National Centre for Photovoltaic Research and Education (NCPRE)

Indian Institute of Technology Bombay

Executive Summary Presented By B. G. Fernandes

National Centre for Photovoltaic Research and Education (NCPRE) – 1

- NCPRE was established at IIT Bombay in September 2010 by Ministry of New and Renewable Energy (MNRE)
- Phase I of NCPRE: 2010-2016; Phase II of NCPRE: 2016-2021; Phase III: proposal under preparation
- NCPRE has R&D activities in areas related to solar PV, and also on education and training
- Total direct funding for Phases I and II: approximately
 Rs 110 crore, plus indirect funding and support from IITB in terms of faculty, student support, space and infrastructure facilities, access to IITB administrative systems, etc.
- International collaborative projects with universities and R&D centers in USA (NREL), Germany (Fraunhofer), UK (Cambridge, Oxford), Norway, Sweden, Netherlands

National Centre for Photovoltaic Research and Education (NCPRE) – 2

- NCPRE was created with a highly multidisciplinary vision involving faculty and students from 9 Departments at IITB, including Electrical Engineering, Energy Science & Engineering, Materials Science, Physics, chemistry and Mechanical
- 29 faculty members and about 170 post-graduate students contribute to various activities of NCPRE
- Excellent research facilities have been set up at NCPRE
- NCPRE has **published** over
 - 245 journal papers
 - 325 conference presentations
 - 22 patents
- NCPRE has an International Advisory Committee, which has met in Mumbai every year since 2011

NCPRE Faculty Investigators

S.No	Name	Department S.No Name		Department		
1	B. G. Fernandes*	EE (PI)	15	M. Aslam	Physics	
2	Surya Doolla*	ESE (PI)	16	S. Mallick	MEMS	
3	S. Mitra*	ESE (Co-PI)	17	P. Nair	EE	
4	A. Kottantharayil*	EE (Co-PI)	18	K. L. Narasimhan	EE	
5	B. Kavaipatti*	ESE	19	D. Marla	ME	
6	K. Chatterjee*	EE	20	A. Alam	Physics	
7	N. Shiradkar*	EE	21	A. Sarkar	Chem. Engg	
8	P. Sharma*	ESE	22	A. Yella	MEMS	
9	D. Kabra*	Physics	23	M. Neergat	ESE	
10	B. M. Arora	EE	24	V. Ramadesigan	ESE	
11	P. Bhargava	MEMS	25	Z. Rather	ESE	
12	A. Kumar	Chemistry	26	A. Singh	MEMS	
13	A. Mukhopadhyay	MEMS	27	S. Agnihotri	CTARA, CPS	
14	D. Gupta	MEMS	28	J. Vasi	EE	
* Memb	ers of the NCPRE Executive Comn	nittee, which meets twice monthly	29	C. S. Solanki (on leave)	ESE	

Engineering; ME: Mechanical Engineering; CTARA: Centre for Technology Alternatives for Rural Areas; CPS: Centre for Policy Studies

NCPRE Students and Staff

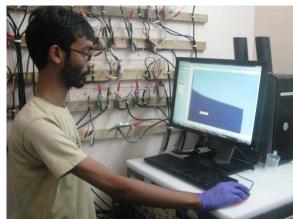
Designation	Numbers
Senior Scientific and Managerial Staff	7
Research Staff	10
M. Tech and Ph.D. Students	31
Project Engineers	4
Jr. and Sr. Technical Assistant	12
Administrative Staff	6
Total	70

Research Activities at NCPRE

NCPRE Labs at a Glance

No	Name of the Lab	Area (m ²)	Class		
1	Battery Prototyping Lab	168.14	10% Rh controlled room		
2	Silicon Fabrication Lab	210.24	1000 Class Clean Room		
3	Characterization Lab	57.66	Semi Clean		
4	FESEM Lab	26.11	Semi Clean		
5	Hybrid Solar Cells Lab	79.12	Semi Clean		
6	Silicon Metallization Lab	84.15	Semi Clean		
7	Power Electronics Lab	135.59	General		
8	Solar Module Lab – 1	120.85	Semi clean		
9	Solar Module Lab – 2	23.5	Semi clean		
10	Solar Module Lab – 3	120.17	Semi clean		
11	Students' Fabrication Lab	78	Semi clean		
	Total	1103.53			

Electron Beam Evaporator System



Belt Furnace

Electrochemical Capacitance Voltage (ECV) Dopant Profiler

LED Solar Simulator

Automated Screen Printer

Battery Testing Unit

Glove Box integrated with Evaporator and Probe Station

Solar Simulator

Facilities at NCPRE

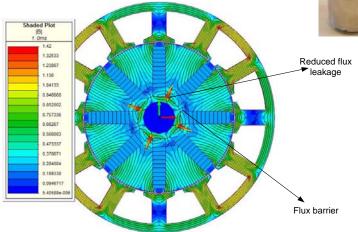
Coating Machine

Needle Testing Machine

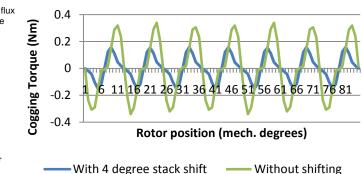
Field Emission Scanning Electron Microscope

Dynamic Mechanical Loading

Module Tester

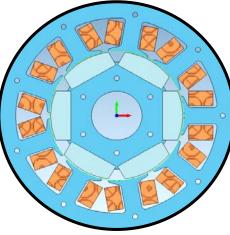

Environmental Chamber System

Facilities, Prototypes and Products Developed at NCPRE


LOW-COST HIGH-SPEED BLDC MOTOR FOR A PV BASED DEEP-WELL SUBMERSIBLE PUMP

BLDC motor

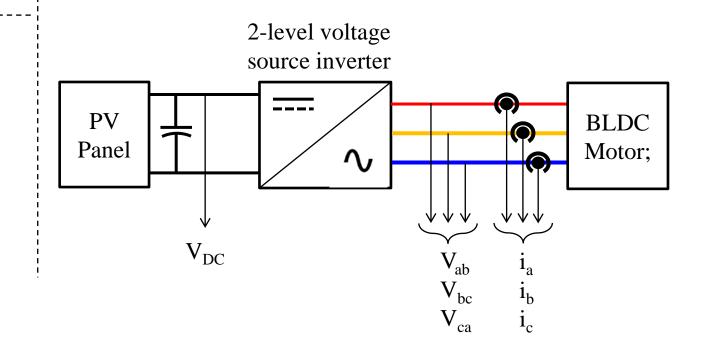
- 12 slots, 8 poles (ceramic ferrite magnets)
- 2HP, Higher Efficiency 88%



Features:

- Ferrite magnets for low cost design.
- Radial flux BLDC topology and inner rotor type motor – 4 inch bore-well.
- Semi-Modular Dual-Stack Spoke type rotor – higher air-gap flux density.

BLDC Motor and Controller for a 3HP solar water (surface) pump

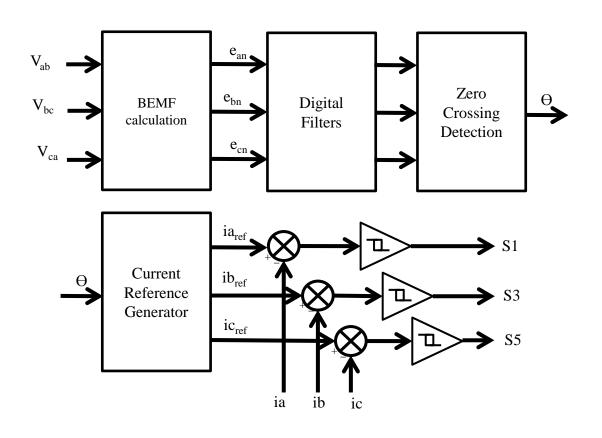


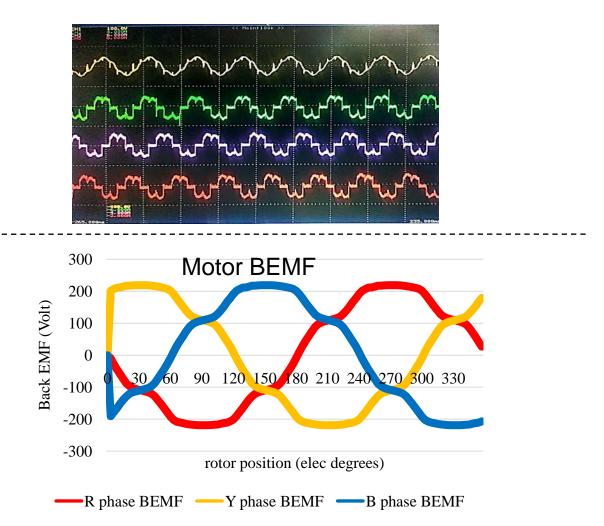
BLDC motor

- 9 slots, 6 poles (ferrite magnets)
- 3hp at 3000RPM
- Estimated efficiency ≈ 92%

➢ 3HP, 3000RPM Surface Pump – made equivalent to an industrial standard product (KDS335)

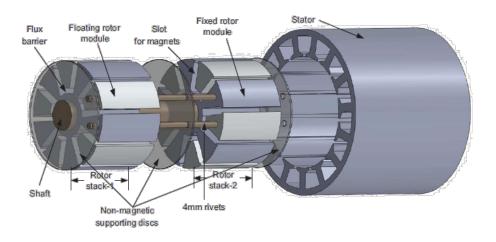
- Sensor less control algorithm for driving the BLDC motor
- > PV interface with maximum power point tracking




Fabricated BLDC motor integrated with the surface pump

BLDC Motor and Controller for a 3HP solar water (surface) pump

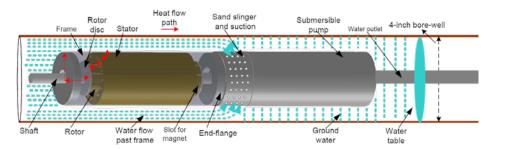
Sensorless algorithm

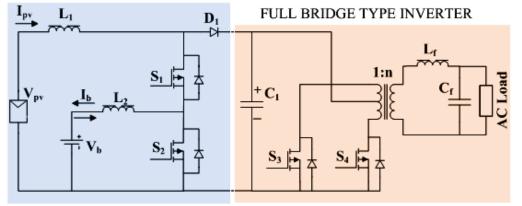

Motor Voltage and Current Waveforms at no load

Field Testing of the Pump

SPECIFICATIONS OF THE PROPOSED SMDS BLDC MOTOR

Figure. Semi-modular dual stack design for reducing flux leakage and maintaining rotor integrity




Figure. Horizontal view of the PV Deep Well Submersible Pump

Air-gap flux density	0.44 T		
Turns/Slot	17		
Winding Type	concentrated		
RMS slot current density	6.5 A / mm ²		
Average Torque	4 N-m		
Core loss	44 W		
Ohmic loss	85 W		
Bearing, friction and windage loss	40 W		
Estimated full load efficiency (%)	88		

Design Parameter	Value		
D. C. Link Voltage	230 V		
Average output power	1.21 kW		
Base speed	2880 rpm		
Stator outer diameter	88 mm		
Total stack length	170 mm		
	4 x 16 x 100		
Magnet dimensions	mm		
Shaft diameter	17 mm		
Stator and rotor laminations	M 43 29		
Slots and poles	15, 10		

Low Cost Reliable Battery Integrated Stand-Alone Photo-Voltaic System

MODIFIED VR-BESS CONVERTER

Features :

- Single phase 250VA Battery Integrated standalone inverter.
- Low cost and high reliability.
- Modified Voltage regulator Battery energy storage system.
- DC link capacitor selection for longer life time.
- Reduce number of power electronics switching devices.
- Low cost micro-controller, OPAMP less sensing circuits.
- Inverter stage is modified for a low frequency Push-Pull type DC to AC inverter.

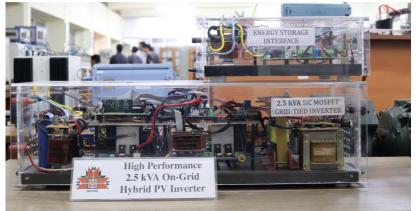
High Performance 2.5 kVA On-Grid Grid Hybrid Solar Inverter

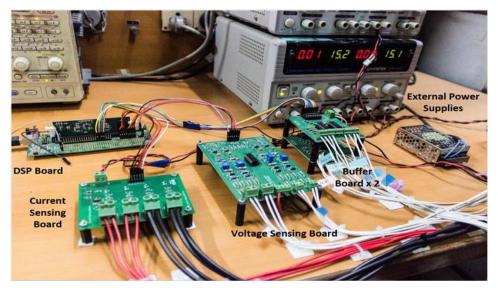
Can operate in on-grid and off-grid mode, with or without battery storage.

Features

- •SiC devices are used to decrease losses and increase performance.
- Completely Transformerless system with low PV leakage current .
- •Low PV MPPT voltage at 90V to reduce shading loss and PID.
- Multilevel input and output operation to reduce magnetics size.
- Maximum efficiency greater than 95%

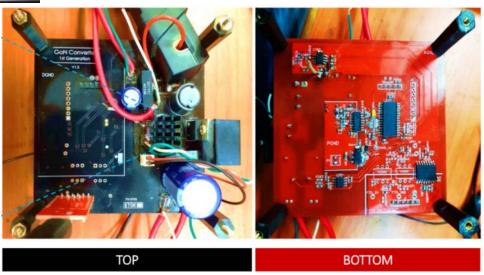
Power Electronics Products Developed



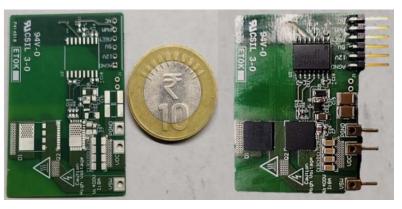


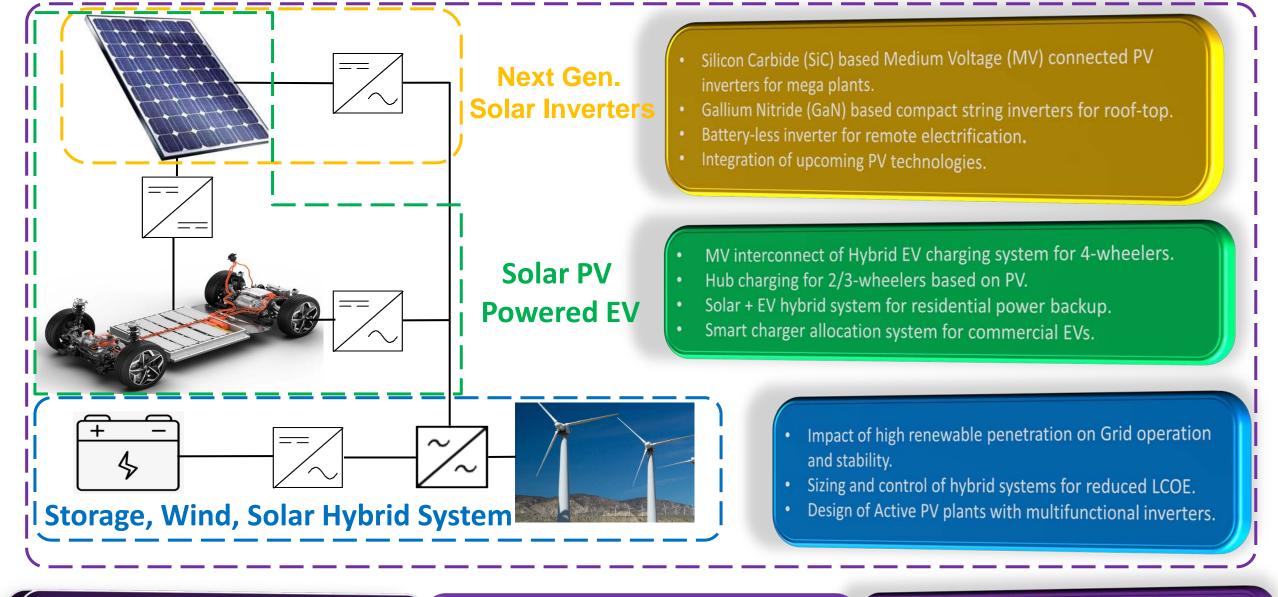
Prototypes

- Inverter topologies for VAr compensation.
- Power Electronic interfaces for non-conventional energy sources.
- SiC and GaN-Based Converters for EVs



A Quad Active Bridge (QAB) Power Electronic Interface for an Electric Vehicle


High Performance 2.5 kVA On-Grid Hybrid PV Inverter


GaN Based Isolated Interleaved-Boost Converter

1MHz GaN Based Half Bridge Converter for Ultracapacitor and Battery for Electric Vehicles

GaN Based Half Bridge Leg for 1kW Totem pole PFC

Reliability of Inverters

- Reliability evaluation, test-bed for solar inverters.
- Online health monitoring and prognosis.

Support Industrial Manufacturers

Evaluation boards and design to support manufacturers.

Man Power Development

 Training of manpower at the scientific and engineer level.

NCPRE – A Magnet for International Projects Requiring Interdisciplinary Expertise

NCPRE Groups	Indo – UK (Microgrids)	Indo - UK (SUNRISE)	Indo-Norwegian (New Wafers)	Indo – US (SERIIUS)	Indo-Swedish (Halide Perovskites)	Indo-Dutch (Power Electronics)	Indo-US (Waterless cleaning of panels)
Silicon Cell		~	~	~			
PV Module Reliability	~	~	~	~			~
Thin Films & New Materials		~		~	~		
Power Electronics	~			~		~	
Battery				× -			

- Close interaction between different groups at NCPRE has enabled us to get several international projects of interdisciplinary nature.
- Moreover, several projects from Indian Industry and PSUs have come to IIT Bombay due to NCPRE

NCPRE – Leading India on a Global Stage

International Solar Energy Alliance (ISA)

- Co-ordinated a special session on ISA at IEEE PVSC 2019
- Partnering with IEEE, ISA and WCPEC for 'internationalizing of solar PV'
- Involved with ISA on technical and policy issues

(ISA aims to spread solar energy to 'solar-rich' countries. NCPRE is engaged with ISA to achieve this goal)

Standardization

- Leading the new standards development process for PV for Indian conditions through representation in IEC TC 82 and BIS ETD 28
- Research & Data driven standards development by sensitizing Indian stakeholders and soliciting feedback from them

(New standards are needed for PV in India due to some unique issues faced in Indian conditions)

Field Data for India

- Largest collection of field data of performance of PV modules, systems and also BoS components in Indian conditions.
- Understanding of unique Techno-Social-Commercial issues faced by new technologies during field deployment in India

(India is a growing economy and a testbed for several new technologies)

Next Decade of Solar PV for India: 2020 - 2030

- India has plans to install 300 GW of solar PV by 2030. Currently, only about 35.7 GW has been installed (December 2019).
- > Approximately 10 times the current installed capacity would be installed in next 10 years!
- At the same time, we need to ensure that the installed modules have desired quality and reliability to last for 25 years in hot climates.
- There is a strong push to have a considerable fraction of these upcoming installations from domestically manufactured PV cells and modules.
- Most the upcoming PV installations would be coupled with some form of storage (battery / hydro).
- > NCPRE has a major role to play in driving the solar future of India.

Thank You