
Looking at Big Data through Graph Signal
Processing

Krishna Subramani, Yashswi Jain
Department of Electrical Engineering

Indian Institute of Technology Bombay, India
Email: {krishna.subramani,150110039}@iitb.ac.in

Abstract—Analysis and processing of very large datasets, or
‘Big Data’ poses a significant challenge. Given the enormous
volume of the data, analysis is often computationally demanding.
This computational bottleneck can be efficiently dealt with by
finding and exploiting some ‘inherent structure’ in the data.
Graphs are an efficient way of representing ‘Distributed’ data.
Hence, our motivation to cast the problem of Big Data to the
framework of Graph Signal Processing which can allow us to
tackle the problem more efficiently.

I. INTRODUCTION

Consider the problem of data compression. If the di-
mensionality of the data-set is small enough, techniques like
Principal Component Analysis(PCA) can be used. However, in
certain cases like the one of time series data which captures
daily temperature readings through a network of weather
stations distributed across a country, the dimensionalilty blows
up and hence it can not be handled efficiently by a technique
like PCA.
In a nutshell, consider the problem of compressing temperature
data from weather stations. For huge datasets like this com-
pression through graph signal procesing is more efficient. But,
finding the Graph Fourier Transform(GFT) involves finding
the eigen-decomposition of huge matrices which is a compu-
tational nightmare. To address this issue, we will first introduce
what are called product graphs. Then, we shall discuss in detail
the stepis involved in compressing a dataset using this idea.
Most of our work is inspired from Sandryhaila et al. [1].
However, We believe that the paper has left the following
crucial aspects unanswered,

• The most crucial step of any big data analysis is
data pre-processing. The compression can be severely
affected in presence of outliers and redundancies since
all such points distort the spectrum.

• The paper says nothing about handling outliers, re-
dundancies and missing data points.

• The paper does not talk about how the weight matrices
of the factor graphs are generated. Moreover, the
time series is directed as well, which adds to the
complexity.

• For a directed graph, the Laplacian will not be
symmetric. Therefore, Inverse GFT will now involve
obtaining the inverse of the augmented eigen vector
matrix instead of simple transposition.

• The results obtained in the literature could not be
reproduced due to the lack of a definitive algorithm

for compression and unavailability of the dataset as a
benchmark to validate our performance.

II. PRODUCT GRAPHS

We can factorize our graph as a ‘strong product’ of two
smaller graphs, a sensor network graph and a time series graph
(refer [2] for the technical details) as shown in Fig. 1.

Fig. 1. Strong Product of graphs, [1]

Let L1 ∈ RN1×N1 be the graph Laplacian for the sensor
network and let L2 ∈ RN2×N2 be the graph Laplacian for
the time series network.The Laplacian of the product graph
can be written as:

L⊕ = L1 ⊕ L2 = L1 ⊗ L2 + L1 ⊗ IN2
+ IN1

⊗ L2, (1)

where ⊕ is the Strong Kronecker product, and ⊗ is the
Matrix Kronecker product. Recall that the Kronecker product
of matrices A = [amn] ∈ RM×N and B = [bmn] ∈ RK×L is,

A⊗B =


a11B a12B . . . a1NB
a21B a22B . . . a2NB

...
...

...
...

aM1B aMNB


and belongs to RMK×NL.
The spectral decomposition of the product graph can be
obtained in the following way,

L⊕ = V × (Λ1 ⊗ Λ2 + Λ1 ⊗ IN2
+ IN1

⊗ Λ2)× V −1,

where Λ1,Λ2 are the individual graph laplacian eigenvalue
matrices, and V = V1 ⊗ V2 is the Kronecker product of the
individual graph Laplacian augmented eigenvector matrices.
Thus, we can write the inverse of the augmented eigen vector
matrix for the product graph can be obtained as follows,

V −1 = (V1 ⊗ V2)
−1

= V −1
1 ⊗ V −1

2 .

The important thing to observe is instead of taking the inverse
of a N1N2×N1N2 matrix, the inverse operation is reduced to
taking the inverse of a N1×N1 matrix and a N2×N2 matrix;
this will significantly reduce the computation time.

III. PROPOSED SYSTEM

Due to the lack of a definitive algorithm and dataset, we
make a few assumptions along the way and use a publicly
available dataset as well. We shall highlight all of these along
the way.

A. Dataset

The weather dataset has been obtained from Kaggle 1. It
consists of daily temperature reading from N1 = 30 station
distributed throughout Brazil for N2 = 400 days. Since
there were missing values in the data-set, we perform data
imputation by assigning the neighbouring values in the time
series for a given station. We also observed a few outliers in
the data, hence we obtain box plots to identify outliers and
clip them as shown in Fig. 2.

Fig. 2. Box plot and corresponding sensor data

B. Setting up the Graph

We factor the bigger graph which represents the time series
points for all the time instants across graph into two smaller
components,

1) A graph depicting the sensor grid comprising of
N1 = 30 nodes.

2) A directed time series comprising of N2 = 400
nodes.

The two graphs are shown in Fig. 3
To obtain the weights of the graphs, we assume the time series
is directed as given in Fig. 3 (a), and we use four different
methods to find the weights for the sensor matrix,

1) Unnormalized Distance Matrix calculated from the
latitude and longitude of each station W = D.

2) Normalized Distance matrix W = Dnormalized =
D

Dmaxval
.

1https://www.kaggle.com/guispadaccia/brazil-weather-data-from-2010-to-2017

Fig. 3. (a) Time series graph, (b) Sensor network graph, [1]

3) Exponential function on the distances Wi,j =

Ke−
|di−dj |
dmax .

4) Distance matrix using the altitudes instead of the
latitude and longitude.

5) Nearest Neighbour weight matrix i.e. keeping the
nearest N neighbours for each node. We use N = 10.

C. Performing the Compression

We first define the N1 × N2 graph signal as f, the time
series signal at all the N1 stations for all the N2 time instants.
We unroll this into a single vector to obtain the ’effective’
graph signal for the overall graph. We then obtain its GFT the
following way,

f̂ = (V −1
1 ⊗ V −1

2).f,

Where (V −1
1 ⊗ V −1

2) = V −1 is the transformation matrix,
and f is the graph signal. We then throw away the GFT
components whose absolute values are lesser than a certain
threshold and take the inverse GFT. The inverse can be found
as,

f̃ = (V1 ⊗ V2).
˜̂
f,

where ˜̂
f is the truncated GFT of the given graph signal and f̃

is the reconstructed graph signal.

IV. OBSERVATIONS

The quality of reconstruction is analyzed using the normal-
ized mean squared error defined as,

ep =

∥∥∥f − f̃
∥∥∥

‖f‖

We shall refer to ep as the reconstruction error henceforth.
We obtained the plot of reconstruction error vs fractions
retained for different cases i.e.

• Fully-connected graph with weights as exponential
distance without and with data imputation as shown
in Fig. 4 and Fig. 5 respectively.
Observation: Performing data imputation gave us the
maximum improvement in the reconstruction error
among all the permutations that we tried.

• Nearest Neighbor graph with N=10 and the weight
matrix being constructed from the difference in the

altitude instead of exponential distance as considered
in the earlier case.
Observation: Marginal improvement in the recon-
struction error as compared to the case when the
weight matrix is constructed for a fully connected
graph from the exponential distance.

• Reconstruction error with and without clipping the
outliers as shown in Fig. 7 and Fig. 6 respectively.
Observation: Contrary to our expectations however,
the outlier removal technique does not improve the
performance. The MSE increases overall. We are not
able to explain why this happens.

Fig. 4. Mean Squared Error without data imputation

Fig. 5. Mean Squared Error with data imputation

Another thing that improves is the runtime(as expected).
The improvement is ≈ 8 times better.

Inverse of Factors Inverse of Product
≈ 0.09 minutes ≈ 0.75 minutes

Fig. 6. Mean Squared Error without data clipping

Fig. 7. Mean Squared Error with data clipping

V. OBTAINING THE PRODUCT GRAPHS FOR GENERAL
LAPLACIANS

In the problem discussed so far, we assumed implicitly
that the overall graph can be factorized as the strong product.
However, consider Eq. 1. What do we do if we instead have
access to the larger Laplacian L⊕, and we want to ‘factorize’
it to obtain the product graphs L1,L2? Using Linear Algebra
and simple matrix manipulations, we show that the problem
of estimating the products ultimately boils down to finding a
lower rank representation of the larger matrix.

We want to find the matrix which solves the following
optimization problem,

min
B,C
‖A−B ⊕ C‖F , (2)

where A ∼ L⊕ i.e Laplacian of the product graph and B ∼ L1

,C ∼ L2 are the factored laplacians, ⊕ is the Strong Kronecker
product, and F is the Frobenius norm. Let us consider a
simpler problem,

min
B,C
‖A−B ⊗ C‖F , (3)

where ⊗ is the Matrix Kronecker product. We will show the
solution to Eq. 3 for small matrices A,B where A ∈ R4×4

and B,C ∈ R2×2.

‖A−B ⊗ C‖F

=

∥∥∥∥∥∥∥
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

− [b11 b12
b21 b22

]
⊗
[
c11 c12
c21 c22

]∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

−
b11c11 b11c12 b12c11 b12c12
b11c21 b11c22 b12c21 b12c22
b21c11 b21c12 b22c11 b22c12
b21c21 b21c22 b22c21 b22c22


∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥
a11 a12 a21 a22
a13 a14 a23 a24
a31 a32 a41 a42
a33 a34 a43 a44

−
b11c11 b11c12 b11c21 b11c22
b12c11 b12c12 b12c21 b12c22
b21c11 b21c12 b21c21 b21c22
b22c11 b22c12 b22c21 b22c22


∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥
a11 a12 a21 a22
a13 a14 a23 a24
a31 a32 a41 a42
a33 a34 a43 a44

−
b11b12
b21
b22

 [c11 c12 c21 c22]

∥∥∥∥∥∥∥
F

=
∥∥∥Ã− b̃c̃T

∥∥∥
F

We have thus reduced minB,C ‖A−B ⊕ C‖F to the problem,

min
b̃,c̃

∥∥∥Ã− b̃c̃T
∥∥∥
F
,

which is the optimal rank-1 estimate of the matrix Ã which
can be obtained using the SVD of Ã.

The Kronecker strong product in Eq. 1 however involves three
terms. Using the manipulations on the previous page, we can
recast the optimization problem minB,C ‖A−B ⊕ C‖F as,

min
u1,v1,u2,v2,u3,v3

∥∥∥Ã− u1v
T
1 − u2v

T
2 − u3v

T
3

∥∥∥
F
, (4)

which is like finding the best rank-3 estimate of Ã.
Our analysis here is inspired from [3]. A detailed analysis has
been provided in [4].
Caveat : A major issue with our analysis is that finding the
factors involves computation of the SVD of a large matrix
which is computationally infeasible. Nonetheless, the problem
can be simplified if we assume a structural property like
sparsity about the matrix.

VI. CONCLUSION AND FUTURE WORK

Through this discussion, we have demonstrated that for
certain graphs, we can perform compression much more effi-
ciently and faster by decomposing it into its product graphs.
However, an interesting future application would be to learn
the Laplacian from the data itself(as it is done in [5]), and
then perform the factorization of this Laplacian. Further,
performance of the compression can be improved by using
a regularization technique like Tikhonov regularization to
remove the outliers from the data and instead of just imputing
the missing values with the nearest neighbors something like
moving averages or a regression model can be used to predict
the missing values and filling them in the missing places.

REFERENCES

[1] A. Sandryhaila and J. M. Moura, “Big data analysis with signal pro-
cessing on graphs,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp. 80–90, 2014.

[2] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs.
CRC press, 2011.

[3] C. Van Loan, “The kronecker product svd,” 2009.
[4] C. F. Van Loan and N. Pitsianis, “Approximation with kronecker prod-

ucts,” in Linear algebra for large scale and real-time applications,
pp. 293–314, Springer, 1993.

[5] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning lapla-
cian matrix in smooth graph signal representations,” IEEE Transactions
on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.

