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Abstract—Onset detection refers to the estimation of the
timing of events in a music signal. It is an important sub-task in
music information retrieval and forms the basis of high-level tasks
such as beat tracking and tempo estimation. Typically, the onsets
of new events in the audio such as melodic notes and percussive
strikes are marked by short-time energy rises and changes
in spectral distribution. However, each musical instrument is
characterized by its own peculiarities and challenges. In this
work, we consider the accurate detection of onsets in piano
music. An annotated dataset is presented. The operations in a
typical onset detection system are considered and modified based
on specific observations on the piano music data. In particular,
the use of energy-based weighting of multi-band onset detection
functions and the use of a new criterion for adapting the final
peak-picking threshold are shown to improve the detection of
soft onsets in the vicinity of loud notes. We further present a
grouping algorithm which reduces spurious onset detections.

I. INTRODUCTION

Music information retrieval is an active field of research
where computational methods are applied to extract musically
relevant attributes from either symbolic scores of the music
or, more commonly, directly from the music audio signal.
The applications are far ranging, from music recommendation
systems and musical instrument identification to pedagogy and
musicology research. Signal processing and machine learning
techniques are applied to obtain descriptors of high level in-
formation related to melody, harmony, rhythm and timbre{[1],
[2], [3]}

The rhythmic aspect of music lies in the notions of tempo
and meter and, in turn, on the perceived beat. The tracking
of the beat of the music comes relatively easily to human
listeners but requires sophisticated computation for automatic
extraction. The regularity of the low-level musical events, such
as note onsets, in time gives rise to the perception of beats. The
accurate detection of note onsets is also important in automatic
music transcription. Depending on the musical instrument of
interest, note onset detection poses distinct challenges. For
example, the singing voice can be among the more challenging
due to the variety of note onset types arising from the use of
lyrics and dynamics.

In general, note onsets are easier to detect in percussive
music due to the sharp transients and bursts of energy caused
by the striking or plucking gestures in their playing. Although
the piano is regarded as a pitched percussive instrument
characterized by the presence of sharp onsets, there are some
serious challenges to be addressed due to the dynamics and

ornamentation that is characteristic of expressive piano play-
ing:

1) The presence of soft notes which may not be marked
by large enough energy rises, moreover being shad-
owed by previous loud notes that have not decayed
entirely (soft notes frequently occur in the accompa-
niment part played by the left hand)

2) Notes can occur in very rapid succession in portions
3) Possible asynchrony between the individual notes

played in a chord, leading to dispersed energy in the
chord onset

The problem of onset detection is quite old, with re-
search dating back nearly two decades{[4],[5]}. Commonly
used energy, spectral magnitude and phase based techniques
have been reviewed thoroughly in {[6],[7],[8]}. Most onset
detection methods are essentially about detecting either energy
or spectral changes between successive short-time windows of
the signal. Further, taking the specific acoustic characteristics
of the instrument and playing style into account is expected
to lead to superior performance in onset detection.

In this work, we consider a widely applied method for
note onset detection based on spectral magnitude changes, 1.e.
spectral flux [7]. The introduction of multi-band processing
of spectral flux is investigated for the case of piano onsets
on a data set of hand-labeled piano excerpts representing
the expected typical variety of onsets. A weighting function
to combine the outcomes in the multiple bands is presented
and the resulting novelty function is considered for adaptive
thresholding for onset time detection. We further present a
grouping algorithm to reduce spurious onsets. We begin with
an investigation of the simpler energy based method, in order
to appreciate the motivation for the spectral flux method more
clearly.

II. EXTRACTING THE NOVELTY CURVE

A. Energy (Amplitude) Based Detection

This technique is an implementation of the ideas discussed
in {[1],[6],[7],[8],[9]}. It involves analyzing the signal for
sudden changes in energy. As signal energy is proportional to
amplitude squared, this method basically involves analyzing
the derivative of the squared amplitude of the signal. Two
methods were tested here:

1) Square the signal, take its discrete derivative and
rectify, to only consider energy increases as potential
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onset candidates. This method is not very useful, and
is vulnerable to music with high frequency content,
as the novelty curve obtained will fluctuate a lot.

∆Energy(n) := |E(n+ 1)− E(n)|≥0 (1)

Here, ∆Energy is the energy difference, and E(n) is
the energy (square of the amplitude).

2) Use windowing to obtain the energy of the signal
in successive small windows, and then compute the
changes in energy in these windows. This method
works better than the above because, rather than
directly computing the envelope, we are averaging
the energy in the window, and then computing the
discrete derivative. This can eliminate the rapid fluc-
tuations.

Ew(n) :=
m=M∑
m=−M

|x(n+m)W (m)|2 (2)

Here, Ew(n) is the frame-wise energy (also called
short time energy), x(n) is the audio signal and W (n)
is an appropriate windowing function.
The energy difference is then computed using (1) .

One thing that should be noted for the energy-based method
is that it works well only in music mainly composed of
strong onsets (preferably by percussive or other energetic
instruments). In case successive onsets are weak in amplitude,
this method will fail to detect them accurately because the
energy increase is too less for such weak notes. The main
limitation of the energy-based detection is that it does not
incorporate the changes in the spectral content of the signal,
but rather only uses gross energy changes

B. Spectral Flux Based Novelty Curve

This technique is also based on the methods reviewed
in {[1],[6],[7],[8]}. First, we find the Short Time Fourier
Transform (STFT) of the audio signal, and obtain the squared
magnitude of the STFT, which is basically the power spectrum
of the signal.

X(n, k) :=

N−1∑
m=0

w(m)x(m+ n ·H)e−j2πkm/N (3)

Sxx(n, k) = |X(n, k)|2 (4)

Here, X(n, k) is the STFT of the audio signal for a frame
number n and frequency bin k, and Sxx(n, k) is the signal’s
short time power spectral density. w(m) is a window of
the frame size N samples, and H is the hop size between
two frames. Because of the way in which Discrete Fourier
transforms are computed, the number of frequency bins of
importance is K = N/2.
We may also perform logarithmic compression [1], which can
help us use the high frequency transients that occur at a note
onset, by emphasizing them. We should be careful, because
this method can also introduce spurious peaks by emphasizing
noise as well.

γ(Sxx(n, k)) := log(1 + c · Sxx(n, k)) (5)

Here, in γ(X(n, k)), each element in X(n, k) is replaced by
log(1 + c ·X(n, k)) where c is the compression factor.
We then take the discrete derivative of the above signal, and
rectify it (considering only intensity increases).

SF (n, k) := |γ(n+ 1, k)− γ(n, k)|≥0 (6)

SF (n, k) represents the spectral flux of the signal. It essen-
tially characterizes the spectral changes in the signal.
Finally, we add up all the rows for a particular time instant,
as this represents the total change in the power spectrum. The
obtained array is our desired novelty curve.

NC(n) :=

N/2−1∑
k=0

SF (n, k) (7)

This method is expected to work well for soft onsets as well,
because even if the energy associated with a change is small,
its spectral distribution can change considerably. Hence, this
method can pick up even relatively soft notes.

III. DATASET AND ANNOTATION

To test our algorithm, we have used a set of 29 music
files made available by West Valley College in their Audio
Exercises Course[10]. The songs are between 20 and 60
seconds long (with an exception of one 105 second piece),
with the average duration being 34 seconds. The 29 pieces
together contain 1934 note onsets. Although the set is from an
introductory course directed towards beginners, it contains a
fairly diverse set of songs, ranging from simple, medium-paced
single-hand pieces to slightly expressive fast-paced pieces with
dynamics and chords (sometimes with asynchrony). And while
this set excludes complex solo piano pieces like sonatas, it
provides a good starting point to evaluate existing methods and
identify the precise nature of issues encountered, if any, even
with these simple pieces, thus motivating the way forward.

The files in the dataset were mp3 files, with no annotated
onsets. Hence the onsets were manually marked by the authors
on Audacity R©(v 2.1.3)[11] as outlined below:

1) Spectrograms of the piano music files were observed
in Audacity, and distinct changes in notes were
marked over the audio. (At a note onset, a discon-
tinuity in the spectrogram is visually observable).

2) The music file was slowed down and played repeat-
edly to get a good estimate of when any notes were
being played in the specific interval.

3) Estimation by listening to narrow segments was
adopted when the spectrogram discontinuity was not
localised enough.

IV. PROPOSED SYSTEM

We implemented the two mentioned methods (energy and
spectral flux) on Python using Essentia [12], an open source
library for audio signal analysis. On applying both the above
methods on our dataset, we observed the following:

1) The spectral flux method gives more prominent peaks
in the novelty curve and detects a significantly larger
number of onsets than the energy envelope method.
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2) Because of the usage of a fixed threshold on our
novelty curves for peak picking, a significant portion
of the onsets fail to get detected.

3) Multiple onsets are observed around the time instants
where a single onset was expected.

Based on the first observation, we chose to use the spectral
flux method to propose modifications to, and try and improve
it.

On investigating the techniques mentioned in [13], [14],
[15], [16], [17], we were inspired to adopt a multi-band
approach to onset detection. Appropriate splitting of the fre-
quency content into bands has been realized through the use of
auditory filters in [14], [15], [16], a conjugate quadrature filter
bank in [13], and a set of 4 contiguous bands from 0-10 kHz
in [17]. Further, the novelty curves obtained individually in
each of the bands are then combined by a weighted sum. [13]
uses a set of weights which assign greater precedence to higher
frequency sub-bands than the lower ones, and [14] weights the
onset candidates in a given segment by the maximum value of
the smoothed log-amplitude envelope of that segment. In [15]
and [17] however, the band-wise novelty curves are input to
a neural network and a probabilistic onset evaluator network,
respectively, with an intention to avoid the use of weighting
and thresholding methods.

The shortcomings mentioned earlier and past work in
literature thus motivated the following improvements: A set
of sub-bands based on piano octaves was used, along with
weights proportional to the band’s total energy in the whole
song. Further, adaptive thresholding was implemented so that
soft onsets could be detected more reliably. Finally, a grouping
algorithm was used to merge multiple closely-spaced onsets
that appear instead of a single onset.

The following section explains the four main stages in
the proposed method in detail. Fig. 1 depicts these stages
schematically.

A. Pre-Processing the audio signal

As a first step, the audio files are passed through a low
pass filter with a cutoff frequency of 6000 Hz and re-sampled
to 16 kHz to avoid the effect of higher frequency noise in
the obtained novelty curve, and to reduce computation time
and memory. Also, different audio files can have different
signal parameters depending on how they have been recorded
or synthesized. They should hence be normalized before any
further analysis, so that a universal algorithm can be used
across different audio files. We tried two different normaliza-
tion methods, as described below.

1) Divide by the signal’s maximum amplitude to nor-
malize the amplitude.

2) Find the window with the maximum energy and
divide throughout by this window’s energy.

The former works when we want to adjust for the amplitude
level of the song as a whole. The latter works better even if
there is an increase of amplitude in one particular window
(as in a window with a prominent onset). In this case, the
former method would have made the weaker onsets elsewhere

Fig. 1. Flow of analysis for onset detection

even weaker. This latter method was experimentally observed
to work better by detecting a larger number of onsets.

B. Band-Splitting and Weighting

The filtered and normalized audio is split into 6 frequency
bands which go from 0Hz to 6400Hz. This splitting is as
per the 8 standard piano octave bands. The first band from
0-200Hz contains the first 3 octaves, and the bands 200-
400Hz, 400-800Hz, 800-1600Hz, 1600-3200Hz, and 3200-
6400Hz, contain the remaining 5 octaves. Each of these 5
bands approximately contains the fundamental frequencies of
the notes going from the A of one octave to the G of the
next octave. The fundamental frequencies of the standard piano
notes occur between 27.5 Hz and and 4186 Hz. A splitting
based on musical octaves allows to adjust the method in a
musically intuitive manner, by analysing which octaves are
played louder or softer, for instance. A novelty curve for each
of these sub-bands is then computed based on the spectral
flux method discussed above (Eqs. 3-7). The novelty curve
of each sub-band is weighted by the energy in that sub-band
(in the whole song) as a fraction of the net energy in all
the sub-bands(in the whole song). Such a weighting scheme
helps detect softly played notes with energy content in specific
frequency bands. For instance, in pieces containing a mix
of low and high octave notes, band-wise energy weighting
improves the detection of low frequency note onsets which
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are often played very softly and are hence hard to detect.

NC(n) :=
6∑
i=1

wi ·NCi(n) (8)

wi :=
Ei∑6
i=1Ei

(9)

Here, NC(i) is the novelty curve computed for the ith

frequency band, and w(i) is the weighting coefficient as
defined above. Ei is the energy content of the whole song in
the ith band. It was seen that the weights are larger and vary
across songs for the first 3 frequency bands, but are smaller
and fairly constant for the higher 3 bands. This is because, the
songs in the dataset most often contain notes in the lower 3
bands, with the exact content in these bands varying depending
on the dynamics of the song.

The weighting scheme described above returns a global
weight per band for the entire duration of the song. A more
adaptive approach with weights computed using the derivative
of short-time energy instead of the entire signal’s energy was
also experimented with. While this method proved effective
in the detection of extremely soft onsets, it did not offer
an improvement in performance over the entire dataset. This
was because of the considerable amount of parameter tuning
required in the post processing of the novelty curve of every
audio signal, to make the energy-derivative curve possess sharp
enough peaks to serve as an appropriate weighting function.

C. Thresholding

The novelty curve obtained after adding all frequency
bands, is first normalized by dividing by its maximum value.
Those time instants are chosen as note onsets where the
local peak in the novelty curve crosses a given threshold. A
drawback of using a fixed threshold was the missed detection
of soft onsets occurring immediately following a loud note.
This is explained by the spectral change arising from the soft
onset being over-shadowed by the strong and extended decay
of the loud note strike. This motivated us to relax the threshold
for a few frames immediately after the frame containing a
strong onset. This thresholding method is different from the
adaptive thresholding used in [6] and [7] which modify the
threshold based on a moving average of the novelty curve.
The method in this work uses the difference in the moving
average, to focus on the soft onsets. The variable threshold
function, t(n), a function of frame number n is defined as:

t(n) := c+ λ · {g(n)− g(n− h)} (10)

g(n) :=
i=n+W∑
i=n

NC(i) (11)

Here, c is a fixed threshold value, λ is a scaling factor, and
g(n) is a sum in a window of length W frames after the frame
n. The time duration between consecutive frames depends on
the hop size used in the spectral flux method (Eq.(3)) (which
is 5 ms in this work). A frame is chosen as an onset-frame
if the value of the novelty curve in that frame is above the
corresponding value of t(n).

The difference g(n) − g(n − h) is negative for h frames
after a strong onset, which reduces the threshold, resulting in
better detection of soft onsets in that frame. This thresholding
method not only increases the correctly detected onsets but
also decreases the false positives, as the threshold becomes
higher after a period without onsets ( difference is positive
or almost zero), thus rejecting small non-onset peaks in that
period. Actual onsets after a period of silence show very high
peaks in the novelty curve, so the higher threshold still captures
them. This can be inferred from the results shown later, in
Table 1.

The final values of the parameters were chosen after
observing the precision and recall values for different values
of the parameters, as described in Section V ahead.

D. Grouping

One of the problems observed was that multiple onsets
were detected at points where only one onset was expected.
This was happening because of some rapid fluctuations in the
novelty curve at the onset points instead of just a single peak.
To address this problem, we designed a time domain grouping
algorithm to replace multiple closely-spaced onsets caused due
to one primary onset, with a single onset. This is similar to the
’temporal integration’ step in [14]. It works by forming clusters
of onsets, and adding an onset to the cluster if it lies within
a window of 30 ms from the previous onset that was added
to the cluster. Thus, it essentially clusters onsets which lie
too close to each other and are not likely to represent distinct
onsets, and outputs the average time instant of the onsets in
the cluster (to account for the estimation error). The allowed
time gap was chosen by observing that there were onsets as
close as 30 ms in the dataset used (in case of asynchronous
onsets of the notes of a chord). There is thus one caveat - if
two successive onsets actually occur too close in time, they
may be wrongly grouped into a single onset. However this is
extremely rare for a time gap of less than 30 ms.

Figure 2 shows the effect of the grouping algorithm.
The multiple closely spaced lines in the upper graph, which
represent multiple-onset detection, have been grouped to yield
a single onset instant, as shown in the lower graph.

V. TESTING AND RESULTS

1) The methods mentioned above were tested on the
dataset, and the corresponding novelty curves, and
time instants of onsets were obtained. As a prelim-
inary evaluation measure, the onset locations were
tested by listening to the audio files superimposed
with beeps at the onset locations.

2) To perform a more thorough evaluation, an on-
set evaluation algorithm was created (inspired from
the algorithm used by the IEEE Signal Processing
Cup)[18] to compare the detected onsets and anno-
tations. The percentage of undetected onsets, false
positives and false negatives were determined.

3) We compared the performance of our proposed al-
gorithm against a benchmark SF (spectral flux) algo-
rithm, based on the spectral flux method itself, but
without the band-splitting, adaptive thresholding and
grouping.
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On comparing our results with the benchmark, we obtained
a significant improvement in the number of onsets that were
detected. One such case is highlighted in figure 3, which
shows a 5 second clip of one of the more complex pieces of
the dataset, with red dotted lines indicating the ground truth
onset locations and the blue solid lines indicating the onsets
determined by the algorithm.

Fig. 2. Time Domain Grouping

Fig. 3. Comparison of different detection functions for a 5s section

We use the Precision, Recall and F-Measure to compare
the average performance of both the algorithms.

Precision =
tp

tp+ fp
(12)

Recall =
tp

tp+ fn
(13)

F −Measure =
2

1
Precision + 1

Recall

(14)

with tp being the number of true positives, fp being the
number of false positives and fn the number of false negatives.
Table 1 shows the average values of precision and recall
computed over the entire dataset.

The proposed algorithm was run for different values of the
parameters used in the variable thresholding method, and the
precision and recall values were obtained for each of them. A
section of the precision vs recall plot obtained is shown in Fig.
4, comparing a set of 6 curves obtained from Eq.(11) at two
values of W - the lower 3 curves at W = 100 and the upper
3 at W = 110. On experimenting with several values of W ,
the performance was observed to deteriorate for values both
greater and lesser than W = 110(The reason for this sharp
dependence in W has to be investigated further). Hence the
other parameters were chosen at this value of W = 110 such
that they maximized the recall without significantly reducing
the precision from its maximum value for this algorithm (it
can be seen from the plot that precision saturates at close
to 98%). Increasing the recall beyond this by a fraction of
a percent decreases precision by 2-3%, thus discouraging us
from choosing those points. The results corresponding to the
optimum set of parameter values are shown in the Table 1
below.

The proposed method with a constant threshold gives a
9% increase in the recall value, with a small increase in the
number of false positives, which is indicated by the 1.5% drop
in precision. This demonstrates the sensitivity of the proposed
method to soft onsets, as hypothesised. Additionally, using an
adaptive threshold further increases both precision and recall
values, thereby reducing the number of both false positives
and negatives, as mentioned in Section IV-C.

Algorithm Precision Recall F-Measure
Benchmark SF 98.42 85.03 91.24

Constant Threshold 96.9 94.0 95.43
Adaptive Threshold 97.52 96.62 97.07

Table1: Results comparing the regular SF method(Benchmark
SF) with the proposed SF method using both constant and
adaptive thresholding (for the optimum set of parameters)

VI. CHALLENGES FACED

Although our proposed algorithm does perform better than
the benchmark for detecting relatively softer onsets, there are
still cases where our algorithm fails to detect onsets. One
particular case of interest is Song no. 25 in the dataset [10],
which contains a repeating series of extremely soft onsets in
the lower octave played after a strongly played note in the
higher octave. These notes are in fact barely audible to the
ear, and can only be perceived by the listener based on their
recurring pattern. The other limitation that remains is the false
positives ratio (2.48% of the detected onsets). However, it is
observed that most of these occur only as groups of multiple
onsets around a single onset.
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Fig. 4. Precision vs Recall (%) plot for various values of parameters
c, λ,W, h in the adaptive thresholding algorithm with h set to 1 and c
varying between 0.08 and 0.12 for each curve. The encircled point shows
the performance obtained for the set of chosen parameters

VII. CONCLUSION AND FUTURE PLANS

The main distinctive features of this proposed system
were the energy-weighted band splitting of the novelty curve,
adaptive thresholding, and the grouping of spurious onsets. An
implementation of the energy-weighted band splitting alone
has increased recall from 85% to 94%, thus demonstrating
its success in detecting most of the soft onsets which were
earlier undetected. However there was about 1.5% decrease
in the precision as well. On adding the adaptive thresholding
and grouping methods, the recall increases further to 96.6%
and the precision also increases slightly to 97.5%. Thus, the
methods mentioned in this work have helped detect a much
greater number of onsets correctly with a small increase in
false detections.

Further work along the same lines to include -

1) Testing the proposed methods on more complex mu-
sic from professional performances

2) Using a combination of magnitude and phase infor-
mation [7] (complex domain based onset detection)

3) Using Recurrent Neural Networks i.e. Bidirectional
Long Short Term Memories [19], [20] or Support
Vector Machine based approaches [21] to obtain
higher efficiency with onset detection

4) Extracting beat and tempo information from the mu-
sic using the obtained onsets[22], [23]
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