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What is Audio Synthesis?
I Very informally, can be thought of ‘using a digital computer

as a musical instrument’ [Mathews, 1963].
I Motivated by the early analog synthesizers like the Moog

modular synthesizers which primarily used components like
voltage controlled oscillators, filters, amplifiers. They were
also equipped with ‘envelope generators’. audio 1 audio 2
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What is Audio Synthesis?

I However with the advent of computing, it became easier to
perform all the processing using a digital computer
[Haynes, 1982].

I Enables everyone who has a computer(effectively everyone
today!) to play with music and compose their own
orchestras.(Example: Google’s Magenta Library)

https://magenta.tensorflow.org/
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A History of Audio Synthesis

I The following methods of audio synthesis have been widely
researched in the past,

1. Physical Modeling Synthesis.
2. Spectral Modeling Synthesis.

I This Link here titled ‘120 years of Music’ is an interesting
read for the electronic music enthusiast.

I Recently however, there has been very interesting work in the
use of Generative Models using Deep Learning, which has
been labelled as “Neural Audio Synthesis”.

I Generative models primarily rely on the ability of algorithms
today to extract musically relevant information from tons of
data.

https://120years.net/
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A History of Audio Synthesis

I The flow of this presentation will be as follows,

1. Introduction and discussion on Physical Modeling and Spectral
Modeling Synthesis, with some more emphasis on the latter.

2. Current work on Generative Modeling of audio.
3. Presenting a new framework for ‘Sound Transformation and

Synthesis’ which combines aspects discussed above, and
discussion on how to proceed ahead.

I What we would like to achieve would be a system which has
‘knobs’ which can control the kind of audio we want to
synthesize.
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Physical Modeling Synthesis

I The main motivation behind Physical Modeling is to model
the underlying physics of the source which generates the
sound.

I An example is solving the constrained wave equation to obtain
the sound of strings.

I Some physical system models,

1. State Space models.
2. Digital Waveguide models.
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An example - The Karplus Strong Algorithm

I Precursor to the digital waveguide models which attempt to
solve discretized differential equations using delay lines and
filters.

I The Karplus strong algorithm attempts to mimic the sound
made by plucked strings. audio 3

Karplus Strong Flow Diagram [Smith, 2010]
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Advantages and Disadvantages

I Advantages,

1. Have the freedom to control musically relevant aspects in
terms of modeling the ‘sound source’ via its underlying physics.

I Disadvantages,

1. If you cannot accurately model the underlying physics you have
to approximate/simplify the model.

2. Fast computation needed for real-time generation.



9/33

Spectral Modeling Synthesis

I Why move ahead from Physical Modeling?

1. Physical Models try mimicking the behaviour of sound sources.
However, we are more interested in how we ‘perceive’ sound.

2. Physical Modeling is not general enough i.e. you can only
describe sounds whose generation dynamics are known apriori.
Thus, it fails to ‘generalize’ to any sound in particular.

3. Another interesting thing to study is how sounds ‘morph’ with
each other, and this can be best studied with spectral models
of sound.

I Spectral Modeling Synthesis(SMS) is a technique that aims at
modeling the spectral characteristics of sound with the aim to
obtain ‘musically useful’ representations
[Serra, 1989, Serra et al., 1997].
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Spectral Modeling Synthesis

I The major assumption - signals(x) can be represented as
x = xsine + xstochastic where xsine is the sinusoidal component
and xstochastic is the stochastic/random component.

I Why analyze in the spectral domain? - Motivated by
perceptual models of our ear1, which say that the ear acts
similar to a harmonic analyzer which might perform some
operation analogous to the Fourier Transform.

1Hearing and Perception, Link

http://artsites.ucsc.edu/ems/music/tech_background/te-03/teces_03.html
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Spectral Modeling Synthesis

I Short Time Fourier Transform(STFT) is commonly used to
analyze the spectrum for non-stationary signals,

Xl(k) :=
N−1∑
n=0

w(n)x(n + l .H)e−jωkn.

I Motivated by this, the following three models for SMS were
proposed [Serra, 1989, Serra et al., 1997],

1. Sinusoidal Modeling.
2. Deterministic + Residual Modeling.
3. Deterministic + Stochastic Modeling.

Each of these methods shall briefly be discussed ahead.
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Sinusoidal Model

I The signal is modelled as a sum of time varying sinusoidal
components, audio 4 audio 5 audio 6

s(t) =
R∑

r=1

Ar (t)cos(θr (t)) ; θr (t) =

∫ t

0
ωτ (τ)dτ + θr (0) + φr .

Here, R is the number of sinusoidal components, Ar (t) is the
instantaneous amplitude and θr (t) is the instantaneous phase.

I The main steps in the algorithm are,

1. Peak picking - At each time frame, the maxima in the spectra
have to be chosen.

2. Peak continuation - Across time frames, the peaks have to be
connected to obtain a ‘smooth’ variation across time.
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Sinusoidal Model Analysis and Synthesis [Serra, 1989]

I Major Drawbacks,

1. Difficult to model noise with sinusoidal components(need very
large number of sine waves).

2. Because of this, the reconstructed sound seems a bit artificial.
audio 7 audio 8
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Deterministic + Residual Model

I Unlike the sinusoidal model where the sinusoids model all
components of the signal, you enforce the condition that the
sinusoids only model the quasi-sinusoidal(or the ‘partials’)

components. audio 9 audio 10

I The remaining ‘non-sinusoidal’ portion of the signal is called
the residual. audio 11

I Another relaxation introduced by this model is to ignore the
modeling of the phase and only consider the magnitude
spectra.

I At the same time, phase continuity is maintained to prevent
artifacts from forming in the sound.

I This is motivated by the fact that the ear is primarily sensitive
to the magnitude and not phase of the spectrum.
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Deterministic + Residual Model Analysis and Synthesis [Serra, 1989]

I Major Drawbacks,

1. Residual lacks the flexibility to be transformed.
2. If the signal is not mainly composed of quasi-sinusoidal

components, the above method will perform poorly.
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Deterministic + Stochastic Model
I You take the residual from the previous signal, and treat it as

the output of a linear time variant system acting on white
noise. The filter is chosen to approximate the envelope of the
residual. audio 12 audio 13

Deterministic + Stochastic Model Analysis and Synthesis [Serra, 1989]
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Generative Models

I What are Generative Models? - Given data, tries to generate
samples from the ‘same distribution’ as the original data.

Generative Models, Image Link

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
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Audio Synthesis

I Generative models for audio synthesis are currently following
two different methodologies,

1. Generating the time domain waveform samples using
autoregressive models - WaveNet [Oord et al., 2016], Wavenet
Autoencoders [Engel et al., 2017] and WaveGAN
[Donahue et al., 2018].

2. Generating a time-frequency(TF) representation of the audio,
and inverting it to obtain the audio - GANSynth
[Engel et al., 2019] and TimbreTron [Huang et al., 2018].

I [Sinclair, 2018] consider a parametric model for sound, namely
the physical model, and use a generative model to generate
the parameters from which the sound is re-constructed.
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Autoregressive Generative Models

I First such work in this line(originally for speech synthesis) was
the WaveNet [Oord et al., 2016], which was heavily inspired
by previous work(by the same author), the PixelCNN

[Van den Oord et al., 2016]. audio 14

I Model the joint probability distribution in an autoregressive
fashion i.e. each sample depends on all the samples previous
to it,

P(x̄) =
T∏
t=1

P(xt |xt−1, xt−2 . . . x1).

They use the idea of Dilated Convolutions2 with a ‘Receptive
Field’ to achieve this

I The major issue with music is that it has longer temporal
range as compared to speech and hence it became necessary
to use large Receptive Fields to capture long term structure.

2WaveNet
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Autoregressive Generative Models
I [Engel et al., 2017] were inspired by WaveNet, and to

overcome some of the shortcomings they felt in wavenet, they
came up with their own model which combines an Encoder
with a WaveNet model as shown below, audio 15

Wavenet Encoder, [Engel et al., 2017]
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Autoregressive Generative Models

I The advantage of using this Autoencoder is that it can learn
an efficient representation via the Latent Space of the audio
which can capture structural aspects of the audio. This so
called “Manifold of Embeddings” [Engel et al., 2017] can be
further analyzed and studied.

I Few disadvantages of the Autoregressive models are -

1. Takes very long to generate samples from the model(1 second
of audio takes a few minutes to generate!).
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Generative Adversarial Modeling

I Inspired by the success of GAN’s in generating highly realistic
images [Goodfellow et al., 2014], [Donahue et al., 2018] were
motivated to use GAN’s to generate time domain audio by
modifying the architecture to generate samples(WaveGAN).

audio 16

I [Donahue et al., 2018] also mentions using GAN’s to generate
audio using a TF representation(SpecGAN).

I One of the major issues with the TF representations is the
issue of invertibility to obtain the time domain waveform. As
you do not preserve the phase information, the generated
waveform is noisy. audio 17

I To deal with this, [Engel et al., 2019] propose modifications
to the TF representations.
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Generative Adversarial Modeling

I [Huang et al., 2018] presents two very interesting

modifications to the generation approach, audio 18 audio 19

1. Use of a Cycle-GAN([Zhu et al., 2017]) to ‘learn’ mappings
between inputs and outputs

2. Use of a Wavenet decoder to invert the TF representation

I The advantages of adversarial modeling,

1. In principle, they can model all the timescales involved in audio
synthesis, and thus can generate much ‘richer’ audio.

I The disadvantages are,

1. GAN’s are very unstable to train. Modifications have been
proposed to the architecture(WGAN’s,[Arjovsky et al., 2017]),
inspite of which they take extremely long to train.

2. The issue of invertibility of the TF representation still remains.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton17'){ocgs[i].state=false;}}


null

4.304


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton18'){ocgs[i].state=false;}}


null

8.618366



24/33

Parametric Modeling

I [Sinclair, 2018] has proposed to use a parametric model
namely the physical model as an input to the model.

I As opposed to generating waveforms, the above model
generates the parameters from which the waveform is
constructed.

I Thus, the above model avoids the invertibiliy issue as the
physical model can reconstruct the audio ‘exactly’ given the
parameters.

I This work is one of the major motivations behind the
proposed model, which will be discussed ahead.
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Proposed Work

I A few issues observed,

1. The dataset NSynth [Engel et al., 2017] is an artificially
generated dataset, and lacks the expressivity in real life audio.

2. Not much analysis done on how the latent space variables
affect the synthesized audio.

3. Generation time(in autoregressive models) and model
complexity(in adversarial models).

4. The issue of invertibility of the obtained TF
representation(specially in adversarial modeling).

I Thus, the following are proposed,

1. Use the dataset by [Romani Picas et al., 2015] instead of
Nsynth as they are actual recordings of instruments as opposed
to generated audio.

2. Try out a parametric model like the Sinusoidal or the
Deterministic + Stochastic model. This can give us better
control over the generated audio, as well as avoid the
invertibility issue.

3. Study the Latent Space more closely
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Comparing the discussed synthesis methods

I Inspired by Professor Julius Smith’s “Projections for the
Future” 3, we were inspired to extend the table for Generative
modeling.

Physical Modeling Spectral Modeling

Model only restricted sounds Model any general sound
Sound is expressive and natural Sound is not that expressive

Several Equations to solve Several operations to perform
Represents sound source Represents sound receiver

Generative Modeling

Depending on available data can model anything
Data-driven

Computationally Intensive
Represents either depending on model and data

3Link

https://ccrma.stanford.edu/~jos/kna/Projections_Future.html
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Putting it all together

I The presentation was started with a discussion on Physical
and Spectral Models for audio.

I Then, generative models were introduced, along with the
concept of the Z-space.

I What we would like to achieve is a model which has good
generated audio quality and has a good amount of control
over the different perceptual attributes of the generated audio.

I To achieve the above, we combine the two models to obtain a
‘Parametric Generative Model’ for sound synthesis, thus the
proposed system.

I It would be good to have an interface with a front-end(like
the synthesizer shown at the start) which can easily control
the audio generation, and a back-end which is driven by the
above proposed model.
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Concluding Thoughts

1. It was really exciting to go through and analyze the current
work going on this area. At the same time, it becomes
important to clearly define the end-goal. In our case, the end
goal is to generate audio(and not music!).

2. Considering how unstable GAN’s are, it seems like a better
option to start working with the autoregressive models first,
and then move on to more complicated architectures.

3. For those interested in doing research or exploring this area,
this is my github repository, which contains a list of all the
papers I have gone through, and also briefly summarizes them.

https://github.com/SubramaniKrishna/SRE
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Audio examples description I

1. Synthesizer envelope sound example(instant attack), Link

2. Synthesizer envelope sound example(slow attack), Link

3. Karplus Strong synthesized audio example, Link

4. Original Piano Audio

5. Reconstructed piano using sinusoidal model with 5 sinusoids

6. Reconstructed piano using sinusoidal model with 150 sinusoids

7. Original Rain sound

8. Reconstructed rain sound using sinusoidal model with 100 sinusoids

9. Original Carnatic sound

10. Reconstructed Carnatic sound using Deterministic + Residual model with 250
sinsuoids, the deterministic component

11. Reconstructed Carnatic sound using Deterministic + Residual model with 250
sinsuoids, the residual component

http://www.indiana.edu/~emusic/etext/synthesis/chapter4_terms.shtml
http://www.indiana.edu/~emusic/etext/synthesis/chapter4_terms.shtml
https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis
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Audio examples description II

12. Reconstructed Carnatic sound using Deterministic + Residual model with 250
sinsuoids, the residual component

13. Stochastic approximation to the Carnatic residual

14. WaveNet generated audio, Link

15. WaveNet Autoencoder(Nsynth) generated audio, Link

16. WaveGAN generated audio, Link

17. SpecGAN generated audio, Link

18. TimbreTron source audio, Link

19. TimbreTron timbre transferred audio, Link

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://magenta.tensorflow.org/nsynth
https://chrisdonahue.com/wavegan_examples/
https://chrisdonahue.com/wavegan_examples/
https://www.cs.toronto.edu/~huang/TimbreTron/samples_page.html
https://www.cs.toronto.edu/~huang/TimbreTron/samples_page.html
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