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ABSTRACT
High Dynamic Range (HDR) imaging requires one to composite
multiple differently exposed images of a scene in the irradiance
domain and perform tone mapping of the generated HDR image
for displaying on Low Dynamic Range (LDR) devices. In the
case of dynamic scenes, standard techniques may introduce arti-
facts called ghosts if the scene changes are not accounted for. In
this paper, we consider the HDR problem for dynamic scenes. We
develop a novel bottom-up segmentation algorithm through super-
pixel grouping which would enable us to detect scene changes. We
then employ a piecewise patch-based compositing methodology to
directly generate the ghost-free LDR image of the dynamic scene.
The primary advantage of our approach is that we do not assume
any knowledge of camera response function and exposure settings.
Further, our approach performs well even in the case of significant
scene changes.

Keywords
High Dynamic Range Imaging, Deghosting, Computational Pho-
tography

1. INTRODUCTION
Computational Photography aims at circumventing the restric-

tions of the common digital cameras using computational tech-
niques. One of the major problems of the common digital cameras
is the limited dynamic range due to the limited capacity of the dig-
ital sensors. Capturing the entire dynamic range of the scene is the
primary goal of any digital imaging system. This would enable us
to visualize the scene with the highest level of contrast. Consider
a scene with both brightly and poorly illuminated regions. Such
a scene has a very high dynamic range. All the brightness levels
of the scene cannot be captured using a single snapshot of com-
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mon digital cameras. The general approach is to capture multiple
images of the scene with different exposure settings and combine
them to generate the desired image of the scene.

As most of the real world scenes have a higher dynamic range
than what can be captured using a digital camera, it is required to
capture multiple images of the scene with different exposure set-
tings. These images would together then span the entire dynamic
range of the scene. The imaging methodology meant for combin-
ing these multiple, differently exposed images into a single image
is popularly known as High Dynamic Range (HDR) imaging. We
require the knowledge of camera response function (CRF) which
relates irradiance and intensity values, to generate the HDR image.
The generated HDR image needs to be tone mapped to a low dy-
namic range (LDR) image for compatibility with common displays
and printers [29].

Most real world scenes are dynamic. While capturing multiple
images of a scene, one does not have control over the movement of
objects in the scene. If the changes in the scene are not detected
before compositing multi-exposure images, the generated LDR im-
age would have artifacts called ghosts. It is imperative that we need
to detect any scene changes across these multi-exposure images to
prevent ghosts from appearing in the generated LDR image. In this
work, we address the problem of generating an LDR image of a
dynamic scene directly from a set of multi-exposure images. Our
contributions are to develop a robust algorithm for detecting scene
changes and to compose different regions seamlessly.

We develop a novel bottom-up segmentation algorithm based on
superpixel grouping [30] to segment out the scene changes. A char-
acteristic function between a given pair of observations with differ-
ent exposures enables us to identify decision regions for grouping
the superpixels which belong to the foreground (scene changes).
After detecting the regions of the image which show change with
respect to a reference image, we compose the multi-exposure im-
ages to generate the LDR image without any ghosts. The primary
advantage of our approach is that we do not assume any knowledge
of the scene and camera settings. Further, we show that seamless
LDR image can be generated even when there is an appreciable
scene change across the multi-exposure images.

To start with, we shall provide an overview of the existing litera-
ture on HDR imaging and segmentation. We discuss the problem of
reconstructing an ghost-free LDR image for a dynamic scene with-
out the knowledge of CRF and exposure settings. We shall then
look at the proposed approach for generating an LDR image from
a set of multi-exposure images of a dynamic scene in detail. We
shall then present the results of the proposed approach for a few
dynamic scenes. We show that state-of-the-art LDR images can be
generated using the proposed approach.



2. RELATED WORK
Capturing the entire dynamic range of a scene using a single im-

age is a challenging problem in computational photography. Ana-
log cameras can capture such scenes with very high dynamic range
using a single snapshot. The common digital cameras are not ca-
pable of doing so due to the limited dynamic range of the sensor.
However, one can capture multiple, differently exposed images of
the scene and composite them in the irradiance domain and capture
the entire dynamic range [29]. There are digital cameras which
can capture the entire dynamic range of the scene using a single
snapshot [24]. These cameras are very expensive in market. In this
section, we would address some of the works done earlier in HDR
imaging along with an overview of the segmentation techniques.

Mann and Picard introduced a method to recover the camera re-
sponse function (CRF) and estimate the HDR image from multi-
exposure images [19]. They used the derivative of the CRF, called
certainty function, to weigh the multi-exposure irradiances. De-
bevec and Malik developed a practical algorithm for recovering the
HDR image and used a simple hat function as the weighting func-
tion [7]. Mitsunaga and Nayar estimated the CRF by parameter-
izing it and then generated the HDR image [21]. CRF can also
be recovered from a single image provided the image has edges of
highly varying magnitudes [17]. An overview of all these differ-
ent methods for the generation of HDR image from multi-exposure
images of a static scene can be found in [29]. Assuming CRF is
known, Granados et al recently developed a method to generate an
HDR image in the presence of various types of noise [12].

The generated HDR image can then be encoded in Radiance
RGBE (.hdr) or OpenEXR (.exr) formats which employ floating
point numbers to store the intensity values. These image formats
require a large amount of memory and need to be compressed for
optimal storage. The methods discussed above for the generation of
HDR image have to be complemented by an appropriate tone map-
ping operator for visualization in common displays and printers.
An example of tone mapping is the gradient domain HDR com-
pression method by Fattal et al [8]. An overview of the different
types of tone mapping operators (global and local) can be found in
[29].

For a static scene, there are alternate methods based on digi-
tal compositing which combine the multi-exposure images directly
without the knowledge of CRF. These methods employ basic digi-
tal compositing principles with an appropriate weighting function.
The basics of digital compositing methodology can be found in
([3], [6], [26], [33]). An interactive method for compositing image
regions was proposed by Agarwala et al [1].The method by Gosh-
tasby uses entropy measures on blocks to combine multi-exposure
images [11]. Exposure fusion combines multi-exposure images on
a Laplacian pyramid using an appropriate weighting function [20].
A variational, iterative solution for combining multi-exposure im-
ages was introduced in [27]. Bilateral filter was used to define
weighting function and composite multi-exposure images in [28].

While capturing multi-exposure images of a scene, we cannot
guarantee that the scene would not change. There are chances of
new objects being introduced in the scene between the exposures
due to motion. Also, objects such as leaves and branches of a tree
would move when there is the presence of heavy wind in the scene.
In other words, the scene would most probably be dynamic. When
the methods mentioned above are employed for compositing multi-
exposure images of a dynamic scene, the objects in motion in the
scene would give rise to artifacts called ghosts. It is required that
the changes in the scene are detected apriori before compositing is
performed on the multi-exposure images. We shall first look at the
methods previously used for removing ghosting artifacts.

Jacobs et al. proposed a method to identify the regions on the im-
age grid which change across multi-exposure images using weighted
variance and entropy measures [15]. This method fills the mo-
tion regions by details from one of the observations and thereby
reducing contrast in such regions. Gallo et al proposed a method
to detect motion regions in multi-exposure images when CRF is
known and eliminate them while compositing [10]. This approach
preserves contrast in the motion regions as regions from multiple
images are combined. Another approach for eliminating ghosting
artifacts while creating mosaic from images of different exposures
was proposed in [34]. In this work, we address this problem from
a bottom-up segmentation perspective.

A recent work assumed no knowledge of CRF and reconstructed
the dynamic scene as an LDR image from multi-exposure images
[36]. This method employs the gradient directions for detecting
scene change and may perform poorly in the presence of even a
small amount of noise of any form. Further, this approach cannot
handle scenes which have tiny objects such as leaves of a tree in
motion. Another problem is that this approach requires a number
of parameters to be adjusted empirically.

Segmenting foreground from background in a single image is a
classic vision problem. The segmentation algorithm can either be
automatic or be interactive. One popular approach to achieve inter-
active segmentation is the Grabcut by Rother et al [31]. Interactive
segmentation depends on the user input such as a bounding box or
scribbles to perform segmentation. Another class of interactive al-
gorithms which extract the alpha matte along with the foreground
mask is known as matting. An example is the natural image matting
[16]. We focus more on the automatic segmentation approaches in
this work as we intend to develop an automatic method to compen-
sate for scene change across different exposures.

Automatic segmentation approaches can be broadly classified
into top-down and bottom-up methods. In the top-down approach,
one tries to capture the entire object boundary directly by the learned
features of the desired object class ([4], [5]). This approach tries
to get the foreground separated from the background as a whole.
While in the bottom-up approach, the entire image is split into ho-
mogeneous regions based on color, contours, and texture details.
These homogeneous regions are then grouped to segment the fore-
ground from the background [32]. The bottom-up segmentation
methods have derived much interest among the computer vision
community of late as they lead to better segmentation of the fore-
ground objects.

In this paper, we specifically focus on the segmentation based
on the bottom-up approach. The algorithm by Shi and Malik uses
normalized cuts to split a given image into multiple regions which
are homogeneous [32]. This approach was later extended to define
different homogeneous regions of the image as superpixels [30].
Each superpixel is a collection of a set of pixels inside a closed
contour signifying uniformity in terms of color and texture. Ob-
ject recognition systems can then work on the level of superpixels
instead of image pixels which can help in designing faster algo-
rithms. For segmentation tasks, one can group the superpixels be-
longing to foreground object based on some criteria to segment out
the foreground ([23], [22]). Even neighborhood can be defined for
superpixels to improve the segmentation [9]. Another approach to
extract homogeneous regions from an image is the quick shift al-
gorithm by Vedaldi and Soatto [35].

A typical bottom-up approach for segmentation relies on the ef-
ficient grouping of the superpixels and recovering the foreground.
Apart from basic segmentation, grouping of superpixels have a
number of applications in computer vision. Consider the problem
of estimating the depth map of a scene from a single image. Su-



perpixels corresponding to objects at different depths of the scene
can be grouped to recover the 3D information from a single image
[14]. In the present work, we apply superpixel grouping for detect-
ing scene change in the multi-exposure images of a dynamic scene.
We assume one of the multi-exposure images as the reference and
employ grouping of superpixels to recover the scene change in the
other multi-exposure images.

3. PROPOSED APPROACH
In this section, we shall discuss the proposed approach for the

generation of an artifact-free LDR image corresponding to a dy-
namic scene. We assume that we do not have the knowledge of
CRF of the camera and the exposure settings. Given a set of multi-
exposure images, our task is to identify the regions which have
moving objects in each of the images and eliminate them while
compositing. The proposed approach is shown in Figure 1. The
salient feature of the proposed approach is that we composite mul-
tiple images even in regions which show motion, thereby preserv-
ing overall contrast of the scene in the generated LDR image. We
shall first estimate the decision boundaries to classify dynamic and
static regions and use that to reconstruct the ghost-free LDR image
of the dynamic scene.

3.1 Weighted Variance Measure
Consider a set of multi-exposure images corresponding to a dy-

namic scene shown in Figure 2. These images are taken at different
times of the day with different exposure settings. These images
together are sufficient to recover the entire dynamic range of the
scene. However the scene changes appreciably in the 2(b) and 2(d)
due to the movement of people in the scene. When CRF is known,
we can recover the HDR equivalent of the scene using the tech-
nique mentioned in [10]. In the absence of an accurate estimate of
the CRF corresponding to the camera used, we need to figure out
pixel locations which do not change in any of the multi-exposure
images. The intensity values of the multi-exposure images corre-
sponding to these pixel locations is used later to detect changes in
the scene.

We employ the approach suggested in ([15], [29]) based on weighted
variance to detect the pixel locations which do not have scene change
in any of the multi-exposure images. The weighted variance mea-
sure V (x, y) can be computed for K differently exposed images
Ii(x, y)using the Equation 1.

V (x, y) =

K∑
i=1

wi(x, y)I2i (x, y)

K∑
i=1

wi(x, y)

( K∑
i=1

wi(x, y)Ii(x, y)

)2

( K∑
i=1

wi(x, y)

)2

− 1 (1)

where the weight is given by the Gaussian function

wi(x, y) = e
− (Ii(x,y)−µ)

2

2σ2 (2)

where µ = 0.5 and σ = 0.2 respectively. This Gaussian func-
tion wi(x, y) is used as weight in order to provide lesser weight to
the over-exposed and the under-exposed pixel locations. We use an
appropriate threshold (0.25 times the maximum weighted variance)

(a) (b) (c)

(d) (e)

Figure 2: (a-e) Multi-Exposure images of a dynamic scene. Im-
ages Courtesy: Orazio Gallo, UCSC.

to detect pixel locations which show low weighted variance mea-
sure. In the case of noisy multi-exposure images, simple Gaussian
spatial smoothing can be used prior to the computation of weighted
variance.

3.2 Estimation of the Intensity Mapping Func-
tions

Consider any two observations of a scene which differ only in
the exposure setting. The intensity values of these two images can
be characterized by a function called comparametric function [18].
The comparametric function is also referred to as intensity mapping
function (IMF) [13]. We use the term IMF to refer to this function
henceforth. This function defines how the intensity values of two
images of a static scene should relate when there is only a differ-
ence of exposure settings. IMF is a non-linear function whose slope
can be computed and this would be greater than 1 if the exposure
time of one image is greater than that of the reference image.

The weighted variance measure provides us the pixel locations
of the scene where there are no appreciable changes in any of the
multi-exposure images. Now, we would be able to estimate a unique
IMF for a given pair of images using the intensity values at these
pixel locations. Let S ∈ <2 be the set of all pixel locations in the
image grid. Now, the pixel locations where there are no motion in
any of the images is given by the set Ω ⊂ S. As a generality, we
select one of the multi-exposure images as representing the static
scene. We would now estimate IMFs between the intensity values
of this image and the rest of the images in Ω. Given a set of K
multi-exposure images, we would have a total of (K − 1) IMFs
with respect to the reference image.

It is worth noting that the normalized intensity values of the
multi-exposure images are in the range [0, 1]. We need to fit a poly-
nomial of order four (chosen empirically) in order to estimate IMF.
The pixel locations of the multi-exposure images in Ω should fol-



Figure 1: Schematic Representation of the Proposed Approach

low this IMF with respect to the reference image for them to be
classified as static. The pixel locations which have some appre-
ciable scene change from the reference would not follow this IMF.
The estimated IMF between the images Figure 2(b) and Figure 2(e)
(reference) is shown in Figure 3 (a).

(a) (b)

Figure 3: (a) The IMF between a pair of images 2(b) and 2(e)
and (b) The constant width region which defines the decision
boundary for static and dynamic regions

3.3 Superpixel Grouping
Having estimated the IMFs for each of the multi-exposure im-

ages, we need to define a constant width region around the IMF.
This constant width region would represent the pixel locations of
the test image which do not have any appreciable change with re-
spect to the reference as shown in Figure 3 (b). This constant width
region provides us with a decision boundary between static and dy-
namic regions of the given multi-exposure image with respect to
the reference. We now propagate the decisions from pixel level to

region level. We exploit over-segmentation of images using super-
pixels to recover regions of images which have homogeneous color
and texture.

We compute superpixels on all multi-exposure images including
the reference image [30]. We use superpixels as it saves us from the
huge load of classifying each pixel and grouping them. Further, it
lets take care of the object boundaries while segmentation which is
not possible when patches are used. The superpixels corresponding
to the images shown in Figure 2 are shown in Figure 4. As can
be observed in Figure 4(e), the superpixels do not cross the object
boundaries and grouping them would enable us to recover the exact
silhoutte of the scene change.

Instead of classifying every pixel, we classify the superpixels for
the possible scene change with respect to the reference. Given the
reference image and any other multi-exposure image, we now find
out the fraction of pixels in a given superpixel which lie inside the
constant width region (0.12 in this work). We define a parameter
γ which defines the minimum fraction of pixels which should be
present inside the constant width region for the superpixel to be
classified as having no change. We used γ to be equal to 0.9 in
our experiments. We classify all the superpixels corresponding to
the given image with respect to the reference as either dynamic or
static.

This operation would effectively let us group all the superpixels
of the given image which show change with respect to the reference
image. This is the novel bottom-up segmentation algorithm devel-
oped for multi-exposure images using the estimated IMF for the
computation of decision boundaries. The bottom-up segmentation
which has been performed on the multi-exposure images is shown
in Figure 5. One can clearly see that the proposed algorithm for
segmentation is able to group all the superpixels which convey an
appreciable scene change. We need to ignore these regions while
compositing multi-exposure images in order to avoid ghosting arti-



facts.

(a) (b) (c)

(d) (e)

Figure 4: (a-d) Superpixels estimated corresponding to the first
four multi-exposure images in Figure 2, and (e) Magnified su-
perpixels corresponding to a region of (d).

3.4 Scene Reconstruction
Having detected the scene changes with respect to the reference

image, we need to develop a method to reconstruct the final LDR
image of the scene. The LDR image needs to be generated from the
reference image and the superpixels from other images marked as
having no scene change (static). One problem with segmentation
by grouping superpixels is that it leads to irregular segmentation
boundaries which are difficult to account for while reconstruction.
One cannot guarantee that these grouped regions would be closed
as evident in Figure 5(d). This would lead us into trouble while
defining boundary conditions.

We split the images into patches of size (say 6 X 6). We detect
patches of the images which have more than 90 percent of the pix-
els lying inside the static superpixels. These patches are classified
as not having appreciable motion. Such an operation would result
in piece-wise rectangular approximation of the bottom-up segmen-
tation boundaries as visible in Figure 6. We can now use any of
the static multi-exposure compositing algorithms on the patches
marked as static ([20], [27], [28]). This compositing operation
would result in seams across patch boundaries as different number
of patches are combined at each patch location.

To avoid these seams, we use overlapping patches (of size 6 X 6)
with an overlap of one pixel in each direction. This would ensure
that there is information conveyed across the patches. In the present
work, we perform multi-exposure compositing using exposure fu-
sion [20] on these overlapping patches while ignoring the patches
marked as dynamic. The composited patches would still produce
seams on their boundaries if arranged spatially on the image grid
S.

The seams across the patch boundaries can be avoided using
an operation called Poisson seam correction. The gradients cor-

(a) (b) (c)

(d)

Figure 5: (a-d) Bottom up segmentation through superpixel
grouping performed on the images in Figure 4.

(a) (b) (c)

(d)

Figure 6: (a-d) Piece-wise rectangular approximation of the
segmentation boundaries shown in Figure 5.



responding to the composited patches (of size 5 X 5) are computed
and arranged on the image grid S. The resultant vector field will
not be conservative. We employ a direct Poisson solver with Neu-
mann boundary conditions to generate the scalar field closest to the
vector field ([2], [25]). The scalar field obtained through Poisson
seam correction operation is the desired LDR image without any
artifacts.

4. RESULTS
In this section, we consider multi-exposure images of a dynamic

scene. We shall present the LDR images generated using the pro-
posed approach and compare the results with that of the tone-mapped
LDR image obtained using the method of [10]. It is worth noting
again that the proposed approach does not require the knowledge
of CRF and the exposure settings. Further, we do not explicitly
generate the HDR image of the scene and therefore do not require
tone reproduction. These are the key advantages of the proposed
approach over that of [10].

Consider the multi-exposure images of a dynamic scene in Fig-
ure 2. Figure 2(e) is picked as the reference image. Figure 9(a)
shows the result of an existing approach [28]. As scene change is
not accounted for, ghosting artifacts are clearly visible in the gen-
erated LDR image. The tone mapped image corresponding to the
HDR image generated by Gallo et al is as shown in Figure 9(b).
The LDR image generated using the proposed approach is shown
in Figure 9(c). One can observe that the proposed approach is able
to generate an artifact-free LDR image from a set of multi-exposure
images. The details in both the brightly and poorly illuminated re-
gions are clearly visible.

Consider another set of multi-exposure images of a dynamic scene
as shown in Figure 7. This scene is complex in the sense that there
are many people moving in and out of the scene across these im-
ages. Further there is a sun-lit region (brightly illuminated) and tree
shade (poorly illuminated). As expected, common digital cameras
cannot capture the entire dynamic range of this scene with varied
levels of brightness. We assume the image in Figure 7(c) to be
the reference image. We detect scene changes on the other images
with respect to this image. Compositing and Poisson seam correc-
tion enables us to generate the LDR image shown in Figure 10(b).
Figure 10(a) shows the tone mapped LDR image of [10]. One can
visualize that the proposed approach is able to capture the details in
both brightly and poorly lit regions without any ghosting artifacts.

Let us consider another dynamic scene captured using differently
exposed images shown in Figure 8. This scene has the branches
of the tree moving and there is a person introduced in the scene
while capturing the last image (Figure 8(d)). This is an example
of a scene where there is a significant motion in the majority of
the pixel locations. We pick the image Figure 8(b) as the reference
image. The reconstructed LDR image using the proposed approach
is shown in Figure 11(b). The tone mapped result of [10] is shown
in Figure 11(a). We can see that the proposed approach is able
to reconstruct the scene without any artifacts even in the case of
significant motion of objects across the multi-exposure images.

5. CONCLUSION
We have proposed a novel bottom-up motion segmentation ap-

proach for detecting motion in multi-exposure images correspond-
ing to a dynamic scene. We then approximated the segmentation
boundaries and reconstructed the dynamic scene with an LDR im-
age without any artifacts. The proposed approach is a quite useful
tool in digital photography where photographers like to use multi-
ple differently exposed images to capture a dynamic natural scene.

(a) (b)

(c) (d)

(e)

Figure 7: (a-e) Multi-Exposure images of a dynamic scene. Im-
ages Courtesy: Orazio Gallo, UCSC.

(a) (b)

(c) (d)

Figure 8: (a-d) Multi-Exposure images of a dynamic scene. Im-
ages Courtesy: Orazio Gallo, UCSC.



The proposed approach has added advantages of not requiring ei-
ther CRF or tone mapping. The generated LDR image is compat-
ible with common displays and occupies lesser memory compared
to the corresponding HDR image.

The proposed approach can either be included in the digital cam-
era firmware or common image manipulation tools like Adobe Pho-
toshop. The proposed approach would be a worthy alternative to
the ‘Merge to HDR’tool available in latest Photoshop releases (CS2
onwards). Also, the proposed approach works well even when there
is a significant change in the scene while capturing multi-exposure
images.
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(a) (b) (c)

Figure 9: (a) LDR image generated by multi-exposure compositing without motion detection showing ghosts [28], (b) Tone mapped
LDR image using [10], and (c) LDR image generated using the proposed approach.

(a) (b)

Figure 10: (a) Tone mapped LDR image using [10], and (b) LDR image generated using the proposed approach.

(a) (b)

Figure 11: (a) Tone mapped LDR image using [10], and (b) LDR image generated using the proposed approach.


