which utilizes
a conditional variational autoencoder(CVAE) trained on a suit-
able parametric representation. We demonstrate our proposed
model’s capabilities via the reconstruction and generation of
instrumental tones with flexible control over their pitch.

1. INTRODUCTION

Early work in audio synthesis relied on instrument and signal
modeling approaches (physical and spectral modeling synthe-
sis). Recently, there has been interesting work in the use of
generative models, broadly labelled ‘Neural Audio Synthe-
sis’. These methods rely on the ability of algorithms to extract
musically relevant information from vast amounts of data. Var-
ious approaches such as autoregressive modeling, Generative
Adversarial Networks and VAEs have been proposed with
varying degrees of success given the ultimate goal of modeling
complex instrument sound sources.

Sarroff et al. [1] were among the first to use autoencoders
to perform frame-wise reconstruction of short-time magnitude
spectra. They were inspired to use model an autoencoder using
neural networks(NNs) because, given ‘enough data’, these net-
works could learn mappings from higher dimensional spaces
to lower dimensional spaces, which could be perceptually rele-
vant to audio synthesis. Their main motivation to use the spec-
tral(FFT) based representation was that it could be inverted
back into the time domain(assuming the phase information is
preserved). Their investigations revealed a ‘graininess’ in the
reconstructed sound. They also claim that the use of a deep
model by simply stacking more layers in the architecture does
not necessarily improve the quality of the reconstructed audio.

Roche et al. [2] extended this analysis. With the release
of NSynth [3], they were able to harness the large number

of instrument recordings to experiment different autoencoder
architectures, namely variational and recurrent autoencoders.
They experimented with the network parameters for optimal
reconstruction, and also analyzed the so called ‘latent space’
which is essentially a low dimensional representation of the
input data. They also analyze the usability of this latent space
in the interpolation of sounds.

One limitation acknowledged by the above authors was
the lack of meaningful control over the latent space for use in
synthesis. Esling et al. [4] incorporated a regularization term
in the VAE latent space in order to effect some control over
the perceptual timbre of synthesized instruments. Through
their experiments, they were able to ‘generate’ audio by sam-
pling points from this latent space, and could also perform
interpolation in this space.

A common drawback of the previous methods is the lack
of phase during the reconstruction process, leading to an inher-
ently lossy reconstruction of the audio. Another issue is the
frame-wise analysis-synthesis based reconstruction procedure,
which does not take into account the temporal evolution of
the signal. Inspired by WaveNets [5] success in modelling
speech autoregressively, Engel et al. [3] were inspired to ex-
tend this analysis to musical instruments as well. To account
for the longer temporal range of music, they replaced the basic
spectral autoencoder by a WaveNet autoencoder. This allows
them to morph meaningfully between instruments, thus cre-
ating sounds that are realistic and expressive. However, their
model is very complex, and requires a large dataset to train.
Also, because of the nature of sampling, it is time consuming
to generate audio(1 second of audio at 16 kHz takes a few
minutes to generate!)

Wyse [6] also had the similar goal of modeling instrument
audio in an autoregressive fashion. However he wanted to
achieve audio synthesis of musical instruments with the target
characteristics provided as an external input. Thus, he trained
a Recurrent Neural Network to predict waveform samples
more accurately by providing additional information like pitch,
velocity and instrument class. The experiments were designed
to check the models ability to synthesize good quality audio
and to generalize to parameters the model has not been trained
on. The inability of the model to generalize to notes with
pitches the network has not seen before was a limitation.

In the present work, rather than generating new timbres,
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Fig. 1: Flowchart of the state of the art frame-wise audio synthesis pipeline (upper branch) and our proposed model (lower
branch). Z represents the latent space learned by the (CV)AE.

we consider the problem of synthesis of a given instrument’s
sound with flexible control over the pitch and loudness dynam-
ics. As is well known, pitch shifting without timbre modifica-
tion (i.e. preserving naturalness of the instrument sound from
body resonances) requires the use of a source-filter decomposi-
tion where the filter (i.e. the spectral envelope) is kept constant
during pitch transposition [7]. The other advantages of such
a powerful parametric representation over raw waveform or
spectrogram is the potential to achieve high quality with less
training data. Recognizing this in the context of speech synthe-
sis, Blaauw et al. [8] used a vocoder representation for speech,
and then trained a VAE to model the frame-wise spectral en-
velope. To test the generative capabilities of the model, they
sample from the latent space and analyze the reconstructed
spectrum. They also experiment with interpolation in the latent
space to better understand it, and they conclude that the use of
the parametric representation shows promise in generation.

The VAE has the attractive properties of continuous latent
variables and the additional control over the latent space by
way of prior probabilities giving good reconstruction perfor-
mance [9]. Our approach in this paper is to use the VAE for
the modeling of the frame-wise spectral envelope similar to
Blaauw et al. [8] but for instrumental sounds. Given that even
for a chosen instrument, the spectral envelope is not neces-
sarily invariant with changing pitch, we further explore the
conditional VAE (CVAE), to achieve conditioning of the gen-
eration on pitch. The motivation for our work comes from
the desire to synthesize realistic sounds of an instrument at
pitches that may not be available in the training data. Such
a context can arise in styles such as Indian art music where
continuous pitch movements are integral parts of the melody.
We evaluate our approach on a dataset of violin, a popular
instrument in Indian music, adopted from the West, due to
its human voice-like timbre and ability to produce continuous

pitch movements [10].
The parametric representation we adopt involves source

filter decomposition applied to the harmonic component of the
spectrum extracted by the harmonic model [11]. The filter is
estimated as the envelope of the harmonic spectrum and repre-
sented via low-dimensional cepstral coefficients [12]. There-
fore, as opposed to training a network to directly reconstruct
the full magnitude spectrum as currently done in previous lit-
erature (upper branch in Figure 1), we train a CVAE on the
real cepstral coefficients (CCs) conditioned on the pitch (lower
branch in Figure 1). The trained network will presumably cap-
ture the implicit relationship between source and filter from the
dataset samples and thus generalize better to new conditional
parameter settings.

2. DATASET

We work with the good-sounds dataset [13]. It consists of
two kinds of recordings(individual notes and scales) for 12
different instruments sampled at Fs = 48kHz. We select the
violin subset of the data. The recordings have been labeled
for played as good(hence good-sounds!) and bad. We use
only ‘good’ recordings, all of which are played in mezzo-forte
loudness on a single violin. We choose to work with the 4th

octave(MIDI 60-71) representing mid-pitch range. Figure 2
shows the instances(recordings) per note in the selected oc-
tave. The average duration is about 4.5s per note. From each
note segment, we first extract the sustained portion by apply-
ing energy thresholds. We split the data to train(80%) and
test(20%) instances across MIDI note labels. We train our
model with frames(duration 21.3ms) from the train instances,
and evaluate system performance with frames from the test
instances.



MIDI 60 61 62 63 64 65
Instances 28 26 26 26 26 26
MIDI 66 67 68 69 70 71
Instances 34 30 30 26 26 26

Fig. 2: Instances per note in the overall dataset
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Fig. 3: Spectral envelopes from the parametric model

3. PROPOSED SYSTEM

3.1. The Parametric Model

From the frame-wise magnitude spectrum, we obtain the har-
monic representation using the harmonic plus residual model
[11](currently, we neglect the residual). Next, we decompose
the harmonic spectrum with the source-filter model as pro-
posed by Caetano and Rodet [14]. The filter is represented by
the “spectral envelope”. Roebel et al. [7] outline a procedure
to extract the harmonic envelope using the ‘True Amplitude
Envelope(TAE)’ algorithm (originally by Imai [15]). This
method addresses the issues with the traditional cepstral lif-
tering, where the envelope obtained tends to follow the mean
energy. The TAE iteratively applies cepstral liftering to push
the envelope to follow the spectral peaks. The envelope is
represented by the cepstral coefficients(CCs), with the number
of kept coefficients(Kcc) dependent on the pitch (fundamental
frequency f0) and sampling frequency as below,

Kcc ≤
Fs

2f0
. (1)

Figure 3a shows a spectral envelope extracted from one frame
of a MIDI 65 instance superposed on the actual harmonics.
We see that the TAE provides a smooth function from which
we can accurately estimate harmonic amplitudes by sampling
at the harmonic frequency locations.

The spectral envelopes for different notes appear in Fig-
ure 3b indicating clear differences in the spectral envelope
shape across the range of pitches shown. This reinforces the
importance of taking into account spectral envelope depen-
dence on the pitch for musical instruments [16, 14]. It is
expected that the process of estimation of the envelope itself
also could contribute to the variation. Incorporating the depen-
dency on pitch will obtain more realistic harmonic amplitude
estimates and potentially more natural synthesized sound over
what is possible with a phase vocoder.

3.2. AE, VAE and CVAE

We try out two kinds of Networks - Autoencoders(AE) and
Conditional Variational Autoencoders(CVAE) [9, 17, 18]. Be-
fore describing our model, we present a brief description of
these models.

3.2.1. Autoencoder

The name ‘Autoencoder’ is self-explanatory. It consists of a
network that will learn to automatically encode data into a
more compact space which in turn brings about an efficient
reconstruction of the original data. A rather extensive compar-
ison of several AE network structures can be found in [2]. The
general structure of such a network is represented Figure 4.
The input is same as the output, and the network is trained
to minimize the reconstruction loss(usually the mean squared
error(MSE)) between the input and output,

L =
∥∥∥X − X̂∥∥∥2 , (2)

where X̂ is the network’s reconstruction of the input X . In our
case, the network input is the cepstral coefficients, and thus
MSE represents a perceptually relevant distance in terms of
squared error between the input and reconstructed log mag-
nitude spectral envelopes. Because of its bottlenecked shape,
the AE is forced to learn a compact(lower dimensional) repre-
sentation(or ‘code’) for the input data. What we would ideally
like is for the AE to learn a latent space over which we can
exercise some kind of control. However, the objective function
enforces nothing like this, and very often, the latent space is
sparse.
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Fig. 4: AE Structure

3.2.2. Variational Autoencoder

The Variational Autoencoder (VAE) is loosely based on an AE.
However, the working principle and optimization criteria are
quite different. VAE’s are inspired from Variational Inference,
which have their roots in Probabilistic Graphical Models. Fig-
ure 5 shows a graphical model highlighting the dependence of
X on z.
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Fig. 5: Graphical Model showing dependence of X on z

From Figure 5, we can write the following,

P (X, z) = P (X|z)P (z),

However, we are interested in how z depends on X . For this,
we have to compute,

P (z|X) =
P (X|z)P (z)

P (X)
.

To obtain P (X), the following integral has to be com-
puted:

P (X) =

∫
z

P (X|z, θ)P (z)dz,

which becomes intractable for high dimensional z. Thus, Vari-
ational inference aims to approximate P (z|X) with another
distribution Q(z|X). To ensure that the approximation is good
enough, you minimize the KL-Divergence between the two
distributions,

DKL[Q(z|X, θ)||P (z|X, θ)] = Ez∼Q{logQ(z|X, θ) (3)
− logP (z|X, θ)},

where θ indicates that the distribution is parametrized by θ
and E is the expectation operator under Q. We drop the θ
afterwards to lighten the expressions. Because a sufficiently
general function can map a Normal distribution to any desired
distribution, the prior on the latent variable z is chosen to be
Normally distributed. Equation 3 can be rewritten using Bayes
rule, and the terms can be rearranged to obtain:

logP (X)−DKL[Q(z|X)||P (z|X)] = Ez∼Q{logP (X|z)}
(4)

−DKL[Q(z|X)||P (z)].

We want to maximize the left side of that equation as we want
to maximize logP (X). If Q(z|X) is a good approximation of
P (z|X), the KL-divergence will be small and we will actually
maximize the log-likelihood.

To make all terms in Equation 4 tractable, Q(z|X) is cho-
sen to be a Normal distribution whose parameters are learned
from the data by the encoder. The right-hand side can then
be maximized using stochastic gradient descent. Sometimes,
instead of using the optimization objective as mentioned in
Equation 4, it is useful to weigh the terms relative to each
other by multiplying the KL Divergence term with a weighting
factor [2, 4],

L = Ez∼Q{logP (X|z)} − βDKL{Q(z|X)||P (z)}. (5)

If β = 1, it reduces to a normal VAE. Small β gives more
importance to the MSE term, thus prioritizing perfect recon-
struction(making the VAE behave more like an AE). Similarly,
high β strongly enforces the prior to be Normal at the expense
The choice of β is a hyperparameter that has to be decided. A
more complete and mathematically rigorous analysis of VAEs
can be found in [17, 9].

3.2.3. Conditional VAE

Data generation requires sampling from the trained VAE. The
procedure is actually rather straightforward because of the
Normality imposed on the latent space. Indeed, creating new
outputs simply requires sampling from a Normal distribution
and passing it through the decoder. However, VAE’s does
not allow much control over the sampling procedure. Unless
we have access to a representation of the latent space, we are
always going to use a sampled z that will produce an output
“similar” to the training data. Say for example, our input data
is multimodal, and we want to generate samples corresponding
to a particular mode. This will not be possible until we know
what part of the latent space generates which mode(ideally
though, the VAE as presented should not be used for multi-
modal data, as the Normal prior is unimodal in itself!). CVAEs
[18] address this issue by modifying Equation 4 to model the
conditional distribution of the input on a conditioning variable.
The motivation to use a CVAE over a AE in our context is two
fold:

1. It allows us to obtain a continuous latent space from
which we can sample points(and synthesize the corre-
sponding audio).

2. By conditioning on the pitch, we expect the network to
capture the subtle dependencies between the timbre and
the pitch, thus allowing us to generate the envelope more
accurately, and at the same time giving us the ability to
control the pitch.

3.3. Network Architecture

The main hyperparameters in our networks are the dimension-
ality of the latent space and the value of β. To decide these,
we train the network on the train data instances with different
hyperparameters, and evaluate the networks MSE with the
test instances. The MSE reported here is the average recon-
struction error across all the test instances. Figure 6a shows
the MSE for β = [0.01, 0.1, 1]. From our trials, we conclude
β = 0.1 to be the sweet spot to tradeoff between both of these.
With this value of β, Figure 6b shows the MSE plots for AE
and CVAE for latent space dimensions [2, 8, 32, 64]. We note
a steep fall until 32, becoming more flat later, indicating that
32 is a good choice for latent space dimensionality.

All networks are implemented in PyTorch [19]. For both
AE and cVAE, we work with a similar network architecture - an
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Fig. 6: MSE plots to decide hyperparameters

encoder having dimensions : [91, 91, 32], and a decoder having
the same(but reversed) architecture. According to Equation 1,
different pitches can have different number of CCs. 91 is the
number of CCs for the lowest pitch(MIDI 60). For the higher
pitches, the CCs are zero padded to the same dimension 91.
All the layers are linear fully connected layers and use leaky
ReLu activations to allow for stable training. The optimization
was performed using ADAM [20] with an initial learning rate
of 10−3, and training was run for 2000 epochs with a batch
size of 512 on an NVIDIA GeForce GTX 1070 Mobile GPU.

4. EXPERIMENTS

While we present results in this paper for the AE and CVAE
on the parametric representation of the frame-wise spectrum,
we have also carried out the similar experiments directly with
the frame magnitude spectrum. As expected the reconstruc-
tion performance is relatively poor; the complete results are
reported in our accompanying notebook1. We perform the fol-
lowing 2 kinds of experiments to demonstrate the capabilities
of our model.

1. Reconstruction - We omit all instances of certain se-
lected pitches during training, and see how well our
model can reconstruct a note of the unseen target pitch.
The spectral envelope of a note instance of the target
pitch is input to the network. The output of the net-
work is the reconstructed envelope, to be evaluated with
respect to the input.

2. Generation - The purely ‘synthesis’ aspect of our model;
we see how well our model can generate note instances
with new unseen pitches.

4.1. Reconstruction

We consider two distinct training contexts for the reconstruc-
tion of a note with unseen pitch. (a) all instances of the
neighbouring MIDI notes upto 3 neighbours are included in
the training set, as shown in Figure 7; this is performed for

1Notebook : https://www.ee.iitb.ac.in/student/

˜krishnasubramani/icassp2020.html

T = [63, 64, 65, 66, 67, 68]. (b) the training set contains in-
stances of only the octave endpoint MIDI notes, 60 and 71; we
reconstruct instances of all the intermediate notes.

MIDI T - 3 T - 2 T - 1 T T + 1 T + 2 T + 3
Kept X X X × X X X

Fig. 7: X indicate MIDI note instances included in the training
set for the synthesis of a given target note of MIDI label T.

In each of the above cases, we compute the MSE in the
frame-wise spectral envelope match across all frames of all the
target instances. The results are presented in Figure 8. We can
see that the CVAE produces better reconstruction, especially
when the target pitch is far from the pitches available in the
training data. In the latter case, the MSE is seen to decrease as
the target pitch moves closer to its nearer octave end pitch in
both networks, as one might expect. Overall, the conditioning
provided by the CVAE helps to capture the pitch dependency
of the spectral envelope more accurately.
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Fig. 8: Spectral envelope MSE across unseen pitch note in-
stances with close MIDI neighbours in training data (left), and
only octave end notes in training data (right).

To emulate the effect of pitch conditioning with an AE,
we train the AE by appending the pitch to the input CCs and
reconstructing this appended input as shown in Figure 9. We
were motivated to do this from Wyse [6] who followed a
similar approach of appending the conditional variables to the
input of his model. For reconstruction, we do not work with
the reconstructed f

′

0, rather we use the original f0 given as an
input. This way, the AE is comparable to our proposed CVAE
in that the network might potentially learn something from the
f0 during reconstruction.

f0

CCs
AE

f
′

0

CCs
′

Fig. 9: ‘Conditional’ AE(cAE)

We then perform the experiment of training this model
only on the endpoints(as mentioned above in subsection 4.1).
The right plot in Figure 8 shows the MSE plot obtained for
the cAE. As can be seen, appending f0 does not seem to be
improving the model, on the contrary, it seems to worsen the
AEs performance in reconstructing the skipped notes.

https://www.ee.iitb.ac.in/student/~krishnasubramani/icassp2020.html
https://www.ee.iitb.ac.in/student/~krishnasubramani/icassp2020.html


We also carry out the reconstruction experiments with
the frame magnitude spectra as detailed by Roche et al. [2].
Figure 10 shows the input spectrogram to the model. It is a
MIDI 63 note.

Fig. 10: Original Magnitude(dB) Spectrogram

We consider two cases - (a) As shown in Figure 7 by
skipping T = 63 and training on the 3 adjacent notes, and
(b) Including MIDI 63 with the neighbouring pitches. As
expected from an AE, it can reconstruct the note it has been
trained on reasonably well. Figure 11 shows the reconstructed
spectrogram. The harmonic structure is preserved.

Fig. 11: Reconstructed Magnitude(dB) Spectrogram

However, the AE fails to reconstruct the note it has not
been trained on, inspite of having been trained on nearby notes.
Figure 12 shows the reconstructed spectrogram. It is quite
distorted and lacks even a clear harmonic structure.

4.2. Generation

The previous experiment evaluated the networks reconstruc-
tion capabilities. However, we are ultimately interested in
using it as a synthesizer. Thus, in this experiment, we see
how well the network can generate the spectral envelope of an
instance of a desired pitch (not available in the training data of
the network). For this, we train on instances across the entire

Fig. 12: Reconstructed Magnitude(dB) Spectrogram

octave sans MIDI 65, and then generate MIDI 65. Genera-
tion comes naturally to the CVAE, as we just have to sample
points from the prior distribution, and pass them through the
decoder along with the conditional parameter f0 to generate
the spectral envelope(lower branch in Figure 1). Since a single
latent variable represents a single frame, we have to coherently
sample multiple latent variables and decode them to obtain
multiple contiguous frames. Our approach to sample points
from the latent space is motivated from [8] i.e. we perform a
random walk with a small step size near the origin in the latent
space to sample points coherently. We synthesize the audio
by sampling the envelope at the harmonics of the specified f0,
and perform a sinusoidal reconstruction. We do not have an
objective measure to evaluate the quality of the generated note.
However informal listening indicates that it sounds close to the
natural violin sound except for the missing soft noisy sound of
the bowing. Incorporating residual modeling in the parametric
representation in future would help restore this.

Further, we try to generate a practically useful output, viz.
a vibrato violin note with typical vibrato parameters. This exer-
cise involves reconstructing spectral envelopes corresponding
to the continuum in the neighbourhood of the note MIDI pitch.
In this case as well, the generated vibrato tone sounded natural
in informal listening. More formal subjective listening tests
are planned involving also synthesis of larger pitch movements
or melodic ornaments from Indian raga music. It must be re-
called that we have not taken loudness dynamics into account.
All our dataset instances were labeled mezzo-forte. However a
more complete system will involve capturing spectral envelope
dependencies on both pitch and loudness dynamics.

5. CONCLUSION

The goal of this work was to explore autoencoder frameworks
in generative models for audio synthesis of instrumental tones.
We critically reviewed recent approaches and identified the
problem of natural synthesis with flexible pitch control. We
then presented VaPar synth - our model to generate audio.
Through our parametric representation, we can decouple the



‘timbre’ and ‘pitch’, and can thus rely on the network to model
the inter-dependencies. We use a variational model as it gives
us the ability to directly sample points from the latent space.
Moreover, by conditioning on the pitch, we can generate the
learnt spectral envelope for that pitch (something which would
not be possible in a vanilla VAE), thus giving us the power
to vary the pitch contour continuously in principle. We then
present a few experiments demonstrating the capabilities of
our model. To the best of our knowledge, we have not come
across any work using a parametric model for musical tones
in the neural synthesis framework, especially exploiting the
conditioning function of the CVAE.
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