
APPENDIX: Learning Complex Representations
from Spatial Phase Statistics of Natural Scenes
The appendices 1-4 contain derivations of gradients for the maximum likelihood
of the proposed models. In Appendix 1, we provide definitions of derivatives for
the complex values and functions. The gradient of circular complex-valued ICA
(cICA) is computed in Appendix 2. The gradient of phase-aware cICA is given
in Appendix 3. In Appendix 5, we introduce procedure to analyze real-valued
signals by the proposed methods.

Appendix 1: Wirtinger calculus
Let z be a complex value given by z = x+jy, and z∗ be its conjugate (z∗ = x−jy).
For the expressions involving derivatives of complex quantities, we use ‘Wirtinger
derivatives’ (1; 2):

∂

∂z
:=

1

2
[
∂

∂x
− j ∂

∂y
], (1)

and

∂

∂z∗
:=

1

2
[
∂

∂x
+ j

∂

∂y
], (2)

Using these expressions, the following identity is obtained:

∂z∗

∂z
=

∂z

∂z∗
= 0, (3)

From Eq. 3, we see that z and z∗ can be treated as constants with respect to
each other while performing differentiation. Further we have

∂|z|2

∂z
=

∂

∂z
zz∗ = z∗, (4)

and

∂|z|
∂z

=
1

2|z|
∂|z|2

∂z
=

z∗

2|z|
. (5)

These relations will be used in the subsequent calculations.
The differential df for a differentiable complex-valued function f on complex

domains is written using z and z∗ as independent variables:

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗, (6)

where the complex derivatives are given by Eq. 1 and Eq. 2. For a real-valued
function including the likelihood function, we have ∂f

∂z dz =
(
∂f
∂z∗ dz

∗)∗ because
f∗ = f . Hence, Eq. 6 simplifies to

df = 2Re

(
∂f

∂z
dz

)
. (7)
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To find the direction of steepest ascent, we have to maximize df . We note that
the differential is bounded as

df = 2Re

(
∂f

∂z
dz

)
≤ 2

∣∣∣∣∂f∂zdz
∣∣∣∣ ,

with equality holding only if ∂f∂z dz is real. This condition is realized when dz is

a conjugate of ∂f∂z : dz =
(
∂f
∂z

)∗
= ∂f

∂z∗ . Hence, the update equation of z for a
real cost function f on the complex domain is written as

z ← z + 2k
∂f

∂z∗
,

where k is the learning coefficient. See section 2.3.10 of (3) for further details on
the derivatives of complex values and functions.
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Appendix 2: Gradient of circular complex-valued
ICA

In this appendix, we derive gradients of the likelihood function for the circular
complex-valued ICA with respect to its parameters. The likelihood function was
obtained as

l(W , β; Xobs) =

T∑
t=1

N∑
i=1

[2 log βi − βirti ]− TN log 2 π + T log detW ,

(8)

whereW ∈ CN×N and β ∈ RN×1. We will derive the gradients of the likelihood
function defined above in Eq. 8 with respect to W and β.

First, we obtain its derivatives with respect to βi (i = 1, . . . , N):

∂l(W , β)

∂βi
=

∂

∂βi

T∑
t=1

N∑
i=1

[2 log βi − βirti ]. (9)

This equation was obtained because the term W does not depend on β, and
TN log 2π is a constant. The above expression can be further simplified to

∂l(W , β)

∂βi
=

T∑
t=1

(
2

βi
− rti). (10)

Next, we obtain the derivatives with respect to Wm,n,

∂l(W, β)

∂Wm,n
=

∂

∂Wm,n

( T∑
t=1

N∑
i=1

[−βirti ] + T log detW

)
. (11)

In this equation, the terms which are not related to Wm,n were dropped. We
now evaluate derivatives of the first and second term separately. The first term
becomes

∂

∂Wm,n

T∑
t=1

N∑
i=1

[−βirti ] = −
T∑
t=1

N∑
i=1

βi
∂rti

∂Wm,n
. (12)

Using the relation: sti =
∑N
k=1Wi,kX

t
k (from S = WX) and a chain rule of

derivatives, we obtain

−
T∑
t=1

N∑
i=1

βi
∂rti

∂Wm,n
= −

T∑
t=1

N∑
i=1

βi
∂rti
∂sti

∂sti
∂Wm,n

= −
T∑
t=1

N∑
i=1

βi
∂rti
∂sti

∂

∂Wm,n

N∑
k=1

Wi,kX
t
k. (13)

Note that rti =
∣∣sti∣∣. Hence, using Eq. 5, and noting that the only term remaining

in the summation corresponds to i = m and k = n, one can rewrite the above as

−
T∑
t=1

N∑
i=1

βi
∂rti
∂sti

∂

∂Wm,n

N∑
k=1

Wi,kX
t
k = −

T∑
t=1

βms
t
m
∗
Xt
n

2rtm
. (14)
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Next, we evaluate the second term in Eq. 11:

∂

∂Wm,n
T log detW = T

[
∂

∂W
log detW

]
m,n

. (15)

Here W is defined as

W =

[
Re(W) −Im(W)
Im(W) Re(W)

]
=

[
W+W∗

2
W∗−W

2j
W−W∗

2j
W+W∗

2

]
, (16)

and it can be factorized as W = AWpA
−1, where

A =
1

2

[
jI −jI
I I

]
, (17)

Here, I is the identity matrix of size N ×N , and

Wp =

[
W 0
0 W ∗

]
. (18)

Thus, detW = detWdetW∗ and log detW = log detW+ log detW∗. Therefore,
we obtain[

∂

∂W
T log detW

]
m,n

= T

[
∂

∂W

(
log detW + log detW∗)]

m,n

. (19)

We note the following matrix identities from chapter two in (4),(
detW

)∗
= detW∗, (20)

∂detW
∂W

= detW
(
W−1)T, (21)

From Eq. 3, W ∗ does not depend on W . Furthermore, using Eq. 21, we can
simplify Eq. 19 as[

∂

∂W

(
log detW

)]
m,n

=
1

detW
∂detW
∂W

=
(
W−1)T . (22)

Using the expressions derived in Eq. 14 and Eq. 22, we can rewrite Eq. 11 as

∂l(W , β)

∂Wm,n
= T

(
W−1)T

m,n
−

T∑
t=1

βmX
t
ns
t
m
∗

2rtm
, (23)

where the superscript T indicates a transpose of the de-mixing matrix, and the
superscripts * denotes the conjugate of complex coefficient, sm. Hence, for the
update, the gradient with respect to W ∗m,n is

∂l(W , β)

∂W ∗m,n
= T

(
W−1)H

m,n
−

T∑
t=1

βmX
t
n
∗
stm

2rtm
, (24)

where H denotes the hermitian (conjugate transpose) of de-mixing matrix W ,
respectively. Note that ri and sm, are calculated from W and Xobs.
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Appendix 3: Gradient of the phase-aware complex-
valued ICA

In this Appendix, we derive gradients for the phase-aware cICA model. In
this model, the phase distribution is modeled as a mixture of uniform and two
von-Mises distributions:

pϕi
(ϕi;κi, λ) = λ vM(ϕi;κi, 0) + λ vM(ϕi;κi, π) + (1− 2λ)

1

2π
. (25)

Here vM(ϕi;κi, µi) is a von-Mises distribution for a circular variable ϕi with
mean µi and a concentration parameter κi,

vM(ϕi;κi, µi) =
eκicos(ϕi−µi)

2πI0(κi)
,

where I0(·) is the modified Bessel function of order 0. Thus the above model
in Eq. 25 exhibits bimodal structure with peaks at 0 and π, on top of the
constant baseline. For simplicity we further assume equal contributions from
each component (λ = 1/3). Then the phase distribution that can cover a uniform
and a spectrum of bimodal phase distributions is simplified as

pϕi(ϕi;κi) =
1

3π I0(κi)
cosh(κi cosϕi) +

1

6π
. (26)

This model is a modification of the previous circular cICA. We call this new
model the phase-aware cICA.

The log-likelihood function of the phase-aware cICA model is

l(θ;Xobs) =

T∑
t=1

N∑
i=1

[2 log βi − βirti + log

(
1

3π I0(κi)
cosh(κi cosϕ

t
i) +

1

6π

)
]

+ T log det W , (27)

where θ = (W ,κ,β) is a set of the model parameters. Using Eq. 10 for the
gradient with respect to β, we derive the gradients with respect to κ and W
here.

The gradient of the log-likelihood function with respect to κi is given as
follows,

∂l(θ)

∂κi
=

∂

∂κi

T∑
t=1

N∑
i=1

log

(
1

3π I0(κi)
cosh(κi cosϕ

t
i) +

1

6π

)

=

T∑
t=1

(
cosh(κi cosϕt

i)
3π I0(κi)

+ 1
6π

)′
cosh(κi cosϕt

i)

3π I0(κi)
+ 1

6π

=

T∑
t=1

1

3π

sinh(κi cosϕ
t
i) cosϕ

t
i · 1

I0(κi)
− cosh(κi cosϕ

t
i) ·

I1(κi)
I0(κi)2

cosh(κi cosϕt
i)

3π I0(κi)
+ 1

6π

=

T∑
t=1

I0(κi) sinh(κi cosϕ
t
i) cosϕ

t
i − I1(κi) cosh(κi cosϕti)

I0(κi) cosh(κi cosϕti) +
I0(κi)2

2

. (28)
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Next, we compute the gradient with respect to Wm,n:

∂l(θ)

∂Wm,n
=

∂

∂Wm,n

( T∑
t=1

N∑
i=1

[−βirti + log

(
1

3π I0(κi)
cosh(κi cosϕ

t
i) +

1

6π

)
]+

T log detW

)
. (29)

The first and third terms are the same as those obtained for the previous circular
cICA. To compute the derivative of the second term, we need to obtain:

∂ϕti
∂Wm,n

=
∂ϕti
∂sti

∂sti
∂Wm,n

. (30)

Writing sti and ϕti as functions of (x,y), namely sti = x+ jy and ϕti = arctan( yx ),
we can obtain ∂ϕt

i

∂sti
using Eq. 1 as

∂ϕti
∂sti

=
1

2

[
∂

∂x
arctan(

y

x
)− j ∂

∂y
arctan(

y

x
)

]
=

1

2

[
−y − jx
x2 + y2

]
=
−jsti

∗

2rti
2 . (31)

Using the expression for ∂sti
∂Wm,n

derived previously in Eqs. 13 and 14, we have

∂ϕti
∂Wm,n

=
−jXt

ns
t
m
∗

2rtm
2 (32)

Therefore, differentiating the second term in Eq. 29 gives us

∂

∂Wm,n

T∑
t=1

N∑
i=1

log

(
1

3π I0(κi)
cosh(κi cosϕ

t
i) +

1

6π

)

=

T∑
t=1

N∑
i=1

1
3πI0(κi)

(cosh (κi cosϕ
t
i))
′

1
3π I0(κi)

cosh(κi cosϕti) +
1
6π

=

T∑
t=1

N∑
i=1

1
3πI0(κi)

sinh (κi cosϕ
t
i)κi(cosϕ

t
i)
′

1
3π I0(κi)

cosh(κi cosϕti) +
1
6π

=

T∑
t=1

N∑
i=1

−1
3πI0(κi)

sinh (κi cosϕ
t
i)κi sinϕ

t
i

∂ϕt
i

∂Wm,n

1
3π I0(κi)

cosh(κi cosϕti) +
1
6π

=

T∑
t=1

1
3πI0(κm) sinh (κm cosϕtm)κm sinϕtm

jXt
ns

t
m

∗

2rtm
2

1
3π I0(κm) cosh(κm cosϕtm) + 1

6π

,

where the summation with respect to i turns out to be the single term for which
i = m.

Putting it all together, we obtain the gradient as

∂l(θ)

∂Wm,n
= T (W−1)Tm,n

−
T∑
t=1

[
βmX

t
ns
t
m
∗

2 rtm
−

1
3πI0(κm) sinh (κm cosϕtm)κm sinϕtm

jXt
ns

t
m

∗

2rtm
2

1
3π I0(κm) cosh(κm cosϕtm) + 1

6π

]. (33)
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Hence, for the update, the gradient with respect to W ∗m,n becomes

∂l(θ)

∂W ∗m,n
= T (W−1)Hm,n−

T∑
t=1

[
βmX

t
n
∗stm

2 rtm
+

1
3πI0(κm) sinh (κm cosϕtm)κm sinϕtm

jXt
n
∗stm

2rtm
2(

1
3π I0(κm) cosh(κm cosϕtm) + 1

6π

) ]. (34)
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Appendix 4: Stability analysis of the phase-aware
cICA model
In this appendix, we examine stability of the phase-aware model around the
circular cICA model by examining the second derivative of the likelihood function
with respect to the shape parameter. Based on this analysis, we propose to
perform learning of the phase-aware model from the features learned from circular
model, but with weakly perturbed shape parameters.

First, let us define the numerator and denominator in Eq. 28 as

u(κi, ϕ
t
i) = I0(κi) sinh(κi cosϕ

t
i) cosϕ

t
i − I1(κi) cosh(κi cosϕti),

v(κi, ϕ
t
i) = I0(κi) cosh(κi cosϕ

t
i) +

I0(κi)
2

2
.

Note that we have I0(0) = 1 and I1(0) = 0 when κi = 0, from which we obtain
u(0, ϕti) = 0 and v(0, ϕti) = 1 + 1

2 = 3
2 . Thus the gradient at κi = 0 is zero:

∂l(θ)

∂κi

∣∣∣∣
κi=0

= 0. (35)

This means that the log likelihood function takes either a local maximum or
minimum at κi = 0, along this dimension (Note that this does not indicate that
it is also a maximum or minimum in directions for other parameters).

In order to determine whether the likelihood function exhibits a local maxi-
mum or minimum at κi = 0, we perform the following stability analysis. The
second derivative of the log likelihood function is give as

∂l(θ)2

∂2κi
=

T∑
t=1

∂

∂κi

u(κi, ϕ
t
i)

v(κi, ϕti)
=

T∑
t=1

u′(κi, ϕ
t
i)v(κi, ϕ

t
i)− u(κi, ϕti)v′(κi, ϕti)

v(κi, ϕti)
2

. (36)

To evaluate this equation, we compute the derivative of u and v. First, the
derivative of u is given as

u′(κi, ϕ
t
i) = I0(κi) cosh(κi cosϕ

t
i) cos

2 ϕti +
hhhhhhhhhhhh
I1(κi) sinh(κi cosϕ

t
i) cosϕ

t
i

−
hhhhhhhhhhhh
I1(κi) sinh(κi cosϕ

t
i) cosϕ

t
i −

1

2
(I0(κi) + I2(κ

t
i)) cosh(κi cosϕ

t
i)

= I0(κi) cosh(κi cosϕ
t
i) cos

2 ϕti −
1

2
(I0(κi) + I2(κi)) cosh(κi cosϕ

t
i),

where we used the identity dI0(x)
dx = I1(x) and

dI1(x)
dx = 1

2 (I0(x) + I2(x)).
Next, the derivative of v is

v′(κi, ϕ
t
i) = I0(κi) sinh(κi cosϕ

t
i) cosϕ

t
i + I1(κi) cosh(κi cosϕ

t
i) + I0(κi)I1(κi).

From these equations, we obtain u′(0, ϕti) = cos2 ϕi − 1
2 and v′(0, ϕti) = 0.

Together with u(0, ϕti) = 0 and v(0, ϕti) =
3
2 , the second derivative evaluated at

κi = 0 is

∂l(θ)2

∂2κi

∣∣∣∣∣
κi=0

=

T∑
t=1

(
cos2 ϕti − 1

2

)
· 32 − 0 · 0(

3
2

)2
=

T∑
t=1

2

3

(
cos2 ϕti −

1

2

)
. (37)
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This result suggests that the circular model (κi = 0, an assumption of a
uniform phase distribution) is a local minimum if

〈cos2 ϕti〉t >
1

2
, (38)

where 〈·〉t = 1
T

∑T
t=1 ·. Namely, the empirical expectation of cos2 ϕti has to be

greater than 1
2 . Note that, if observed ϕtis are uniformly distributed, expectation

of cos2 ϕti is given as

lim
t−→∞〈cos

2 ϕti〉t =
∫ 2π

0

cos2 ϕi dϕi =
1

2
. (39)

Based on the functional form of cos2 ϕi whose peaks are located at the phase
0 and π, this means that the circular model (κi = 0) is a local minimum (the
expectation is larger than 1

2 ) if the empirical distribution of ϕti is concentrated
within ±π4 at the phase 0 or π. Since our phase-aware model has peaks at 0
and π if κi > 0, the phase-aware model yields larger likelihood than the model
with a uniform phase distribution for such data. To the contrary, if {ϕti}Tt=1

are concentrated outside of these ranges, then the model with a uniform phase
distribution is a local maximum: The phase-aware model yields lower likelihood
than the uniform phase model for such data.

Based on the above reasoning, we select initial values of κi for learning as
follows. We add independent weak positive noise sampled from either Uniform
or Gamma distribution to κi (i = 1, . . . , N), which are initially set to zeros. This
makes the gradients non-vanishing, and leads to the optimal κi according to the
emprical distribution of ϕti of the source signals obtained during learning.
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Appendix 5: Complex representation of real-valued
signals
In this appendix, we explain how the real-valued signal is modeled through
complex representation.

In order to analyze real-valued signals such as natural images, we first applied
the fast Fourier transform (FFT) to the original real-valued signal, Xreal. Let F
be the FFT operator. Then complex-valued representation of the real-valued
data is given as X = FXreal.

In real-valued ICA, it is common to remove the second order correlations
with PCA. In this article, we used the generalization of the technique to complex
matrices (complex PCA). In this method, we first obtain the complex-valued
covariance matrix C = E[XXH ], where XH is the Hermitian (conjugate trans-
pose), and then perform the eigen-decomposition C = UDU∗ to obtain the
whitening matrix Qpca =

√
D−1U . Decomposition of the whitened signal QpcaX

is obtained as
QpcaX = AS. (40)

In the main text of this article, the mixing matrix A, or the de-mixing matrix
W (= A−1), was learned from the whitened data. Therefore decomposition of
the original complex data X is obtained as X = Q−1pcaAS. Namely, Q−1pcaA gives
the mixing matrix that returns X from S. Using the learned matrix W , this
mixing matrix is given as Q−1pcaW−1 = (WQpca)

−1.
Using the original real-valued signalXreal, Eq. 40 is expressed asQpcaFXreal =

AS, from which we obtain

Xreal = F−1Q−1pcaAS

= F−1(WQpca)
−1 S. (41)

Here F−1 is an inverse Fourier transform operation. Let B∗ = F−1(WQpca)
−1

be a conjugate of the complex matrix B, which is a collection of the N×1 column
vectors: B = [B1, B2, . . . , BN ]. Here the ith column is further represented as
Bi = BRe

i + jBIm
i . Similarly, the element of S is ginven as si = sRe

i + jsImi . Then
Eq. 41 is written as

Xreal = B∗ S =

N∑
i=1

B∗i si

=

N∑
i=1

(BRe
i − jBIm

i )(sRe
i + jsImi ). (42)

Under the assumption that our structured model regarding the complex sources S
successfully captures the statistical structure of real-valued signal, it is expected
that the right-hand side of Eq. 42 is also the real-valued vector, namely:

Xreal ≈
N∑
i=1

(sRe
i BRe

i + sImi BIm
i ). (43)

Eq. 43 constitutes a generative model of the real-valued signals. Since we impose
structured dependency between the real and imaginary parts of the complex
coefficients through modeling their amplitude and phase, this approximate model
belongs to a class of bilinear models (5).
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Figure 1: Performance of the models when complex source signals are sampled
from a uniform phase distribution. Notations in the figure follow Fig. 2 in the
main text. The same performance of the phase- aware cICA and circular cICA
in separation of complex source signals with the Uniform phase assumption
indicates that the phase-aware cICA can successfully estimate the uniform phase
distribution in the data.
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