User Tools

Site Tools


Subhananda Chakrabarti

ASCII

Introduction

Prof. Subhananda Chakrabarti has been involved in research in the field of advanced optoelectronics both in the infrared and in the ultra-violet domain. The research involves carefully analyzing the device physics, coupled with theoretical modelling and followed by extensive experimental optimization. His experimental research involves all the steps starting with growth of device heterostructures (using complex systems like Molecular Beam Epitaxy), followed by fabrication of working devices using state-of-art techniques, and finally characterization and testing of the same.

Prof. Chakrabarti has made contribution to research on Quantum Dot Infrared Photodetectors (QDIPs), to establish such devices as viable third-generation imaging technology fall outs for the IR community worldwide. The research led to some key breakthroughs. For instance, Prof. Chakrabarti was the first to demonstrate state-of-art characteristics of quaternary-capped QDIPs, which surpassed all previous world records in terms of a combination of very high responsivity with detectivity (needed for high resolution night vision devices). He has demonstrated multicolour, broadband, quaternary-capped InAs/GaAs QDIPs having ultra-narrow line-widths never seen before (needed for hyperspectral imaging applications). He is also the first one to demonstrate that ex-situ ion implantation in QDIPs drastically enhances their signal-to-noise ratio. His demonstration of strain-coupling to enhance the performance characteristics in QDIPs would surely open up new venues of research in QD research. Finally, his research on better optical and spectral enhancement of InAs/GaAs QD materials and devices using Au-Ge plasmonic nanoparticles outmatched those earlier reported for Au plasmonic nanoparticles.

In particular, Prof. Subhananda Chakrabarti’s research in the infrared domain has provided strong impetus to the indigenous development of infrared (IR) cameras for night vision and surveillance applications. Prof. Chakrabarti played a central role in the establishment of the advanced III-V compound (GaAs and GaSb) semiconductor laboratory at IIT Bombay. The facility is aimed at spearheading the indigenous development of nanotechnology-based thermal imaging cameras, in keeping with Prof. Chakrabarti’s vision of indigenization.

Prof. Chakrabarti’s group demonstrated India’s first high-temperature operating GaAs-based thermal imaging devices/sensors, responding at long wavelengths (> 8 µm) capable of detecting human objects. The first InGaAs-capped and dot-in-a-well (DWELL) QDIPs developed in India, which demonstrate state-of-the-art detectivity (signal-to-noise ratio) values, merit special mention. These innovations enabled Prof. Chakrabarti to develop prototypes of the 320×256 QDIP Focal Plane Arrays, which lies at the heart of thermal camera, for the first time in the country.

In the ultra-violet (UV) domain, Prof.Chakrabarti took up the challenging research of demonstrating stable p-type doping in ZnO (proposed to be a better alternative to the existing commercial Gallium Nitride (GaN) technology). His demonstration of very stable p-type doping of ZnO and ZnMgO via PIII (Plasma Immersion Ion Implantation) doped phosphorous and nitrogen have not been reported earlier and, may be considered as a breakthrough in realizing viable ZnO based light emitting diodes (LED) and lasers. This research, in fact, culminated in the demonstration of homojunction UV LED, the report of which is indeed a rarity in ZnO-based research internationally. This would also open possibilities of future expansion of ZnO-based optoelectronics.

During the last 12-13 years, 17 (Seventeen) of Prof. Chakrabarti’s PhD students have graduated. Prof. Chakrabarti have also extensively promoted undergraduate research at IIT Bombay and more than 20 (twenty) international journal papers have been published, where the undergraduate student is either the first or a coauthor.

Research Interests

  • III-V Compound semiconductor materials growth and characterization
  • Optoelectronic Devices of interest includes quantum dot photodetectors and Solar cells
  • III-V device integration on germanium
  • II-VI optoelectronic materials and devices

Courses Offered

EE672 Microelectronics Lab

EE221 Digital Electronics(Minor)

EE728 Growth and Characterization of Nanoelectronic Materials and Devices

EE457 Compound Semiconductor Materials and Devices (Honours)

EE236 Electronic Devices Laboratory

EE204 Analog Electronics

EE101 Introduction to Electrical and Electronic Circuits

EE112 Introduction to Electronics

Academic Background

Ph.D Calcutta University

M.Sc Calcutta University

Awards and Honours

2020 Fellow, SPIE, USA.

2020 Abdul Kalam Technology Innovation National Fellowship, INAE

2019 IIT Bombay Best PhD thesis award (Dr. Binita Tongbram, PhD CRNTS, IIT Bombay)

2019 Senior Member, SPIE, USA

2017 Senior Member, IEEE, USA

2017 Editor IEEE Journal of Electron Device Society

2016 NASI-Reliance Industries Platinum Jubilee Award for Application Oriented Innovations in Physical Sciences.

2016 The Materials Research Society of India (MRSI) Medal.

Fellow Institution of Electronics and Telecommunication Engineers (F 230086).

Press Releases

Professional Recognition

SELECTED:

Member of

                  (1) Optoelectronics Devices Committee, IEEE EDS Society,
                  (2) Technical Committee SPIE Photonics West, USA, 2014-2019, 
                  (3) SERB DST ECE PAC and
                  (4) SERB DST committee on SRG and NPDF
                  

Invited Speaker at

                  (1) SPIE NANOSCIENCE, SAN DIEGO, USA 
                  (2) SPIE Photonics West, San Francisco, USA.
                  

Session Chair at

                  (1) SPIE Photonics West, USA 
                  (2) North American Molecular Beam Epitaxy (NAMBE) Conference.

Work Experience

PROFESSOR: DEPT. OF ELECTRICAL ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400 076, MAHARASHTRA, INDIA; FROM SEP. 2014.

ASSOCIATE PROFESSOR: DEPT. OF ELECTRICAL ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400 076, MAHARASHTRA, INDIA; FROM FEB. 2009 - AUG 2014.

ASSISTANT PROFESSOR: DEPT. OF ELECTRICAL ENGINEERING, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400 076, MAHARASHTRA, INDIA; FROM SEP. 2007- FEB. 2009.

SENIOR RESEARCHER (RA2): DEPT. OF ELECTRONICS & ELECTRICAL ENGINEERING., UNIVERSITY OF GLASGOW (GLASGOW, UK) AUG, 2006-SEP. 2007.

SENIOR RESEARCHER: NATIONAL CENTER FOR PLASMA SCIENCE & TECHNOLOGY, SCHOOL OF PHYSICAL SCIENCES, DUBLIN CITY UNIVERSITY (DUBLIN, IRELAND),NOV, 2005- AUG, 2006.

SENIOR RESEARCH FELLOW: DEPT. OF ELEC. ENGR. & COMP. SC., UNIVERSITY OF MICHIGAN (ANN ARBOR, MI,USA)MAY, 2001-SEP, 2005.

LECTURER: DEPT. OF PHYSICS; ST. XAVIER’S COLLEGE; 30 PARK STREET; CALCUTTA 700 016; INDIA. 1997-2000.

Research Projects

I. Department of Science and Technology, Government of India Grant: INR 38 lakhs

“A Detailed Photoluminescence Investigation of the Impact of Annealing on Nano-Scale In(Ga)As/GaAs-based Quantum Dot Heterostructures” Completed Adjudged “EXCELLENT” by the EECS PAC

Principal Investigator: project completed and adjudged “excellent” by SERC-DST-EECS Review Panel. In order to enhance the efficiency of future Quantum Dot (QD)-based devices, various annealing techniques, such as Rapid thermal anneal (RTA), pulsed laser anneal (PLA) etc. were applied to determinetheoptimal technique and most conductive conditions for enhancing QD uniformity.

II. Naval Research Board, Defence Research and Development Organization (DRDO) Grant: INR 38.5 lakhs

“Development of Ferroelectric and Multiferroic MEMS Devices” Completed

Principal Investigator: the project aimed at developing MEMS sensors and RF devices using novel materials (Dy/Tb-doped BiFeO3 and PbTi1-xFexO3) developed by the research team which simultaneously exhibited ferroelectric and ferromagnetic ordering at room temperature with desired coupling coefficient between two order parameters.

III. Department of Science and Technology, Government of India Grant: INR 38 lakhs

“Control and Optimization of Pulsed Laser Deposition Technique for Growth of ZnO-based Materials and Devices” Completed

Co-Principal Investigator; the project attempted to deposit ZnO uniformly over a given substrate through pulsed laser deposition by introducing control theory. The project also included the deposit of p-doped ZnO films for applications to light emitting diode (LED) devices.

IV. Department of Science and Technology, Government of India Grant: INR 58 lakhs

“An Investigation into the Impact of Annealing on the Optical, Electrical and Spectral Characteristics of InAs/GaAs-based Nano-Scale Quantum Dot Heterostructures” Completed Adjudged “EXCELLENT” by the EECS PAC

Principal Investigator: Project completed and adjudged “excellent” by SERC-DST-EECS Review Panel. Project studies the impact of annealing on (a) optical properties, (b) transport properties, and © device spectral response of different types of quantum dot heterostructures. As part of the project, temperature-dependent photoluminescence (PL), current-voltage (I-V) and spectral response measurements are being undertaken on a wide range of samples.

V. Indian Space Research Organisation (ISRO) Grant: ~INR 42 crores

“Design, Development, Test, and Delivery of Indigenous Infrared Focal Plane Arrays” Ongoing

Principal Investigator: The scope of the project is to design, develop, test, and deliver GaAs-based Quantum Dot/Dot-in-a-Well Infrared Focal Plane Arrays (IRFPAs). The term ‘Focal Plane Array’ is used to refer to a system with a large number of pixels (detector elements) arranged in a 2-dimensional array format, located at the focal plane of an imaging system.

VI. Defence Research and Development Organization (DRDO) Grant: INR ~6 crores

“Development of MWIR and LWIR Type II InAs/GaSb Superlattice Heterostructures for Third Generation IR Photodetectors” Ongoing

Principal Investigator: The scope of the project is the development of mid-wave and long-wave infrared photodetectors based on Type II InAs/GaSb superlattice technology.

VII. Solar Energy Research Initiative (SERI), Dept. of Science and Technology (DST), India Grant: INR 98 lakhs

“In(Ga)As/GaAs Quantum Dot Solar Cell Approved

Principal Investigator:

VIII. Department of Science and Technology, Government of India Grant: ~INR 55 lakhs

“An Investigation on the Optical, Electrical and Spectral Characteristics of Strain-Coupled InAs/GaAs-based Nano-Scale Quantum Dot Heterostuctures Devices”

Principal Investigator:

IX. NANOMISSION, Department of Science and Technology, Government of India Grant: ~INR 213.696 lakhs

“An Investigation on the Optical, Electrical and Spectral Characteristics of Strain-Coupled multilayer (x10, x20,..) In(Ga)As/GaAs-based Nano-Scale Quantum Dot Heterostuctures”

Principal Investigator:

Research Students

Postdoctoral Fellow

1. Dr. Nilanjan Halder (Manipal University)

2. Dr. Kaustab Ghosh (VIT University, Chennai)

3. Dr. R. Sreekumar (M. G. University, Kerala)

4. Dr. Suhas Jejurikar (Mumbai University)

5. Dr. Sushil Kumar Pandey (NIT, Suratkal)

6. Dr. Arjun Mandal (Finland)

7. Dr. Hemant Ghadi (Ohio State University, USA)

8. Dr. Mahitosh Biswas (University of Michigan, Ann Arbor, USA)

9. Dr. Debabrata Das (University of Michigan, Ann Arbor, USA) (Presently at U of Texas El Paso, USA)

10.Dr. Debiprasad Panda (RA at I.I.T. Bombay) (Presently, NPDF, TIFR, Mumbai)

11.Dr. Jhuma Saha (TIFR) (Presently, Faculty, IIT Gandhinagar)

PhD Students

1. Saurabh Nagar (PhD completed 2013) (presently VIT University, previously Postdoc at Berlin, Germany)

2. Arjun Mandal (PhD completed 2013) (presently with a company in Finland)

3. Sourav Adhikary (PhD completed 2014) (presently VIT University, previously Postdoc at NUS, Singapore)

4. Saumya Sengupta (PhD completed 2014)(presently Scientist at SCL, Chandigarh)

5. Shantanu Saha (PhD completed 2017) (postdoc at Ohio State University, USA)

6. Hemant Ghadi (PhD completed 2017) (postdoc at Ohio State University, USA)

7. Snehalata Gupta(Agarwal) (PhD completed 2017) (presently Sc.D at IPR, Ahmedabad)

8. Mahitosh Biswas (PhD completed 2017) (postdoc at University of Michigan, Ann Arbor, USA)

9. Sourabh Upadhyay(PhD completed 2018) (presently KL University Vijayawada

10.Binita Tongbram (PhD completed 2018)

11.Debabrata Das (PhD completed 2018) (postdoc at University of Michigan, Ann Arbor, USA)

12.Punam Murkute (PhD completed 2018) (postdoc at University of Notre Dame, USA)

13.Debi Prasad Panda (PhD completed 2019)

14.Sushama Vasta (PhD completed 2019)

15.Jhuma Saha (PhD completed 2019) (T.I.F.R., Mumbai)

16.Jawaid Alam (PhD completed 2020)

17.Vidya P D (PhD completed 2020)

18.Lavi Tyagi (PhD completed 2021)

19.Ravinder Kumar (PhD ongoing)

20.Nivedita Pandey (PhD ongoing)

21.Suryansh Dongre (PhD ongoing)

22.Samesta Choudhary (PhD ongoing)

23.Manas Ranjan Mantri (PhD ongoing)

24.Madhuri Mishra (PhD ongoing)

25.Raveesh Gourishetty (PhD ongoing)

26.Saranya (PhD ongoing)

27.Ravindra Kumar (PhD ongoing)

28.Anuja Singh (PhD ongoing)

29.Ajay Kumar (PhD ongoing)

30.Sudheendra Prabhu (PhD ongoing)

M.Tech and DD students

1. Sreenivaas Subramaniam (COMPLETED)

2. Prantik Mahajan (COMPLETED)

3. A S V Puneet (COMPLETED)

4. Shreyas Shah (COMPLETED)

5. Mayank Srivastava (COMPLETED)

6. Prasad Bhandarkar (COMPLETED)

7. Sauvik Chowdhury (COMPLETED)

8. Sandeep Kala (COMPLETED)

9. Aijaz Bhaldar (COMPLETED)

10. Saikalash Shetty (COMPLETED)

11. Ashutosh Manohar (COMPLETED)

12. Akshay Balgarkashi (COMPLETED)

13. Dinesh Kumar Pal (COMPLETED)

14. Harshal Rawool (COMPLETED)

15. Suvajit Das (COMPLETED)

Research highlights

The highlights reported here are from samples/devices which have been grown, fabricated and characterized in-house at IIT Bombay: hence the effort is completely indigenous.

demonstrated first successful fabrication of MWIR Type II Superlattice GaSb-based 320×256 Focal Plane Array in the country

developed prototypes of the 320×256 Quantum Dot Infrared Photodetector(QDIP)-based Focal Plane Array THERMAL IMAGERS for the first time in the country, which represent India’s most cutting-edge thermal imaging technology

demonstrated state-of-the-art characteristics in indigenously developed quaternary-capped QDIPs, which surpassed all previous world records in terms of a combination of very high responsivity with detectivity

developed multicolour, broadband, quaternary-capped InAs/GaAs QDIPs with ultra-narrow line-widths.

developed ex-situ ion implantation in QDIPs, which drastically enhanced their signal-to-noise ratio i.e. detectivity

• has developed a theoretical model to explain the effect of thermal annealing on the photoluminescence of InAs/GaAs quantum dots (QDs); this model has the potential to assist in more precisely engineering the optical properties of QD materials for specific device applications.

• has also made noteworthy contributions towards the development of nanoscale strain-coupled quantum dot heterostructures for possible application to telecommunication lasers. In particular, he demonstrated for the first time that strain coupling inhibits interdiffusion of materials and thereby induces higher thermal stability in nanostructures; a result that has the potential to spur development of higher efficiency telecommunication (1.3-1.55 µm) lasers

has also recently demonstrated very stable p-type doping by PIII (plasma immersion ion implantation) for the first time in ZnO, a material which is thought to be more promising that GaN for solid state lighting applications

demonstrated a homojunction ZnO-based UV (ultra-violet) light emitting diode (LED), using stable p-type doping via PIII (plasma immersion ion implantation)

have also extensively promoted undergraduate research at IIT Bombay and more than 20 (twenty) international journal papers have been published where the undergraduate is either the first or a coauthor.

Contact Information

Department of Electrical Engineering
IIT Bombay, Powai
Mumbai 400 076, India
Email : subho[AT]ee.iitb.ac.in
Phone (Internal(O)) : (0091 22) - 2576 7421
Phone (Internal(R)) : 8421
Office room no: EA 208
Fax: (0091 22) - 25723707
Personal homepage

Patents

1. Bio-Templated Nanosensor for Mercury Detection in PPB Level (2016); Subhananda Chakrabarti, Samir Kumar Pal, Nabarun Polley, Probir Kumar Sarkar and Peter Lemmens; Indian patent Application No.201621004916.

2. Ultrasensitive fluorescence based efficient mercury sensor (2016); Subhananda Chakrabarti, Samir Kumar Pal, Probir Kumar Sarkar, Nabarun Polley and Peter Lemmens; Indian patent Application No. 201621005597.

3. ZnMgO nanorods by hydrothermal bath treatment for optoelectronic and electronic device applications (2016); Hemant Ghadi, sushil Pandey, Harshal Rawool and Subhananda Chakrabarti; Indian patent Application No. 201621007211.

4. AuGe surface plasmons for enhancing performance of optoelectronic materials and devices (2016); Sushil Pandey, Hemant Ghadi, Punam Murkute and Subhananda Chakrabarti; Indian patent Application No. 201621007212.

List of Publications

**BOOKS/MONOGRAPHS**

1. S. Adhikary and S. Chakrabarti, “Quaternary Capped In(Ga)AsGaAs Quantum Dot Infrared Photodetectors: From Materials to Devices”, SPRINGER 2017, ISBN 978-981-10-5290-3,(hard cover, ebook), http://www.springer.com/in/book/9789811052897

2. A. Mandal and S. Chakrabarti, “Impact of Ion Implantation on Quantum Dot Heterostructures and Devices”, SPRINGER 2017, ISBN 978-981-10-4334-5 (hard cover, ebook), (http://www.springer.com/in/book/9789811043338).

3. S. Sengupta and S. Chakrabarti, “Structural, Optical and Spectral Behaviour of InAs-based Quantum Dot Heterostructures for High-performance Infrared Photodetectors”, SPRINGER 2017, ISBN 978-981-10-5702-1, (http://www.springer.com/in/book/9789811057014)

4. S. Nagar and S. Chakrabarti, “Optimization of ZnO Thin Films: Implants, Properties and Device Fabrication”, SPRINGER, 2017, ISBN 978-981-10-0809-2 (hard cover, ebook), (http://www.springer.com/in/book/9789811008085).

5. “Nanoelectronic Materials and Devices - Select Proceedings of ICNETS2, Volume III,” Christophe Labbé, Subhananda Chakrabarti, Gargi Raina and B. Bindu, SPRINGER, 2017, (http://www.springer.com/in/book/9789811071904).

**BOOK CHAPTERS**

1. P. Bhattacharya, A. D. Stiff-Roberts, X. H. Su, S. Chakrabarti and C. H. Fischer, “Intersubband Transition in Quantum Dots,” published in Intersubband Optoelectronic Devices, Edited by R. Paiella and O. Manasreh, McGraw-Hill, New York (2005).

2. A. D. Stiff-Roberts, S. Chakrabarti, X. H. Su and P. Bhattacharya, “III-V Quantum Dot for High-Operating Temperature, Mid-Infrared Photodetectors,” Laser Focus World, May 2005.

3. P. Bhattacharya, A. D. Stiff-Roberts and S. Chakrabarti, “Mid-Infrared Quantum Dot Photodetectors,” Book Series Springer Series in Optical Sciences, Publisher Springer Berlin / Heidelberg,ISSN 0342-4111 (Print) 1556-1534 (Online),Volume 118/2006.

**JOURNAL PUBLICATIONS**

The papers by Prof. Chakrabarti in the area of compound semiconductor optoelectronic materials and devices have received about 4500 citations till date with a h-factor of 29 (as indexed in GOOGLE SCHOLAR)

After Joining IIT Bombay

2020

204. Samesta, J. Saha, B. Tongbram, D. Panda, D. Das and S. Chakrabarti, “Tuning the structural and optical characteristics of heterogeneously coupled InAs Submonolayer (SML) quantum dots grown on InAs Stransaki-Krastanov (SK) quantum dots,” Optical Materials (accepted), I.F. 2.779

203. S. Mondal, C. Ghosh, S. M. D. Dwivedi, A Ghosh, S. Sushama, S. Chakrabarti and A. Mondal, ” An experimental and theoretical understanding of a UV Photodetector based on Ag nanoparticles decorated Er-doped TiO2 thin film,“ Ceramic International (Accepted), I.F. 3.830

202. Samesta, J. Saha, B. Tongbram, D. Panda, D. Das and Subhananda Chakrabarti, “A comprehensive analysis of strain profile in the heterogeneously coupled Stranski-Krastanov (SK) on Submonolayer (SML) quantum dot heterostructures,” Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2020.156483, I.F. 4.650

201. S. Sriram, D. Panda, J. Saha and S. Chakrabarti, “Study on inter band and inter sub-band optical transitions with varying InAs/InGaAs sub-monolayer quantum dot heterostructure stacks grown by molecular beam epitaxy”, IEEE transactions in Nanotechnology, https://doi.org/10.1109/TNANO.2020.3009597, I.F. 2.857

200. S. Das, J. Saha, Saranya and S. Chakrabarti, “Influence of Sb accumulation on the inter-band and inter-subband transitions of InAs/GaAs1-x Sbx sub-mono layer (SML) quantum dot heterostructures,” Superlattices and Microstructures, https://doi.org/10.1016/j.spmi.2020.106646, I.F. 2.385

199. R. Kumar, D. Panda, J. Saha, B. Tongbram, D. Das, R. Kumar and S. Chakrabarti, “Monolithic growth of GaAs/Al0.3Ga0.7As Multiple Quantum Well structure on Ge substrate with low defects: Theoretical and Experimental Correlation of the structural and optical properties”, Journal of Physics D: Applied Physics, https://dx.doi.org/10.1088/1361-6463/aba14d, I.F. 3.169

198. S. Dongre, S. Paul, S. Mondal, D. Panda, S. R. Shriram, M. R. Mantri, S. A. Gazi, D. Das, R. Kumar, B. Tongbram and S. Chakrabarti, “Optimization of Vertical Strain Coupling in InAs/GaAs p-i-p Quantum Dot Infrared Photodetectors with Applied Growth Strategy,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2020.117499, I.F. 2.961

197. N. Pandey and S. Chakrabarti, “Understanding the effect of Mn doping in CsPbBr3 using ab-initio method with experimental validation,” IEEE Journal of Photovoltaics, https://doi.org/10.1109/JPHOTOV.2020.3005210, I.F. 3.398

196. M. R. Mantri, D. Panda, D. Das, S. Mondal, S. Paul3, S. A. Gazi, R. Kumar, S. Dongre, A. V. Pansare and S. Chakrabarti, “Improved Carrier Transfer in Vertically Coupled Surface and Buried InAs Stranski-Krastanov Quantum Dot system via Ex-situ Surface State Passivation,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2020.117470, I.F. 3.28

195. S. R. Khairkar, A. V. Pansare, A. A. Shedge, S. Y. Chatre, A. K. Suresh, S. Chakrabarti, V. R. Patil and A. Nagarkar, “Hydrophobic Interpenetrating Polyamide-PDMS Membranes for Desalination, Pesticides Removal and Enhanced Chlorine Tolerance,” Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.127179, I.F. 5.778

194. A. Pansare; S. Chhatre; S. Khairkar; J. Bell; M. Barbezat; S. Chakrabarti and A. Nagarkar, ”“Shape-Coding”: Morphology Based Information System for Polymers and Composites,“ ACS Applied Materials and Interfaces, https://doi.org/10.1021/acsami.0c05314, I.F. 8.758

193. R. Kumar, J. Saha, and S. Chakrabarti,”Impact of Digital Alloy Capping Layers on Bilayer Self-Assembled InAs Quantum Dot Heterostructures“, IEEE transactions in Nanotechnology (accepted), https://doi.org/10.1109/TNANO.2020.2993690, I.F. 2.857

192. Md Jawaid Alam; P. Murkute; S. Sushama; H. Ghadi; S. Paul; S. Mondal; and S. Chakrabarti, “Improving optical properties and controlling defect-bound states in ZnMgO thin films through ultraviolet-ozone annealing,” Thin Solid Films, https://doi.org/10.1016/j.tsf.2020.138112, I.F. ~2

191. S. Dongre, S. Paul, S. Mondal, R. Kumar, D. Panda, S. Gazi, D. Das, R. Kumar, S. Shriram, M. Mantri, B. Tongbram and S. Chakrabarti,”In-situ Tailoring of Vertically Coupled InAs p-i-p Quantum-dot Infrared Photodetectors: Towards Homogeneous Dot Size Distribution and Minimization of In-Ga Intermixing“, ACS Applied Electronic Material, https://doi.org/10.1021/acsaelm.0c00054,

190. R. Kumar, D. Panda, D. Das, A. Chatterjee, B. Tongbram, J. Saha, S. Upadhyay, R. Kumar, S. K. Pal and S. Chakrabarti, “Realization of high-quality InGaAs/GaAs Quantum Dot growth on Ge substrate and Improvement of Optical property through Ex-situ Ion Implantation,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2020.117208, I.F. 3.28

189. I. Mal, D. P. Panda, S. Chakrabarti and D. P. Samajdar, “An Analytical Approach to study Annealing Induced Interdiffusion of In and Ga for Truncated Pyramidal InAs/GaAs Quantum Dots”, IEEE Transactions on Nanotechnology, https://doi.org/10.1109/TNANO.2020.2975934, I.F. 2.857

188. M. Biswas, R. Kumar, A. Chatterjee, Y. Wud, Z. Mi, P. Bhattacharya, S. K. Pal, S. Chakrabarti, “Effects of Rapid Thermal Annealing in InGaN/GaN Quantum Disk-in-GaN Nanowire Arrays,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2020.117123, I.F. 3.28

187. T. Hidouri1, M. Biswas, I. Mal, S. Nasr, S. Chakrabarti, D. P. Samajdar and Faouzi Saidi, “Engineering of carrier localization in BGaAs SQW for novel intermediate band solar cells: thermal annealing effect,” Solar Energy, https://doi.org/10.1016/j.solener.2020.02.032, I.F. 4.674

186. B. Tongbram, J. Saha, S. Sengupta, and S. Chakrabarti, “Metamorphosis of Self-Assembled InAs Quantum Dot through Variation of Growth Rates,” Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2020.153870, I.F. 4.650

185. H. Ghadi, P. Murkute, S. Patil and S. Chakrabarti, “Zinc magnesium oxide based nanosensors for high-precision pH measurement,” IEEE Sensors Journal, https://doi.org/10.1109/JSEN.2020.2964995, I.F. 3.076

2019

185. D. Das et al, “Vertically coupled hybrid InAs sub-monolayer on InAs Stranski–Krastanov quantum dot heterostructure: towards next generation broadband IR detection”, IEEE Transactions on Nanotechnology, https://doi.org/10.1109/TNANO.2019.2958930, I.F. 2.857

184. Md Jawaid Alam, P. Murkute, H. Ghadi, S. Sushama, S. M. M. D. Dwivedi, A. Ghosh, C. Ghosh, A. Mondal3, S. Paul, S. Mondal, S. Chakrabarti, “Enhancing responsivity and detectivity in Broadband UV–VIS photodetector by ex-situ UV–ozone annealing technique,” Superlattice and Microstructures, https://doi.org/10.1016/j.spmi.2019.106333, I.F. 2.385

183. N. Pandey, A. Kumar and S. Chakrabarti, “Tunnelling Magnetoresistance and spin filtration effect in functionalized graphene sheet with CrO2 as electrode: An ab-initio study,” Journal of Magnetism and Magnetic Materials, https://doi.org/10.1016/j.jmmm.2019.166073, I.F. 2.683

182. E. K. W. Tan, P. K. Shrestha, A. V. Pansare, S. Chakrabarti, S. Li, D. Chu, C. R. Lowe, and Amit A. Nagarkar, “Density Modulation of Embedded Nanoparticles via Spatial, Temporal, and Chemical Control Elements,” Advanced Materials, https://doi.org/10.1002/adma.201901802, I.F. 25.809

181. “Detailed investigation of photoluminescence, structural, and elemental properties of ZnO thin films under various annealing ambient,” Superlattices and Microstructures (accepted), https://doi.org/10.1016/j.spmi.2019.106310, I.F. 2.385

180. N. Pandey, A. Kumar and S. Chakrabarti, “First principle study of temperature- dependent spin transport in VSe2 monolayer,” Applied Surface Science, https://doi.org/10.1016/j.apsusc.2019.144411, I.F. 5.155

179. V. P. Deviprasad, S. Paul, S. Mondal, D. Das, D. Panda, and S. Chakrabarti,”Incorporation of Quaternary (In0.22Al0.22Ga0.56As) Capping in p-i-p QDIPs for Efficient Minimization of Hole-Assisted Dark Current,“ Infrared Physics and Technology (accepted), I.F. 2.313

178. J. Saha, D. Das, D. Panda, B. Tongbram, A. Chatterjee, B. Liang, K. Das Gupta, S. K. Pal and S. Chakrabarti, “Broad tunability of emission wavelength by strain coupled InAs/GaAs1-xSbx quantum dot heterostructures” Journal of Applied Physics, https://doi.org/10.1063/1.5108949, I.F. 2.328

177. N. Pandey, A. Kumar and S. Chakrabarti, “First principle study of temperature dependent magneto resistance and spin filtration effect in WS2 nanoribbon” ACS Applied Materials and Interfaces; Vol.11, No. 42, pp. 39248-39253, 2019, https://doi.org/10.1021/acsami.9b10618 I.F. 8.758

176. J. Saha et al, “Enhancing the Performance of Heterogeneously Coupled InAs Stranski-Krastanov on Submonolayer Quantum Dot Heterostructures,” Superlattices and Microstructures, https://doi.org/10.1016/j.spmi.2019.106260 I.F. 2.385

175. S. Mukherjee, S. Mukherjee, A. Pradhan, T. Maitra, S. Sengupta, S. Chakrabarti, A. Nayak, S. Bhunia,”Carrier transport and recombination dynamics of InAs/GaAs sub-monolayer quantum dot near infrared photodetector“, J Phys. D, I.F. 2.829

174. N. Pandey, A. Kumar, and S. Chakrabarti, “Investigation of Structural, Electronic, and Optical Properties of Mn-doped CsPbCl3: Theory and Experiment,” RSC Advances (accepted), I.F. 3.049

173. D. Das et al, “Vertically coupled hybrid InAs sub-monolayer on InAs Stranski–Krastanov quantum dot heterostructure: towards next generation broadband IR detection”, IEEE Transactions on Nanotechnology (accepted), I.F. 2.292

172. S. M. M. D. Dwivedi, A. Dalal, A. Ghosh, P. Murkute, H. Ghadi, C. Ghosh, S. Chakrabarti, S. Bhunia and A. Mondal, “InN nanowires based Near-Infrared broadband optical detector,” IEEE Photonics Technology Letters, https://doi.org/10.1109/LPT.2019.2936272, I.F. 2.553

171. V. P. Deviprasad, D. Das, D. Panda, H. M. Rawool, V. Chavan, B. Tongbram, J. Patwari, and S. Chakrabarti,”Spatial Optimization of Modulation Doping in P-I-P QDIPs: Towards Achieving Higher Operating Temperature“, IEEE Transactions in Nanotechnology, https://doi.org/10.1109/TNANO.2019.2937093, I.F. 2.292

170. D. Panda, J. Saha, D. Das, S. Singh, H. Rawool, and S. Chakrabarti.”Theoretical Correlation and Effect of annealing on the Photoresponse of Vertically Strain-coupled In0.5Ga0.5As/GaAs Quantum Dot Heterostructures“, Journal of Applied Physics, https://doi.org/10.1063/1.5113528, I.F. 2.328

169. S. Mondal, S. Paul, Md Jawaid Alam, S Sushama and S. Chakrabartib*”Effects of carrier confinement in MgZnO/CdZnO thin-film transistors: towards next generation display technologies“, Superlattices and MIcrostructures, https://doi.org/10.1016/j.spmi.2019.106220, I.F. 2.385

168. A. Chatterjee, D. Panda, J. Patwari, B. Tongbram, S. Chakrabarti, S. K. Pal, “Strain Relaxation in InAs Quantum Dots through Capping Layer Variation and Its Impact on The Ultrafast Carrier Dynamics”, Semiconductor Science and Technology (accepted), I.F. 2.654

167. S. Mukherjee, A. Pradhan, S. Mukherjee, T. Maitra, S. Sengupta, S. Chakrabarti, A. Nayak, S. Bhunia,”Carrier escape mechanism in laterally correlated InAs sub-monolayer quantum dots using temperature dependent photoluminescence,“ Journal of Luminescence (accepted), I.F. 2.732

166. V. P. Deviprasad, H. J. Ghadi, D. Das, D. Panda, H. M. Rawool, V. Chavan, B. Tongbram, J. Patwari, S. K. Pal and S. Chakrabarti, “High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model,” Journal of alloys and compounds (accepted), I.F. 3.779

165. D. Panda, A. Chatterjee, J. Saha, D. Das, S. M. Singh, S. K. Pal and S. Chakrabarti, “Enhanced performance of In(Ga)As QD based optoelectronic devices through improved interface quality between QD and matrix material”, Physica Status Solidi B: Basic Solid State Physics, https://doi.org/10.1002/pssb.201900138, I.F. 1.454

164. A. Ghosh, P. Murkute, R. Lahiri, S. Chakrabarti, K. K. Chattopadhyay, A. Mondal,”GLAD synthesised Erbium doped In2O3 Nano-columns for UV detection“, Journal of Materials Science: Materials in Electronics (accepted), I.F. 2.195

163. A. Chatterjee, D. Das, J. Patwari, B. Tongbram, D. Panda, S. Chakrabarti, S. K. Pal, “Ultrafast Electronic Spectroscopy on the Coupling of Stranski-Krastanov and Submonolayer Quantum Dots for Potential Application in Near Infrared Light Harvesting.” Materials Research Express (accepted), I.F. 1.51

162. J. Patwari, A. Chatterjee, H. Ghadi, H. Sharma, S. Chakrabarti, and S. K. Pal, “In Situ Measurement of Temperature Dependent Picosecond Resolved Carrier Dynamics in Near Infrared (NIR) Sensitive Device on Action,” Review of Scientific Instruments (accepted), I.F. 1.428

161. A. V. Pansare, A. A. Shedge, S. Y. Chhatre, D. Das, P. Murkute, V. R. Patil and S. Chakrabarti, “AgQDs Employing Black Box Synthetic strategy: Photocatalytic and Biological Behavior,” Journal of Luminescence(accepted), I.F. 2.732

160. S. Sushama, P. Murkute, H. Ghadi and S. Chakrabarti, “Enhancing acceptor based optical behavior in Phosphorus-Doped ZnO Thin Films using Boron as compensating species”, ACS Applied Electronic Materials, https://doi.org/10.1021/acsaelm.8b00082.

159. J. Saha, D. Panda, B. Tongbram, D. Das, V. Chavan, and S. Chakrabarti*, “Higher performance optoelectronic devices with In0.21Al0.21Ga0.58As/In0.15Ga0.85As capping of III-V Quantum Dots,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2019.02.022, I.F. 2.732

158. S. Mukherjee, A. Pradhan, S. Mukherjee, T. Maitra, S. Sengupta, B. Satpati, S. Chakrabarti, A. Nayak and S. Bhunia,”Tuning of near Infrared Excitonic Emission from Sub-monolayer InAs Quantum Dots by Controlling Coverage Fraction,“ Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2019.01.063, I.F. 2.732

157. J. Saha, D. P. Panda and S. Chakrabarti, “Impact of Sb Composition on Strain Profile of GaAs1-xSbx Capped InAs Quantum Dots”, IEEE Transactions in Nanotechnology (accepted), https://doi.org/10.1109/TNANO.2019.2897709, I.F. 2.857

2018

156. J. Patwari, S. Shyamal, T. Khan, H. Ghadi, C. Bhattacharya, S. Chakrabarti and S. K. Pal, “Inversion of activity in DSSC for TiO2 and ZnO photo-anodes depending on the choice of sensitizer and carrier dynamics,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2018.11.012, I.F. 2.732

155. D. P. Panda, A. Balgarkashi, S. M. Singh, S. Shetty, H. Rawool, and S. Chakrabarti, In”In0.5Ga0.5As Bilayer Quantum Dot Heterostructure for mid-infrared photodetection,“ Infrared Physics and Technology (accepted), https://doi.org/10.1016/j.infrared.2018.09.028 I.F. 1.851

154. I.Mal, D.P. Panda, B. Tongbram, D.P. Samajdar and S. Chakrabarti “Analytical Modeling of Temperature and Power Dependent Photoluminescence (PL) Spectra of InAs/GaAs Quantum Dots,” Journal of Applied Physics (accepted), https://doi.org/10.1063/1.5047026, I.F. 2.176

153. P. Murkute, S. Sushama, H. Ghadi, S. Saha and S. Chakrabarti, “Effects of phosphorus implantation time on the optical, structural, and elemental properties of ZnO thin films and its correlation with the 3.31-eV peak,” Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2018.07.224, I.F. 3.779

152. B. Tongbram, S. Sengupta and S. Chakrabarti, “Impact of InxGa(1-X)As Capping Layer in Impeding Indium Desorption from Vertically Coupled InAs/GaAs Quantum Dot Interfaces,” ACS Applied Nano Materials, https://doi.org/10.1021/acsanm.8b01170.

151. S. M. M. Dhar Dwivedi, A. Ghosh, H. Ghadi, P. Murkute, P Chinnamuthu, S. Chakrabartty,5, S. Chakrabarti, Satyaban Bhunia and A. Mondal1, “Oblique angle deposited InN quantum dots array for infrared detection,” Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2018.06.346, I.F. 3.779

150. D. Das, D.P. Panda, B. Tongbram, J. Saha, V. Chavan and S. Chakrabarti,”Optimization of Hybrid InAs Stranski Krastanov and Submonolayer Quantum Dot Heterostructures and Its Effect on Photovoltaic Energy Conversion Efficiency In Near Infrared Region,“ Solar Energy, https://doi.org/10.1016/j.solener.2018.06.030, I.F. 4.374

149. D. Das, D.P. Panda, B. Tongbram, J. Saha, V. D. Prasad, S. M. Singh, H. Rawool, V.R. Chavan and S. Chakrabarti, “Improved near infrared energy harvesting through heterogeneously coupled SK on SML quantum dot heterostructure,” Solar Energy Materials and Solar Cells, https://doi.org/10.1016/j.solmat.2018.05.053, I.F. 5.018

148. J. Saha, D. P. Panda and S. Chakrabarti,”Tuning the Optoeletronic Characteristics of Strain Coupled InAs/GaAs Bilayer Quantum Dot Heterostructures through Compositional and Structural Variabilities,“ Superlattices and Microstructures, https://doi.org/10.1016/j.spmi.2018.05.057, I.F. 2.099

147. H. Ghadi, P. Murkute, A. Ghosh, S. M. M. Dhar Dwivedi, A. Mondal and S. Chakrabarti,”Ultrasensitive zinc magnesium oxide nanorods based micro-sensor platform for UV detection and light trapping,“ Sensors & Actuators: A. Physical, https://doi.org/10.1016/j.sna.2018.05.028, I.F. 2.311

146. M. Biswas, V. Chavan, S. Zhao, Z. Mi and S. Chakrabarti, “Passivation of Surface States of AlGaN Nanowires using H3PO4 Treatment to Enhance the Performance of UV-LEDs and Photoanodes”, ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.8b00447.

145. P. Murkute, S. Vasta, H. Ghadi, S. Saha and S. Chakrabarti, “Role of Pzn-2Vzn center on the luminescence properties of phosphorus-doped ZnO thin films by varying doping concentration,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2018.04.002 I.F. 2.732

144. H. Ghadi, J. Patwari, P. Murkute, D. Das, P. K. Singh, S. Dubey, M. Bhatt, A. Chatterjee, A. Balgharkashi, S. K. Pal and S. Chakrabarti , “Optimizing dot-in-a-well infrared detector architecture for achieving high optical and device efficiency corroborated with theoretically simulated model,” Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2018.04.001, I.F. 3.779

143. M. Biswas, A. Balgarkashi, R. Makkar, A. Bhatnagar, S. Sheshadri, S. Chakrabarti1*, ” Vertical strain-induced dot size uniformity and thermal stability of InAs/GaAsN/GaAs coupled quantum dots,“ Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2018.03.163, I.F. 3.779

142. L. Tyagi, S. K. Pandey and S. Chakrabarti, “Improved absorbance and near infrared dispersion of AuGe Nanoparticles over Au nanoparticles prepared with similar thermal annealing environment,” Plasmonics, https://doi.org/10.1007/s11468-018-0710-x, I.F. 2.366

141. J. Saha, D. Panda and S. Chakrabarti, “Enhanced Luminescence and Optical Performance through Strain Minimization in Self-assembled InAs QDs using Dual quaternary-ternary/ternary-quaternary Capping,” Journal of luminescence, https://doi.org/10.1016/j.jlumin.2018.01.010, I.F. 2.732

140. A. Ghosh, S. M. M. D. Dwivedi, H. Ghadi, P. Chinnamuthu, S. Chakrabarti and A. Mondal1,*”Boosted UV sensitivity of Er doped In2O3 thin films using plasmonic Ag nanoparticle based surface texturing,“ Plasmonics, https://doi.org/10.1007/s11468-017-0679-x, I.F. 2.139

139. D. Panda, J. Saha, A. Balgarkashi, S. Shetty, H. Rawool, S. M. Singh, S. Upadhyay, B. Tongbram, and S. Chakrabarti,”Optimization of dot layer periodicity through analysis of strain and electronic profile in vertically stacked InAs/GaAs Quantum dot heterostructure,“ Journal of Alloys and Compounds, https://doi.org/10.1016/j.jallcom.2017.11.086, I.F. 3.779

138. M. Biswas, S. Singh, A. Balgarkashi, R. L. Makkar, Anuj Bhatnagar, N.B.V. Subrahmanyam, S. K. Gupta, P. Bhagwat, S. Chakrabarti, “Ultrathin GaAsN matrix-induced reduced full width at half maximum of GaAsN/InAs/GaAsN dot-in-a-well heterostructures with extended emission wavelength,” Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2017.10.056, I.F. 2.732

137. P. Murkute, H.Ghadi, S.Patil ,H. Rawool, S.K. Pandey and S. Chakrabarti,”Emerging material Zinc Magnesium Oxide based nanorods: Growth process optimization and sensor application towards humidity detection,,“ Sensors & Actuators: B. Chemical, https://doi.org/10.1016/j.snb.2017.10.078, I.F. 5.667

2017

136. Animesh Halder, Probir Kumar Sarkar, Poulomi Pal, Subhananda Chakrabarti, Prantar Chakrabarti, Debasis Bhattacharyya, Rajib Chakraborty and Samir Kumar Pal”Digital Camera Based Spectrometry for the Development of Point-of-Care Anemia Detection on Ultra-low Volume Whole Blood Sample,“ IEEE Sensor Journal,Vol.17, No. 21, pp.7149-7156, 1 November 2017, https://doi.org/10.1109/JSEN.2017.2752371, I.F. 2.512

135. B. Tongbram, A. Mandal, S. Sengupta and S. Chakrabarti,”Impact of vertical inter-QDs spacing correlation with the strain energy in a coupled bilayer quantum dot heterostructure,“ Journal of Alloys and Compounds (accepted), https://doi.org/10.1016/j.jallcom.2017.07.215, I.F. 3.133

134. D. P. Panda, A. Ahmad, H. Ghadi, S. Adhikary, B. Tongbram and S. Chakrabarti*”Evidence of quantum dot size uniformity in strain-coupled multilayered In(Ga)As/GaAs QDs grown with constant overgrowth percentage,“ Journal of Luminescence; https://doi.org/10.1016/j.jlumin.2017.07.035, I.F. 2.693

133. M. Biswas, S. Singh, A. Balgarkashi, R. L. Makkar, Anuj Bhatnagar, N.B.V. Subrahmanyam, S. K. Gupta, P. Bhagwat, S. Chakrabarti, “Defect annihilation-mediated enhanced activation energy of GaAs0.979N0.021-capped InAs/GaAs quantum dots by H- ion implantation,” Thin Solid Films, https://doi.org/10.1016/j.tsf.2017.08.026, I.F. 1.9

132. D. Das, H. Ghadi, B. Tongbram, S.M. Singh and S. Chakrabarti,”The impact of confinement enhancement AlGaAs barrier on the optical and structural properties of InAs/InGaAs/GaAs submonolayer quantum dot heterostructures,“ Journal of Luminescence (accepted), https://doi.org/10.1016/j.jlumin.2017.06.054, I.F. 2.693

131. S. M. M. Dhar Dwivedi, S. Chakrabartty, H. Ghadi, P. Murkute, V. Chavan, S. Chakrabarti, S. Bhunia and A. Mondal,”Pine shaped InN Nanostructure growth via Vapour Transport method by own shadowing and Infrared detection,“ Journal of Alloys and Compounds (accepted),https://doi.org/10.1016/j.jallcom.2017.06.184, I.F. 3.133

130. B. Tongbram, A. Ahmad, S. Sengupta, A. Mandal, J. Singhal , A. Balgarkashi and S. Chakrabarti,”Optimization of InAs quantum dots through growth interruption on InAs/GaAs quantum dot heterostructure,“ Journal of Luminescence (accepted),https://doi.org/10.1016/j.jlumin.2017.06.030, I.F. 2.693

129. M. Biswas, N. Shinde, R. L. Makkar, A. Bhatnagar and S. Chakrabarti, “Annihilation of Arsenic-Nitrogen bonding defects in annealed InAsN quantum dots grown through nitrogen background pressure-Controlled SS-MBE,” Journal of Alloys and Compounds (accepted), http://dx.doi.org/10.1016/j.jallcom.2017.06.071, I.F. 3.133

128. S. K. Pandey, L. Tyagi, H. Ghadi, H. Rawool; S. Chakrabarti, “Utilization of self-assembled AuGe nanoparticles for improving performance of InGaAs/GaAs quantum dot infrared detector” Journal of Materials Science: Materials in Electronics (accepted), http://dx.doi.org/10.1007/s10854-017-7071-7, I.F. 1.5

127. P. Sarkar, S. Pal, N. Polley, R. Aich, A. Adhikari, A. Halder, S. Chakrabarti, P. Chakrabarti and S. Pal, “Development and Validation of a Noncontact Spectroscopic Device for Hemoglobin Estimation at Point-of-Care” Journal of Biomedical Optics, Vol.22, No.5,pp. 055006, May 2017, https://doi.org/10.1117/1.JBO.22.5.055006, I.F. 2.859

126. P. Murkute, H. Ghadi, S. Saha, S. K. Pandey, S. Chakrabarti”Enhancement in optical characteristics of c-axis-oriented radio frequency-sputtered ZnO thin films through growth ambient and annealing temperature,“ Materials Science in Semiconductor Processing, Vol. 66, Pages 1–8,1 August 2017, https://doi.org/10.1016/j.mssp.2017.03.026, I.F. 2.26

125. H. Ghadi, N. Sehara, P. Murkute and S. Chakrabarti, “Minimization of material inter-diffusion for thermally stable quaternary-capped InAs quantum dot via strain modification,” Superlattices and Microstructures, http://dx.doi.org/10.1016/j.spmi.2017.03.017. I.F. 2.117

124. K.C. Goma Kumari, H. Ghadi, D.R.M. Samudraiah and S. Chakrabarti,”Indigenous development of 320 × 256 focal-plane array using InAs/InGaAs/GaAs quantum dots-in-a-well infrared detectors for thermal imaging“, Current Science, Vol.112, No. 7, 10 April 2017, DOI: http://dx.doi.org/10.18520/cs/v112/i07/1568-1573.

123. K. C. Gomakumari, H.M.Rawool and S Chakrabarti, “Demonstration of indigenously fabricated midwave infrared InAs/GaSb type -II superlattice based focal plane arrays” Defence Science Journal, Vol. 67, No. 2, March-April 2017, pp. 149-153, DOI: http://dx.doi.org/10.14429/dsj.67.11178.

122. M. Biswas, B. Tongbram, N. Shinde, R. Makkar, A. Bhatnagar and S. Chakrabarti, “High nitrogen composition–induced low interfacial roughness of GaAs0.978N0.022/GaAs multiple quantum wells grown through solid-source molecular beam epitaxy,” Materials Research Bulletin,http://dx.doi.org/10.1016/j.materresbull.2016.12.032, I.F. 2.435

121. D. P. Panda, A. Balgarkashi, S. Shetty, H. Ghadi, B. Tongbram and S. Chakrabarti, “Ultranarrow spectral response of InGaAs QDIPs through the optimization of strain-coupled stacks and capping layer composition,” Materials Science in Semiconductor Processing, http://dx.doi.org/10.1016/j.mssp.2016.12.023, I.F. 2.3

120. J. Patwari, H. Ghadi, S. Sardar, J. Singhal, B. Tongbram, S. Shyamal, C. Bhattacharya, S. Chakrabarti, S. Pal,”Photo-induced electronic properties in single quantum well system: effect of excitonic lifetime“,Vol.4, No.1, pp.016301, Materials Research Express, https://doi.org/10.1088/2053-1591/aa5373.

119. M. Biswas, N. Shinde, R. Makkar, A. Bhatnagar and S. Chakrabarti,”Varying nitrogen background pressure; an efficient approach to improveelectrical properties of MBE-grown GaAsN thin films with less atomic disorder,“ Journal of Alloys and Compounds,Vol. 695,February 2017, pp. 3163-3169, http://dx.doi.org/10.1016/j.jallcom.2016.11.328, I.F. 3.133

2016

118. S. Aggarwal, S. Chakrabarti, R. Pinto and V.R. Palkar, “Room temperature magnetoelectric multiferroic behavior of 50 mol% Fe substituted PbTiO3 (PbTi0.5Fe0.5O3-δ) nanoparticles,” RSC Advances, Vol.6, pp.90132-90137,2016 I.F. 3.84

117. S. Upadhyay, A. Mandal, A. Agarwal, H. Ghadi, Goma Kumari K. C., A. Basu, N. B. V. Subrahmanyam, P. Singh and S. Chakrabarti,”Enhancement in multicolor photoresponse for quaternary capped In0.5Ga0.5As/GaAs quantum dot infrared photodetectors implanted with hydrogen ions“, Materials Research Bulletin, http://dx.doi.org/10.1016/j.materresbull.2016.07.030,I.F. 2.3

116. N. Polley, P. Sarkar, S. Chakrabarti, P. Lemmens and S. Pal,”DNA Biomaterial Based Fiber Optic Sensor: Characterization and Application for Monitoring in situ Mercury Pollution“, ChemistrySelect,Vol.1, pp.2916-2922,No.11, 2016, http://dx.doi.org/10.1002/slct.201600391.

115. P. Sarkar, N. Polley, S. Chakrabarti, P. Lemmens and S. Pal, “Nano-Surface Energy Transfer Based Highly Selective and Ultrasensitive “Turn on” Fluorescence Mercury Sensor,” ACS Sensor, http://dx.doi.org/10.1021/acssensors.6b00153.

114. Hari Shanker Gupta, A S Kiran Kumar, Maryam Shojaei Baghini, Subhananda Chakrabarti and D. K. Sharma, “Design of High precision ROIC for Quantum dot infrared photo detector,” IEEE Photonics Technology Letters,http://dx.doi.org/10.1109/LPT.2016.2560804,I.F. 2.11

113. S. Aggarwal, S. Satheesh, S. Chakrabarti, V. R. Palkar and A. Bhattacharya, “Fabrication and characterization of flexible films of poly(vinylidene fluoride)/Pb(Fe0.5Ti0.5)O3−δ multi-ferroic nanocomposite,” RSC Advances,Vol.6, pp.42892-42898, 2016, http://dx.doi.org/10.1039/C6RA01306F, I.F. 3.84

112. H. S. Gupta, A. S. Kiran Kumar, M. Shojaei Baghini, S. Chakrabarti, S. Mehta, A. Roy Chowdhury and D K Sharma, “Design of Current Mirror Integration ROIC for Snapshot Mode operation,” Journal of Semiconductors, Vo. 37, No. 10, October 2016.

111. S. Pandey, L. Tyagi, H. Ghadi, H. Rawool and S. Chakrabarti, “AuGe surface plasmon enhances photoluminescence of InAs/GaAs bilayer quantum dot heterostructure,” RSC Advances, Vol. 6, pp. 26908-26913, 2016,http://dx.doi.org/10.1039/C5RA27980A, I.F. 3.84

110. H. Ghadi, S. Sengupta, S. Shetty, A. Manohar, and S. Chakrabarti*, N. Pendyala, S. Prajapati and A. Kumar,”Comparison of three design architectures for quantum dot infrared photodetectors: InGaAs-capped dots, dots-in-a-well, and submonolayer quantum dots,“ IEEE Transactions on Nanotechnology, Vol.14, No.4, pp.603 - 607, http://dx.doi.org10.1109/TNANO.2015.2432044, I.F. 1.82

109. S. Upadhyay, Arjun Mandal, H. Ghadi, D. Pal, A. Basu, N. B. V. Subrahmanyam, P. Singh, and S. Chakrabarti,”Increment in peak detectivity (D*) up to two orders for In0.5Ga0.5As/GaAs quantum dot infrared photodetectors implanted with high energy protons,“ IEE Electronics Letters, Vo. 52, No.1, pp.61-63, January 2016, http://dx.doi.org/10.1049/el.2014.3934.

2015

108. S. Upadhyay, Arjun Mandal, H. Ghadi, D. Pal, A. Basu, N. B. V. Subrahmanyam, P. Singh, and S. Chakrabarti,”Effects of High-Energy Proton Implantation on the Luminescence Properties of InAs Submonolayer Quantum Dots,“ Journal of Luminescence,Vol. 158, pp. 149-152, February 2015, http://dx.doi.org/10.1016/j.jlumin.2014.09.043, I.F. 2.719 .

107. S. Saha, S. Pandey, S. Nagar and S. chakrabarti, ”“Detection of narrow linewidth acceptor peaks with p-type conduction in phosphorous implanted ZnMgO thin films,” Nanoscience and Nanotechnology Letters, Vol.7, pp.1-6, 2015, http://dx.doi.org/10.1166/nnl.2015.2044, I.F. 1.43

106. D. Das. H. Ghadi, S. Sengupta, A.Bhaldar, A. Manohar and S. Chakrabarti, “Optimization of the number of stacks in the submonolayer quantum dot heterostructure for infrared photodetectors,” IEEE Transactions on Nanotechnolog,http://dx.doi.org/10.1109/TNANO.2015.2513318, I.F. 1.82

105. S. Saha, S. K. Pandey, S. Nagar and S. Chakrabarti, “Effect of Annealing temperature on Optical and Electrical Properties of Nitrogen Implanted p-type ZnMgO Thin Films,” Journal of Materials Science: Materials in Electronics, Vol.26, pp.9759-9765, 2015, http://dx.doi.org/10.1007/s10854-015-3646-3, I.F. 1.57

104. H.Ghadi, S.Shetty, A.Balgarkashi, A. Agarwal, S.Adhikary, A.Manohar and S Chakrabarti,“Enhancement in peak detectivity and operating temperature of strain coupled InAs/GaAs quantum dot infrared photodetectors by rapid thermal annealing” IEEE Transactions on Nanotechnology, Vol.14, No.4, pp.668 - 672, http://dx.doi.org/10.1109/TNANO.2015.2425433 I.F. 1.82

103. S. Upadhyay, A. Mandal, H. Ghadi, D. Pal, A. Basu, A. Agarwal, N. B. V. Subrahmanyam, P. Singh and S. Chakrabarti,”Effects of high energy proton implantation on the material and electrical properties of In(Ga)As/GaAs QD heterostructures with a variation in capping layer,” Journal of Luminescence,Vol. 161, Pages 129-134, May 2015, http://dx.doi.org/10.1016/j.jlumin.2015.01.002. I.F. 2.719

102. S. Shetty, S. Adikary, H. Ghadi, A. Ahmad, S. Chakrabarti,”The optical properties of strain-coupled InAs/GaAs quantum-dot heterostructures with varying thicknesses of GaAs and InGaAs spacer layers,” Journal of Luminescence, Vol. 158, Pages 231-235, February 2015, http://dx.doi.org/10.1016/j.jlumin.2014.10.013, I.F. 2.719

101. A.Manohar, S. Sengupta, H. Ghadi, and S. Chakrabarti, “A detailed study of the effects of rapid thermal annealing on the luminescence properties of InAs sub-monolayer quantum dots,” Journal of Luminescence, http://dx.doi.org/10.1016/j.jlumin.2014.09.043. I.F. 2.719

2014

100. B. Tongbram, S. Shetty, H. Ghadi , S. Adikary, S. Chakrabarti*, “Enhancement in device performance by using quaternary capping over ternary in strain coupled InAs/GaAs quantum dot infrared photodetectors,” Applied Physics A: Materials Science and Processing (accepted),Volume 118, Issue 2, Pages 511-517,2014,http://dx.doi.org/10.1007/s00339-014-8854-9, I.F. 1.704

99. Hemant Ghadi , Akshay Agarwal , Sourav Adhikary , Binita Tongbram , Arjun Mandal and Subhananda Chakrabarti, “Effect of barrier thickness on structural, optical, and spectral behavior of vertically strain coupled InAs/GaAs quantum dot infrared photodetectors,” Journal of Vacuum Science and Technology B, Vol.32, No.5, Sep/Oct 2014 ,http://dx.doi.org/10.1116/1.4894461.

98. S. Nagar and S. Chakrabarti,“UV electroluminescence from a p-ZnO:P/n-ZnO homojunction diode,” Electronics Letters,Volume 50 issue 18, p.1307 –1309,28 August 2014, DOI:http://dx.doi.org/10.1049/el.2014.2055. I.F. 1.068

97. S. Saha, S.Nagar, S.Chakrabarti,“Effects of Phosphorus Doping by Plasma Immersion Ion Implantation on the Structural and Optical Characteristics of Zn0.85Mg0.15O,” Applied Physics Letters, Vol. 105, No.6, pp.061109,(2014),http://dx.doi.org/10.1063/1.4893138. I.F. 3.515

96. S. Nagar and S. Chakrabarti, “Realization of reliable p-type ZnO thin films by nitrogen implantation using plasma immersion ion implantation,” Superlattices and Microstructures,Vol.75, pp. 9-16, 2014, http://dx.doi.org/10.1016/j.spmi.2014.07.010. I.F. 2.1

95. H. Ghadi; S. Adhikary; A. Agarwal; J. Agawane; A. Mandal;S. Chakrabarti; Naresh B. P.and S. Prajapati,“One order enhancement of detectivity in quaternary capped InAs/GaAs quantum dot infrared photodetectors due to vertical coupling of quantum dot layers,” Thin Solid Films ,Vol.566,Oct 2014,pg. 1–4, http://dx.doi.org/10.1016/j.tsf.2014.07.010. I.F. 2

94. S. Nagar, S. K. Gupta and S. Chakrabarti, “Increased photoluminescence of hydrogen-implanted ZnO thin films deposited using a pulsed laser deposition technique,” Journal of Luminescence, Vol.153, pp. 307-311, September 2014,http://dx.doi.org/10.1016/j.jlumin.2014.03.052. I.F. 2.719

93. R. Sreekumar; Arjun Mandal; subhananda chakrabarti; S. K. Gupta,“H− ion implantation induced ten-fold increase of photoluminescence efficiency in single layer InAs/GaAs quantum dots,” Journal of Luminescence, http://dx.doi.org/10.1016/j.jlumin.2014.03.016. I.F. 2.719

92. S. Adhikary and S. Chakrabarti, “Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer,” Thin Solid Films, Vol.552, pp.146-149, 2014 ,http://dx.doi.org/10.1016/j.tsf.2013.11.010. I.F. 2

91. Hemant Ghadi, Sourav Adhikar, Akshay Agarwal and S. Chakrabarti, “Tuning in spectral response due to rapid thermal annealing on dot-in-a-well infrared photodetectors,” Superlattices and Microstructures, Vol. 65, January 2014, Pages 106–112,http://dx.doi.org/10.1016/j.spmi.2013.10.036. I.F. 2.1

2013

90. Hari Shanker Gupta, A S Kiran Kumar, Subhananda Chakrabarti, Sandip Paul, RM Parmar, DRM Shamudraiah, M.Shojaei Baghini and D. K. Sharma, “Design of Large dynamic range, low power, High precision ROIC for Quantum Dot Infrared Photo-detector,” Electronics Letters (accepted). I.F. 1.068

89. A. Arora, A. Mandal, S.Chakrabarti and S. Ghosh, “Magneto-optical Kerr effect spectroscopy based study of Lande g-factor for holes in GaAs/AlGaAs single quantum wells under low magnetic fields,” Journal of Applied Physics, Vol.113, pp.213505 (2013); http://dx.doi.org/10.1063/1.4808302. I.F. 2.2

88. Saumya Sengupta , Arjun Mandal , Keshav Lal Mathur , Hemant Ghadi and S. Chakrabarti, “A comprehensive study on molecular beam epitaxy-grown InAs sub-monolayer quantum dots with different capping combinations,” Journal of Vacuum Science and Technology B, 31(3), May/Jun 2013, http://dx.doi.org/10.1116/1.4805018.

87. A. Agarwal, S. Krishna and S. Chakrabarti, “Investigation of thermal interdiffusion in InAs/In0.15Ga0.85As/GaAs Quantum Dot-in-a-Well heterostructures,” Journal of Luminescence,Volume 143, November 2013, Pages 96-100,http://dx.doi.org/10.1016/j.jlumin.2013.04.030. I.F. 2.719

86. S. Shah, K. Ghosh, S. Jejurikar and S. Chakrabarti, “Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature,” Materials Research Bulletin Volume 48, Issue 8, August 2013, Pages 2933-2939,http://dx.doi.org/10.1016/j.materresbull.2013.04.028. I.F. 2.3

85. A. Mandal et al, “Proposed mechanism to represent the suppression of dark current density by four orders with low energy light ion (H-) implantation in quaternary alloy-capped InAs/GaAs quantum dot infrared photodetectors”, Materials Research Buletin,Volume 48, Issue 8, August 2013, Pages 2886-2891,http://dx.doi.org/10.1016/j.materresbull.2013.04.007. I.F. 2.3

84. A. Mandal, U. Verma and S. Chakrabarti, “Effects of ex situ annealing on quaternary alloy (InAlGaAs) capped InAs/GaAs quantum dot heterostructures on optimization of optoelectronic and structural properties with variation in growth rate, barrier thickness, and seed quantum dot monolayer coverage,” Superlattices and Microstructures, Volume 58, June 2013, Pages 101-119. I.F. 2.1

83. R. Mondal, B. Bansal, A. Mondal, S. Chakrabarti and B. Pal, “Pauli blocking dynamics in optically excited quantum dots: A picosecond excitation-correlation spectroscopic study” Physical Review B,Vol. 87, pp.115317,2013, http://link.aps.org/doi/10.1103/PhysRevB.87.115317. I.F. 3.664

82. N. Basu, K. Ghosh, S. Kabi, S. Sengupta and S. Chakrabarti, “A detailed investigation on the impact of variation in growth rate, monolayer coverage and barrier thickness on the optical characteristics of InAs/GaAs bilayer quantum Dot heterostructures,” Superlattices and Microstructures,Vol.57,pp.150–157,May 2013, http://dx.doi.org/10.1016/j.spmi.2013.02.007. I.F. 2.1

81. Arjun Mandal , Akshay Agarwal , Hemant Ghadi , Goma Kumari K. C. , Arindam Basu , N. B. V. Subrahmanyam , Pitamber Singh and S. Chakrabarti, “More than one order enhancement in peak detectivity (D*) for quantum dot infrared photodetectors implanted with low energy light ions (H-),” Applied Physics Letters, Vol.102, pp.051105,2013, http://dx.doi.org/10.1063/1.4791675. I.F. 3.515

80. S. Nagar and S. Chakrabarti, “Effect of substrate temperature on the electrical and optical properties of pulsed laser deposited ZnO thin films,” Sensor Letters,Volume 11, Number 8, August 2013,pp. 1498-1503.

79. S. Adhikary and S. Chakrabarti, “Evidence of long-wave-infrared excited state transition at high temperature (200K) in 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector,” Journal of Vacuum Science and Technology B,31(3), May/Jun 2013, http://dx.doi.org/10.1116/1.4801791.

78. A. Mandal, U. Verma and S. Chakrabarti, “Thermal stability of quaternary alloy (InAlGaAs)-capped InAs/GaAs multilayer quantum dot heterostructures with variation in growth rate, barrier thickness, seed quantum dot monolayer coverage, and post-growth annealing,” Applied Physics A: Materials Science and Processing, Vol. 113, Issue 1, pp.215-220, 2013,http://dx.doi.org/10.1007/s00339-012-7521-2. I.F. 1.694

77. J. O. Kim , S. Sengupta , A. V. Barve , Y. D. Sharma , S. Adhikary , S. J. Lee , S. K. Noh , M. S. Allen , J. W. Allen , S. Chakrabarti and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Applied Physics Letters, Vol.102, pp.011131, 2013, http://dx.doi.org/10.106/1.4774383. I.F. 3.515

76. S. Nagar and S. Chakrabarti, “Evidence of strong acceptor peaks in ZnO thin films doped with phosphorus by plasma immersion ion implantation technique,” Journal of Luminescence,http://dx.doi.org/10.1016/j.jlumin.2012.12.043. I.F. 2.719

75. R. M. Makhijani, S. Chakrabarti and V. A. Singh, “Photoluminescence Spectra of InAs Quantum Dots Embedded in GaAs Heterostructure,” Journal of Luminescence, http://dx.doi.org/10.1016/j.jlumin.2012.11.027. I.F. 2.719

74. S. Nagar, S. Chakrabarti and S K Gupta,“Structural, electrical, and optical characteristics of lithium-implanted ZnO thin films,” Superlattices and Microstructures,Volume 53, Pages 164–172,January 2013,Volume 53, Pages 164–172,January 2013, doi: http://dx.doi.org/10.1016/j.spmi.2012.10.008. I.F. 2.1

2012

73. S. Adhikary , Y. Aytac , S. Meesala , S. Wolde , A. G. U. Perera and S. Chakrabarti, “A multicolor, broadband (5-20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Applied Physics Letters, Vol. 101, pp.261114, 2012, http://dx.doi.org/10.1063/1.4773373. I.F. 3.515

72. S. Adhikary and S. Chakrabarti, “A detailed investigation on the impact of post-growth annealing on the materials and device characteristics of 35-layer In0.50Ga0.50As/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping,” Volume 47, Issue 11,Pages 3317–3322, November 2012, Materials Research Bulletin,http://dx.doi.org/10.1016/j.materresbull.2012.07.032. I.F. 2.3

71. Ajit V. Barve, Saumya Sengupta, Jun Oh Kim, John Montoya, Brianna Klein, Mohammad Ali Shirazi-HD,Marziyeh Zamiri, Yagya D. Sharma,Sourav Adhikary, Sebastián E. Godoy, Woo-Yong Jang, Glauco R. C. Fiorante, S. Chakrabarti and Sanjay Krishna,“Barrier Selection Rules for Quantum Dots-in-a-Well Infrared Photodetector,” IEEE Journal of Quantum Electronics,Vol.48, No. 10,pp.1243 - 1251, October 2012, http://dx.doi.org/10.1109/JQE.2012.2208621. I.F. 2.113

70. S. Sengupta, J. O. Kim, A.V. Barve, S. Adhikary, Y.D. Sharma, N. Gautam, S. J. Lee, S. K. Noh, S. Chakrabarti and S. Krishna, “Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure,” Applied Physics Letters, Vol.100, pp.191111, 2012, http://dx.doi.org/10.1063/1.4711214. I.F. 3.515

69. A.V. Barve, S. Meesala, S. Sengupta, J. O. Kim, S. Chakrabarti and S. Krishna, “Investigation of Non-uniform Electric Field in Intersubband Quantum Infrared Photodetectors” Applied Physics Letters, Vol.100, pp.191107, 2012, http://dx.doi.org/10.1063/1.4712601. I.F. 3.515

68. N. Halder, S. Adhikary and S. Chakrabarti“,Inhibition of emission wavelength blueshift in annealed InAs/GaAs quantum dot stacks: An important observation for their potential application in photovoltaic devices” to be published in Applied Physics A: Materials Science and Processing, Volume 107, Issue 4 (2012), Page 977-983, http://dx.doi.org/10.1007/s00339-012-6852-3. I.F. 1.694

67. A. Mandal, N. Halder, U. Verma and S. Chakrabarti,“The impact of monolayer coverage, barrier thickness and growth rate on the thermal stability of photoluminescence of coupled InAs/GaAs quantum dot hetero-structure with quaternary capping of InAlGaAs” Materials Research Bulletin, Volume 47,Issue 3,Pages 551–556,2012, http://dx.doi.org/10.1016/j.materresbull.2011.12.047. I.F. 2.3

66. S. Shah, N. Halder, S. Sengupta and S. Chakrabarti, “Comparison of Luminescence Properties of Bilayer and Multilayer InAs/GaAs Quantum Dots” Materials Research Bulletin, Vol. 47, No.1, pp. 130-134, January 2012, http://dx.doi.org/10.1016/j.materresbull.2011.09.013. I.F. 2.3

65. S. Nagar and S. Chakrabarti,“Effect of phosphorus irradiation on the structural, electrical, and optical characteristics of ZnO thin films,” Journal of Luminescence,Vol. 132, pp. 1089-1094, 2012, http://dx.doi.org/10.1016/j.jlumin.2011.12.058. I.F. 2.367

64. S. Banerjee, N. Halder and S. Chakrabarti, “Self-assembled InGaAs/GaAs Quantum Dot Photodetector on Germanium substrate” Physica Status Solid C, Vol. 9, No.2,pp.322-325,2012,http://dx.doi.org/10.1002/pssc.201100252.

2011

63. R. Makhijani, N. Halder, S. Sengupta and S. Chakrabarti, “Temperature Dependent Photoluminescence Investigation of the Effect of Growth Pause Induced Ripening in InAs/GaAs Quantum Dot Heterostructures” Materials Research Bulletin,Volume 47, Issue 3, Pages 820–825, 2012, http://dx.doi.org/10.101/j.materresbull.2011.11.059. I.F. 2.3

62. S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac and A. G. U. Perera, “High-performance, long-wave (~10.2 µm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping” Applied Physics Letters, Vol.99, No. 18,pp.181102, 2011,http://dx.doi.org/10.1063/1.3657142. I.F. 3.515

61. E. McCarthy, R. T. Rajendra Kumar, B. Doggett, S. Chakrabarti, R. J. O'haire, S. B. Newcomb, J. -P. Mosnier, M. O. Henry and E. McGlynn, “Effect of the crystallite mosaic spread on integrated peak intensities in 2Θ-ω measurements of highly crystallographically textured ZnO thin films,” Journal of Physics D: Applied Physics, Vol.44, pp.375401, 2011. I.F. 2.521

60. R. Sreekumar, A. Mandal and S. Chakrabarti, “Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (upto ~ 7 times) with minimum spectral signature shift”, Materials Research Bulletin,Vol.46, No.11,pp.1786-1793, Nov 2011 ,http://dx.doi.org/10.1016/j.materresbull.2011.07.048. I.F. 2.3

59. K. Ghosh, S. Kundu, N. Halder, S. Messala and S. Chakrabarti, “Annealing of In0.45Ga0.55As/GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices” Solid State Communication,Vol.151, pp.1394-1399, October 2011,http://dx.doi.org/10.1016/j.ssc.2011.06.007.

58. S Adhikary, N Halder and S Chakrabarti, “Thermal stability of the peak emission wavelength in multilayer InAs/GaAs QDs capped with a combination capping of InAlGaAs and GaAs”, Journal of Nanoscience and Nanotechnology, Vol.11, NO.5, pp.4067-4072, May 2011.

57. S. Sengupta, S. Shah, N. Halder and S. Chakrabarti,“Investigation of larger monolayer coverage in the active layer of the bilayer InAs/GaAs quantum dot structure and effects of post-growth annealing”, Applied Physics A: Materials Science and Processing, Vol. 103, No.1, pp.245-250, April 2011. I.F. 1.694

2010

56. R. Sreekumar, A. Mandal and S. Chakrabarti,“Effect of heavy ion implantation on self assembled single layer InAs/GaAs quantum dots,” Journal of Physics D: Applied Physics, Vol.43, pp.505302, 2010. I.F. 2.521

55. S. Sengupta, N. Halder and S. Chakrabarti, “Effect of post-growth rapid thermal annealing on bilayer InAs/GaAs quantum dot heterostructure grown with very thin spacer thickness” Materials Research Bulletin, Vol. 45, No.11, pp. 1593-1597, November 2010. I.F. 2

54. S. Adhikary,K. ghosh, s. Chowdhury, N. Halder and S. Chakrabarti, “An approach to suppress the blueshift of photoluminescence peaks in coupled multilayer InAs/GaAs quantum dots by high temperature post growth annealing” Materials Research Bulletin, Vol. 45, No.10, pp. 1466-1469, October 2010. I.F. 2

53. S. Sengupta, S. Shah, N. Halder and S. Chakrabarti, “Comparison of single-layer and bilayer InAs/GaAs quantum dots with a higher InAs coverage”, Opto-Electronics Review, Vol.18, No.3, pp. 295-299, September 2010.

52. T. Patil, P. Mahajan and S. Chakrabarti, “Effect of progressive annealing on Silicon Nanostructures grown by Hot Wire Chemical Vapor Deposition,” Superlattices and Microstructures, Vol. 48, No. 2, pp.190-197, August 2010. I.F. 2

51. S. Banerjee, N. Halder and S. Chakrabarti, “Stranski-Krastanow growth of multilayer In(Ga)As/GaAs QDs on Germanium substrate” Applied Physics A: Material Science and Processing, Vol.99, No.4, pp.791-795, June 2010. I.F. 1.694

50. Srujan M, K Ghosh, S. Sengupta and S. Chakrabarti, “Presentation and experimental validation of a model for the effect of thermal annealing on the photoluminescence of self-assembled InAs/GaAs quantum dots” Journal of Applied Physics, Vol. 107, pp.123107, June 2010. I.F. 2.2

49. S. Adhikary, N. Halder and S. Chakrabarti, “Investigation of strain in self assembled multilayer InAs/GaAs Quantum Dot heterostructures” Journal of Crystal Growth, Vol.312, No.5, pp.724-729 ,15th February 2010.

48. S. Chowdhury, S. Adhikary, N. Halder and S. Chakrabarti “A Novel Approach to increase emission wavelength of InAs/GaAs quantum dots by using a quaternary capping layer” Opto-Electronics Review, Vol.18, No.3, pp.246-249, September 2010.

47. S. Nagar and S. Chakrabarti, “Evidence of p-doping in ZnO films deposited on GaAs,” Thin Solid Films, Vol. 518, No.16, pp.4542-4545, June 2010. I.F. 2

46. N.Halder, Suseendran. J, S. Chakrabarti, M. Herrera, M. Bonds and N. Browning,“Effect of InAlGaAs and GaAs combination barrier thickness on the duration of dot formation in different layers of stacked InAs/GaAs quantum dot heterostructure grown by MBE,” Journal of Nanoscience and Nanotechnology, Vol.10, No. 8, pp. 5202-5206(5), August 2010 .

2009

45. Suseendran J, N. Halder, S. Chakrabarti,“ Stacking of multilayer InAs quantum dots with combination capping of InAlGaAs and high temperature grown GaAs” Superlattices and Microstructures,Vol.46, No.6,pp.900-906,December 2009. I.F. 2

44. S. Sengupta, N. Halder and S. Chakrabarti,“Investigation of effect of varying growth pauses on the structural and optical properties of InAs/GaAs quantum dots heterostructure” Superlattices and Microstructures,Vol.46, No.4, pp.611-617, October 2009. I.F. 2

43. N. Halder, R. Rashmi, S. Chakrabarti, C. R. Stanley, M. Herrera and N. D. Browning, “A comprehensive study of the effect of in situ annealing at high growth temperature on the morphological and optical properties of self assembled InAs/GaAs QDs” Applied Physics A: Material Science and Processing, Vol.95, pp.713-720, April 2009. I.F. 1.694

2008

42. S. Chakrabarti, N. Halder, S. Sengupta, J. Charthad, S. Ghosh and C. R. Stanley “A detailed PL investigation on the effect of barrier thickness and monolayer coverage on bilayer InAs/GaAs QDs grown at a reduced growth rate”, Journal of Nanoelectronics and Optoelectronics,Vol.3, No.3, pp. 277-280(4), December 2008.

41. S. Chakrabarti, N. halder, S. Sengupta, J. Charthad, S. Ghosh and C. R. Stanley, “Vertical Ordering and Electronic Coupling in Bilayer Nanoscale InAs/GaAs Quantum Dots Separated by a Thin Spacer Layer”, Nanotechnology, Vol.19, pp.505704, December 2008. I.F. 3.672

40. N. Halder, S. Chakrabarti and C. R. Stanley, “Tunability of Photoluminescence of InAs/GaAs Quantum Dots By growth Pause Induced Ripening” Journal of Nanoscience and Nanotechnology, Vol.8,pp.6232–6237, December 2008.

Before Joining IIT Bombay

39. A. G. U. Perera, G. Ariyawansa, V. M. Apalkov, S. G. Mastik, X. H. Su, S. Chakrabarti and P. Bhattacharya, “Wavelenght and Poarization Selective Multi-band Tunneling quantum dot infrared detectors,” Opto-Electronics Review, Vol.15, No.4, pp. 223-228, 2007.

38. R. T. Rajendra Kumar, E. McGlynn, C. McLoughlin, S. Chakrabarti, M. Biswas, M. O. Henry, J. –P. Mosnier, K. Kumarappan and G. Hughes, “Control of ZnO Nanorod Array Density By Zn Supersaturation Variation and Effects on Field Emission”, Nanotechnology, Vol.18, pp.215704(6 pages), 2007.

37. Z. K. Wu, H. Choi, X. H. Su, S. Chakrabarti, P. Bhattacharya and T. B. Norris, “Ultrafast Electronic Dynamics in Unipolar n-doped InGaAs/GaAs Self-Assembled Quantum Dots, IEEE Journal of Quantum Electronics, Vol.43, No.6, pp.486-496, June 2007.

36. G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti and P. Bhattacharya, “Multi-color Tunneling quantum dot infrared photodetectors operating at room temperature,” Iinfrared Physics and Technology, Vol.50, pp.156-161, 2007.

35. B. Doggett, S. Chakrabarti, R O’Haire, A. Meaney, E. McGlynn, M. O. Henry, and J. –P. Mosnier, “A Characterization of Phosphorus-doped ZnO Thin Films grown by Pulsed Laser Deposition,” Superlattices and Microstructures, Vol.42, pp.72-78, 2007.

34. S. Chakrabarti, B. Doggett, R O’Haire, E. McGlynn, M. O. Henry, A. Meaney and J. –P. Mosnier, “Characterization of Nitrogen-doped ZnO Thin Films grown by Plasma-Assisted Pulsed Laser Deposition on Sapphire Substrates,” Superlattices and Microstructures, Vol.42, pp.21-25, 2007.

33. S. Chakravarty, P. Bhattacharya and S. Chakrabarti, Y. Kang and M. E. Meyerhoff, “Multimodal Lasing in Photonic Crystal Microcavities,” Optics Letters, Vol.32, No.10, pp.1296-1298, 2007.

32. S. Chakrabarti, B. Doggett, R O’Haire, E. McGlynn, M. O. Henry, A. Meaney and J. –P. Mosnier, “P-type behavior above room temperature in Nitrogen-doped ZnO Thin film grown by plasma-assisted pulsed laser deposition,” Electronics Letters, Vol.42, No.20, pp.1181-1182, 28th Septemper 2006.

31. M. Holub, J. Shin, S. Chakrabarti and P. Bhattacharya, “Spin-polarized Vertical-Cavity Surface-Emitting Laser: Epitaxial Growth Issues and Device Properties”, Journal of Vacuum Science and Technology B, Vol.24, No.3, pp.1510-1513, May/June 2006.

30. L. A. Farina, X. Bai, C. Kurdak, S. Chakrabarti and P. Bhattacharya, “Study of Quantum Hall Edge States with a Single Electron Transistor Coupled to an Antidot,” Physica E: Low Dimensional Systems & Nanostructures, Vol.34, pp.187-190, 2006.

29. X. Bai, T. Eckhause, S. Chakrabarti, P. Bhattacharya, R. Merlin and C. Kurdak, “Phonon detection Using Quasi-One Dimensional Quantum Wires,” Physica E: Low Dimensional Systems & Nanostructures, Vol.34, pp.592-595, 2006.

28. J. Topolancik, S. Chakravarty, S. Chakrabarti and P. Bhattacharya, “Electrically injected quantum dot photonic crystal microcavity light sources,” Optics Letters , Vol.31, No.2, pp.232-234, January 2006.

27. S. Chakravarty, J. Topolancik, P. Bhattacharya, S. Chakrabarti, Y. Kang and M. E. Meyerhoff, “Ion Detection With Photonic Crystal Microcavities,” Optics Letters, Vol.30, No. 19, pp.2578-2580, October 2005.

26. M. Holub, J. Shin, S. Chakrabarti and P. Bhattacharya, “Electrically-injected spin-polarized vertical-cavity surface-emitting laser,” Applied Physics Letters, Vol. 87, No. 19, pp.091108 (3 pages), August 2005..

25. X. H. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa and A. G. U. Perera, “A Resonant tunneling quantum Dot Infrared photodetector,” IEEE Journal of Quantum Electronics, Vol.41, No. 7, pp.974-979, July 2005 .

24. S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa and A. G. U. Perera, “High Performance Mid-Infrared Quantum Dot Infrared Photodetectors,” Journal of Physics D: Applied Physics, Special issue”Self Organized Quantum dots”, July 2005.

23. P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa and A. G. U. Perera, “Characteristics of a tunneling quantum dot infrared photodetector operating at room temperature,” Applied Physics Letters, Vol. 86, No. 19, pp.191106 (3 pages), May 2005.

22. S. Chakrabarti, M. Holub, P. Bhattacharya, T. D. Mishima, M. B. Santos, M. B. Johnson and D. A. Blom, “Spin Polarized Light Emitting Diodes with Mn-doped InAs Quantum dots Nanomagnets as Spin Aligner,” Nano Letters, Vol. 5, No.2, pp.209-212, February 2005.

21. J. N. Gleason, M. E. Hjelmstad, V. D. Dasika, R. S. Goldman, S. Fathpour, S. Chakrabarti and P. Bhattacharya, “Nanometer-scale studies of point defect distributions in GaMnAs alloys,” Applied Physics Letters, Vol. 86, pp.011911(3-pages), January 2005.

20. S. Chakrabarti, X. H. Su, P. Bhattacharya, G. Ariyawansa and A. G. U. Perera, “Characteristics of a multi-color InGaAs/GaAs quantum dot infrared photodetector,” IEEE Photon. Technol. Lett., Vol. 17, pp.178-180, January 2005.

19. D. Chen, T. E. Murphy, S. Chakrabarti and J. D. Phillips, “Optical Waveguiding In BaTiO3/MgO/AlxOy/GaAs Heterostructures ,” Applied Physics Letters, Vol. 85, pp.5206-5208, November 2004.

18. X. H. Su, S. Chakrabarti, A. D. Stiff-Roberts, J. Singh and P. Bhattacharya, “Novel Quantum Dot Photodetector Design Based on Double Barrier Resonant Tunneling,” Electronics Letters, Vol.40, pp.1082-1083, August 2004.

17. M. Holub, S. Chakrabarti, S. Fathpour, P. Bhattacharya, Y. Lei, and S. Ghosh, “Mn-doped InAs self-organized diluted magnetic quantum dot layers with Curie temperatures above 300K,” Applied Physics Letters, Vol.85, pp.973-975, August 2004.

16. S. Fathpour, M. Holub, S. Chakrabarti and P. Bhattacharya, “Spin-polarized quantum dot light emitting diodes with high polarization efficiency at high temperatures,” Electronics Letters, Vol.40, No.4, pp.694-695, May 2004.

15. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. Kennerly, “Heterostructures for Achieving Very Large Responsivity in InAs/GaAs Quantum Dot Infrared Photodetectors,” Journal of Vacuum Science and Technology B, Vol.22, No.3, pp.1499-1502, May/June 2004.

14. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S.B. Rafol and S. W. Kennerly, “High temperature operation of InAs/GaAs quantum dot infrared photodetector with large responsivity and detectivity,” IEEE Photonics Technology Letters , Vol.16, No.5, pp. 1361-1363, May 2004.

13. S. Chakrabarti, S. Fathpour, K. Moazzami, J. Phillips, N. Browning and P. Bhattacharya, “Pulsed laser annealing of self-organized InAs/GaAs quantum dots,” Journal of Electronic Materials(letters), Vol.33, No.4, pp. L5- L8, April 2004.

12. A. D. Stiff-Roberts, X. H. Su, S. Chakrabarti and P. Bhattacharya, “Contribution of field-assisted tunneling emission to dark current in InAs/GaAs quantum dot infrared photodetectors,” IEEE Photonics Technology Letters, Vol.16, No.3, pp.867-869, March 2004.

11. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya and S. W. Kennerly, “High responsivity AlAs/InAs/GaAs superlattice quantum dot infrared photodetector,” Electronics Letters, Vol.40, No.3, pp.197-198, February 2004.

10. S. Chakrabarti, P. Bhattacharya, A. D. Stiff-Roberts, Y. Y. Lin, J. Singh, Y. Lei, and N. Browning, “Intersubband absorption in annealed InAs/GaAs quantum dots: a case for polarization-sensitive infrared detection,” Journal of Physics D: Applied Physics, vol. 36, pp. 1794-1797, July 2003.

9. B. Kochman, A. D. Stiff-Roberts, S. Chakrabarti, J. D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs/GaAs quantum dot infrared photodetectors,” IEEE Journal of Quantum Electronics, vol. 39, pp. 459-467, March 2003.

8. A. D. Stiff-Roberts, S. Chakrabarti, S. Pradhan, B. Kochman, P. Bhattacharya, “Raster-scan imaging with normal-incidence, mid-infrared InAs/GaAs quantum dot infrared photodetectors,” Applied Physics Letters, vol. 80, pp. 3265-3267, May 2002.

7. S. Dhar and S. Chakrabarti, “Large photoresponse of CdO/Porous Si diodes,” Semicond. Sci. Technol., vol.15, L.39-L40, Nov. 2000.

6. S. Chakrabarti and S. Dhar, “Temperature-dependent behavior of chalcogenide thin-film contacts on porous silicon,” Solid State Phenomena, Vol.55, pp.77-79, 1997.

5. S. Chattopadhyay, L. K. Bera, K. Maharatna, S. Chakrabarti, S. Dhar, S. K. Ray and C. K. Maiti, “Schottky diode characteristics of Ti on strained-Si,” Solid State Electronics, Vol. 41, pp.1891-1893, Dec.1997.

4. S. Dhar and S. Chakrabarti, “Properties of chemically deposited Cu2S films on porous silicon,” J. Appl. Phys.., vol.82, pp.655-657, Jul. 1997.

3. S. Dhar and S. Chakrabarti, “Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts,” Semicond. Sci. Technol., vol.11, pp.1231-1234, Aug. 1996.

2. S. Dhar and S. Chakrabarti, “Electroless Nickel Plated contacts on Porous silicon,” Applied Physics Letters, vol.68, pp.1392-1394, March 1996.

1. P. Chattopadhyay, D. P. Haldar, S. Chakrabarti and M. Ray, “Effect of Deep-level Impurities on the Grain-Boundary Potential of a Polycrystalline Semiconductor,” Phys Stat SolidiA-Applied Research, vol. 142, pp. 117-125, March 1994.

**CONFERENCE PRESENTATIONS**

After joining IIT Bombay

103. A. Ahmed, B. Tongbram, S. Shetty and S. Chakrabarti, “Growth Strategy to Achieve Mono-Modal Quantum Dot Size Distribution in Coupled Heterostructures for Infrared Detector Applications,” MRS Spring Meeting, April 6-10, 2015, San Francisco, California, USA.

102. S. Saha, S. Nagar and S. Chakrabarti, “Effect of Nitrogen Implantation on the Optical Characteristics of Zn0.85Mg0.15O Thin Film at Low Temperature,” MRS Spring Meeting, April 6-10, 2015, San Francisco, California, USA.

101. Saikalash Shetty, Sourav Adhikary, Hemant Ghadi, Subhananda Chakrabarti, “Stability in peak emission wavelength in strain coupled multilayer InAs/GaAs quantum dot heterostructures upon subjected to high-temperature rapid thermal annealing,” SPIE PHOTONIC WEST,San Francisco, California United States, 07-12 February 2015.

100. Binita Tongbram, Sourav Adhikary, Hemant Ghadi, Arjun Mandal, Subhananda Chakrabarti, “Cross sectional TEM (XTEM) analysis for vertically-coupled quaternary InAlGaAs capped InAs/GaAs quantum dot infrared photodetectors,” SPIE PHOTONIC WEST,San Francisco, California United States, 07-12 February 2015.

99. Shantanu Saha, Saurabh Nagar, Shree K. Gupta, Subhananda Chakrabarti, “Effects of Low Energy H- ion implantation on the optical properties of ZnMgO Thin Films,” SPIE PHOTONIC WEST,San Francisco, California United States, 07-12 February 2015.

98. Shantanu Saha, Saurabh Nagar, Shree K. Gupta, Subhananda Chakrabarti, “The impact of time-varying phosphorus doping on ZnMgO thin films and achievement of dominant acceptor-bound-exciton peak,' SPIE PHOTONIC WEST,San Francisco, California, United States, 07-12 February 2015.

97. S. Upadhyay, A. Mandal, A.  Basu, P. Singh and S. Chakrabarti, “Effects of Low Energy Carbon Ion Implantation on the Material Properties of InAs/GaAs Quantum Dots with a Variation in Capping Layer,”Materials Research Society Meeting, Boston, USA, Nov. 30 - Dec. 5, 2014.

96. H.Ghadi, S.Shetty, A.Manohar, S. Sengupta and S.Chakrabarti,*, P.NareshBabu2, S. Prajapati2, Ashwani Kumar”A comparative study of InGaAs capped dots, Dots in a well and sub-monolayer quantum dots architectures for quantum dots infrared photodetectors,“ Materials Research Society Meeting, Boston, USA, Nov. 30 - Dec. 5, 2014.

95. “Influence of low energy H- ion implantation on the electrical and material properties of quaternary alloy (In0.21Al0.21Ga0.58As) capped InAs/GaAs n-i-n QDIPs,”

94. “Demonstration of multi-spectral In(Ga)As/GaAs-based quantum dot infrared photoetectors with quaternary (InAlGaAs) capping operate at low bias voltage,”

93. “Enhancement (100 times) of photoluminescence in pulsed laser deposited ZnO thin films by hydrogen ion implantation,”

92. “P-type ZnO films by phosphorus doping using plasma immersion ion-implantation technique,”

91. S. Shah, S.Maity, S. Shetty and S. chakrabarti,”Optimizing the Multilayer InAs/GaAs Quantum Dot Heterostructure to Produce Bilayer like Uniformity by Using Annealing and Variable Spacer Thicknesses for Long Wavelength (1.3?m or 1.55 um) Applications,“ Materials Research Society Meeting, Boston, USA, Nov. 25 - 30, 2012.

90. S. Nagar and S. Chakrabarti,”Dependence of Oxygen Pressure on the Structural, Electrical and Optical Properties of Pulsed Laser Deposited ZnO Thin Films,“ Materials Research Society Meeting, Boston, USA, Nov. 25 - 30, 2012.

89. S. Sengupta, A. Mandala, K. L. Mathurb and S.Chakrabartia,”A comprehensive study on MBE grown InAs sub-monolayer quantum dots with different capping combination“,North American Molecular Beam Epitaxy Conference, Georgia, Atlanta, USA, October 2012.

88. Sourav Adhikary and Subhananda Chakrabarti, “Evidence of long wave excited state transition at high temperature (200K) in 35 layer In0.50Ga0.5As/GaAs quantum dot infrared photodetector,” North American Molecular Beam Epitaxy Conference, Georgia, Atlanta, USA, October 2012.

87. Sourav Adhikary, A. G. U. Perera, Yigit Aytac and Subhananda Chakrabarti, “Demonstration of very large responsivity (~25 A/W) of quaternary capped InAs/GaAs quantum dot infrared photodetector under 45-degree angle incidence measurement,” North American Molecular Beam Epitaxy Conference, Georgia, Atlanta, USA, October 2012.

86. S.Shah,S.Maity, S.Shetty and S. Chakrabarti*”Extension of the bilayer into multilayer InAs/GaAsQuantum dot heterostructurefor application in long wavelength (1.3um) devices and the use of annealing to increase homogeneity“, North American Molecular Beam Epitaxy Conference, Georgia, Atlanta, USA, October 2012.

85. Sourav Adhikary and Subhananda Chakrabarti, “Spectral broadening due to post growth annealing on long wave InGaAs/GaAs quantum dot infared photodetector with quaternary barrier layer,” Electronics Materials Conference 2012, Penn State, USA, June 2012.

84. “Demonstration of High responsivity(~2.2 A/W) and Detectivity(~1011 Jones) in the Long wavelength (~10.2µm) from InGaAs/GaAs quantum dot Infrared photodetector with quaternary In0.21Al0.21Ga0.58As capping ”, SPIE Defence, Sensing and Security conference 2012, Baltimore, USA, April 2012.

83. “Analysis of Thermal Stability of PL Peak Wavelength in GaAs1-xNx Capped InAs Quantum Dots”, MRS Spring Meeting, San Francisco, USA, April 2012.

82. “10-Fold Enhancement in Photoluminescence Efficiency Due to Low Energy H- Ion Irradiation over InAs/GaAs Quantum Dots”, MRS Spring Meeting, San Francisco, USA, April 2012.

81. “Impact of Barrier Thickness on the Structural and Optical Properties of Multilayer(x10) Coupled InAs/GaAs Quantum Dots Using Bilayer(X2) Quantum Dots as the Seed for Strain Patterning”, MRS Spring Meeting, San Francisco, USA, April 2012.

80. “A Detailed Investigation into Strain-coupled Bi-layer InAs/GaAs Quantum Dots: Impact of Variation in Deposition Rate, Barrier Thickness and Monolayer Coverage” MRS Spring Meeting, San Francisco, USA, April 2012.

79. “The impact of growth rate and barrier thickness on the thermal stability of photoluminescence for coupled InAs/GaAs quantum dot heterostructures with quaternary(InAlGaAs) capping,” SPIE PHOTONIC WEST,San Francisco, California United States, 21-26 January 2012.

78. “Ground state energy trend in single and multilayered coupled InAs/GaAs QDs capped with InGaAs layers: effect of thickness of InGaAs layer and the RTA treatment,” SPIE PHOTONIC WEST,San Francisco, California United States, 21-26 January 2012.

77. “Theoretical and experimental investigation on the large monolayer In0.45Ga0.55As/GaAs quantum dots for thermally stable optoelectronic devices” 38th International Symposium on Compound Semiconductors,Berlin, Germany, May 22-26, 2011.

76. “Optical and Structural Investigation of MBE grown In(Ga)As/GaAs Quantum Dot Detector Structure on Germanium Substrate”, 38th International Symposium on Compound Semiconductors,Berlin, Germany, May 22-26, 2011.

75. S. Nagar, S. Chakrabarti and S. K. Gupta, “Influence of Li implantation on the optical and electrical properties of ZnO film,” SPIE Photonic West, San Francisco, USA, January 22-27, 2011.

74. S. Banerjee, N. Halder and S. Chakrabarti, “Molecular beam epitaxial growth of GaAs/AlGaAs multi quantum well on germanium substrate,” SPIE Photonic West, San Francisco, USA, January 22-27, 2011.

73. A. Mandal,S. Chakrabarti and S. K. Gupta,”Photoluminescence and Hall study for the production and recovery of defects in phosphorus implanted ZnO films,“ SPIE Photonic West, San Francisco, USA, January 22-27, 2011.

72. S. Shah, S. Sengupta and S. Chakrabarti, “Room-temperature Long-wavelength (~1.45μm) Emission from Self-assembled InAs/GaAs Quantum Dots,” Materials Research Society Meeting, Boston, USA, Nov. 29 - Dec. 3, 2010.

71. R. Sreekumar, S. Chakrabarti and S.K. Gupta,”Effect of Low Energy Proton Irradiation on Single Layer InAs/GaAs Quantum Dot Heterostructure,“ Materials Research Society Meeting, Boston, USA, Nov. 29 - Dec. 3, 2010.

70. S. Messala, K. Ghosh, S. Sengupta and S. Chakrabarti, “Theoretical Model on Thermal Annealing of Self-assembled InAs/GaAs Quantum Dots and Its Experimental Validation,” Materials Research Society Meeting, Boston, USA, Nov. 29 - Dec. 3, 2010.

69. R. Sreekumar, S.Sengupta, S. Chakrabarti, S. K. Gupta,”Enhancement of Luminescence Efficiency in InAs/GaAs Quantum Dots by Proton Irradiation“, Electronic Materials conference 2010, Notre Dame, USA, June 22-25th, 2010.

68. N. Halder, S. Adhikary and S.Chakrabarti,”Thermal Stability in Emission Peak in Multilayer InAs/GaAs Quantum Dot Heterostructure in Laser Application“, Electronic Materials conference 2010, Notre Dame, USA, June 22-25th, 2010

67. S. Banerjee, N. Halder and S. Chakrabarti, “Self Assembled Growth of Nanostructures on Germanium Substrate by Molecular Beam Epitaxy”, European Material Research society (EMRS) Meeting 2010, Congress Center, Strasbourg, France, June 7-11th, 2010.

66. R. Sreekumar, S. Sengupta, S. Chakrabarti, and S. K. Gupta, “Investigation of degradation of photoluminescence efficiency in InAs/GaAs quantum dots on heavy ion bombardment”, European Material Research society (EMRS) Meeting 2010, Congress Center, Strasbourg, France, June 7-11th, 2010.

65. Srujan M, K. Ghosh, S. Chakrabarti and S. Sengupta, “Theoretical modelling on thermal annealing of self-assembled InAs/GaAs quantum dots and its experimental validation” European Material Research society (EMRS) Meeting 2010, Congress Center, Strasbourg, France, June 7-11th, 2010.

64. A. Mandal, S. Kala and S. Chakrabarti, “High Hall mobility in Antimony-doped p-type ZnO film”, European Material Research society (EMRS) Meeting 2010, Congress Center, Strasbourg, France, June 7-11th, 2010.

63. A. Mandal and S. Chakrabarti, “Structural and electrical properties of rectifying p-ZnO/n+-InP heterojunction.” SPIE Photonics West in San Francisco, California, USA 23-28 January 2010.

62. A. Mandal and S. Chakrabarti, “Realization of Stable p-type Behavior of ZnO Thin Films Deposited on InP,” MRS Fall Meeting 2009, Boston, USA, Nov 30 - Dec 4, 2009.

61. S. Sengupta, N. Halder and S. Chakrabarti, “Strain Induced Stoppage of the Emission Peak Blueshift of Annealed Bilayer Quantum Dot Structures Separated by Thin Spacer,” MRS Fall Meeting 2009, Boston, USA, Nov 30 - Dec 4, 2009.

60. A. Mandal and S. Chakrabarti,”High P-type conductivity in Phosphorus-doped ZnO film,“ European Material Research society (EMRS)Fall Meeting 2009, Warsaw Institute of Technology, Warsaw,Poland,September 14-18, 2009.

59. S. Chowdhury, S. Adhikary and S. Chakrabarti,”Increasing the size of InAs/GaAs multilayer coupled quantum dots with low defect density by using a InAlGaAs quarternary capping layer,“ European Material Research society (EMRS)Fall Meeting 2009, Warsaw Institute of Technology, Warsaw,Poland,September 14-18, 2009.

58. S. Sengupta and S. Chakrabarti,”A Comparative study of single layer and bi-layer InAs/GaAs quantum dots (QDs) with higher InAs monolayer coverage,“ European Material Research society (EMRS)Fall Meeting 2009, Warsaw Institute of Technology, Warsaw,Poland,September 14-18, 2009.

57. Suseendran J, N. Halder and S. Chakrabarti, “Strain -induced modifications of dot formation time of InAs quantum dot heterostructure grown by molecular beam epitaxy”, 17th American Conference on Crystal Growth and Epitaxy, Lake Geneva, Wisconsin, USA, August 9 - 14, 2009.

56. S. Nagar and S. Chakrabarti, “Evidence of p-doping in ZnO films deposited on GaAs,”European Material Research society (EMRS) Meeting 2009, Congress Center, Strasbourg, France, June 8-12th, 2009.

55. S. Adhikary and S. Chakrabarti, “Ivestigation of structural and optical properties of coupled multilayer InAs/GaAs quantum dots with combinational In0.21Al0.21Ga0.58As/ GaAs capping,”European Material Research society (EMRS) Meeting 2009, Congress Center, Strasbourg, France, June 8-12th, 2009.

54. Suseendran J, N. Halder and S. Chakrabarti “Effect of InAlGaAs and GaAs combination barrier thickness on the stacking of coupled InAs/GaAs quantum dot layers grown by MBE,” European Material Research society (EMRS) Meeting 2009, Congress Center, Strasbourg, France, June 8-12th, 2009.

53. P.Mahajan, T. Patil and S. Chakrabarti, “HWCVD-grown Silicon Nanocrystals : A Study of the Effect of Annealing on Structures Evolved with Varying Growth Rates,” MRS Spring Meeting 2009, San Francisco, USA, April 13-17th, 2009.

52. Suseendran J, N.Halder, S. Sengupta, S. Chakrabarti and T. D. Mishima,”Optimized Stacking of Nanoscale InAs/GaAs Quantum Dots in Multilayer Heterostructures“, 2nd International conference on Frontiers in Nanoscience and Technology (Cochin Nano 2009), Cochin, India. January 3-6, 2009.

51. S. Sengupta, N. Halder, S. Chakrabarti, M. Herrera and N. G. Browinng, “Investigation of the effect of varying dot ripening time on the structural and optical properties of Nanoscale InAs/GaAs Quantum Dots layer”, 2nd International conference on Frontiers in Nanoscience and Technology (Cochin Nano 2009), Cochin, India. January 3-6, 2009.

50. N. Halder, J. Charthad and S. Chakrabarti, “TEM and PL Characterization of InAs-GaAs Bi-layer QDs” PHOTONICS 2008: The International Conference on Fiber Optics and Photonics, New Delhi, India, December 14-17, 2008.

49. J. Charthad, N.Halder, S. Chakrabarti, Miriam Herrera, Nigel D. Browning and C.R. Stanley, “A Detailed Investigation of the Effect of Ripening Pause on the Structural and Optical Characteristics of InAs/GaAs Quantum Dot” 2008 Asian Conference on Nanoscience and Nanotechnology(AsiaNANO2008),Biopolis, Singapore, November 3-7, 2008.

48. Prashanthi K, S.P.Duttagupta, S. Chakrabarti and V. R. Palkar,” C-V characteristics of multiferroic Bi0.7Dy0.3FeO3 thin films directly integrated on <100>Silicon“, 53rd Magnetism and Magnetic Materials Conference, Austin Texas, USA, November 10-14, 2008.

47. Prashanthi K, S. Chakrabarti and V. R. Palkar,”Integration of novel multiferroic thin films on GaN/Sapphire and GaAs substrates for high frequency device applications“, 53rd Magnetism and Magnetic Materials Conference,Austin Texas, USA, November 10-14, 2008.

46. S. Chakrabarti, N. Halder, J. Charthad, S. Ghosh and C. R. STanley, “Effect of Monolayer Coverage and Spacer Thickness on InAs/GaAs Bi-layer QDs grown at a reduced growth rate,” ISCS2008, 35th International Symposium on Compound Semiconductors, Europa-Park, Rust, Germany, September 21-24, 2008.

45. S. Chakrabarti, N. Halder and C. R. Stanley, “Optical and Structural Characterization of Coupled Multi-layer InAs/GaAs Quantum Dot Heterostructures Grown by Molecular Beam Epitaxy”,IUMRS-ICEM 2008,International Conference on Electronic Materials, Hilton Sydney, Sydney, Australia - 28th July to 1st August 2008

44. S. Chakrabarti, ” A High Temperature Two-Color In(Ga)As/GaAs Quantum Dot-based infrared Photodetector“, International Conference on Sensors and Related Networks (SenNet'07), December 12-14, 2007

43. N. Halder and S. Chakrabarti,”Effect of Ripening pause on the Optical and Structural characteristics of InAs/GaAs Quantum Dots“ International Conference on Emerging Technologies and applications in Engineering, Technology and Sciences,Rajkot, Gujrat,India, January 13-14, 2008

42. S. Chakrabarti, “Molecular Beam Epitaxial Growth of InAs/GaAs quantum Dot Heterostructures for Intermediate Band Solar Cells,” International conference on solar Cells (IC SOLACE 2008), January 21-23, 2008.

41. N. Halder and S. Chakrabarti, “Tunability of Photoluminescence of InAs/GaAs Quantum Dots by a Combination of Dot Pause and In0.21Al0.21Ga0.58As Quarternary Capping” Third international Conference on Luminescence and its Applications (ICLA 2008), National Physical Laboratory, New Delhi, India, February 13-16, 2008.

Before joining IIT Bombay

40. Z. –K. Wu, H. Choi, T. B. Norris, X. H. Su, S. Chakrabarti and P. Bhattacharya, “Investigation of spin-induced Pauli blocking on electron dynamics in n-type In0.4Ga0.6As/GaAs quantum dots”, Conference on Lasers and Electro-Optics, 2007.

39. S. Chakrabarti and C. Stanley, “III-V growth on Ge”, UK MBE-user Meeting, University of Manchester, Manchester, 4th and 5th April, 2007.

38. J. P. Mosnier, S. Chakrabarti and B. Doggett, “Material Properties of Nitrogen- and Phosphorus-doped ZnO Thin Films Grown by Plasma-assisted Pulsed Laser Deposition on Sapphire Substrates” submitted to 4th International workshop on ZnO and Related Materials, Germany, October 2006

37. G. Ariyawansa, A. G. U. Perera, X. H. Su, S. Chakrabarti and P. Bhattacharya, “Multi-color Tunneling quantum dot infrared photodetectors operating at room temperature,” International Workshop on Quantum Well Infrared Photodetectors, Kandy, Sri Lanka, June 2006

36. S. Chakrabarti, B. Doggett, M. Novotny, R. O’Haire, E. McGlynn, M. O. Henry, A. Meaney, and J. P. Mosnier, “Material Properties of Nitrogen-doped ZnO Thin Films Grown by Plasma-assisted Pulsed Laser Deposition on Sapphire Substrates” European Material Research Society 2006, Nice, France, May 2006

35. B. Doggett, S. Chakrabarti, R. O’Haire, E. McGlynn, M. O. Henry and J. P. Mosnier, “ A Study of the Material Properties of Phosphorus-doped ZnO Thin Films” European Material Research Society 2006, Nice, France, May 2006.

34. R. O’Haire, A. Meaney, B. Doggett, S. Chakrabarti, E. McGlynn, M. O. Henry and J. P. Mosnier, “ Growth and Characterization of ZnO Nanostructures Grown on Bare and Patterned Sapphire Substrates Using Pulsed Laser Deposition” European Material Research Society 2006, Nice, France, May 2006.

33. Z. K. Wu, H. Choi, T. B. Norris, S. Chakrabarti, X. H. Su and P. Bhattacharya, “Electron Dynamics in n-doped In0.4Ga0.6As/GaAs Quantum Dot Infrared Detector Structures” Conference on Lasers and Electro-Optics, 2006.

32. P. Bhattacharya, S. Chakrabarti, X. H. Su and A. D. Stiff-Roberts (INVITED), “Quantum Dot Infrared Photodetectors,” 2005 II-VI Workshop, Boston, MA, September 2005.

31. M. Holub, J. Shin, S. Chakrabarti and P. Bhattacharya, “Spin-VCSEL: Epitaxial Growth Issues and Device Properties”, submitted to North American Molecular Beam Epitaxy Conference, Santa Barbara, CA, September 2005.

30. X. H. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa and A. G. U. Perera, “A Tunnel Quantum Dot Infrared Photodetectors”, submitted to 8th International Conference on Intersubband Transition in Quantum Wells, Boston, MA, September 2005.

29. M. Holub, J. Shin, S. Chakrabarti and P. Bhattacharya, “Spin Injection and Polarization Switching in a Vertical-Cavity Surface-Emitting Laser: A Spin VCSEL”, submitted to Conference on Lasers and Electro-Optics, Baltimore, MD, May 2005.

28. S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff and S. Chakrabarti, “Photonic Crystal Microcavity source-based Ion Sensor,” IEEE Sensors, Irvine, CA, October-November 2005.

27. S. Chakravarty, Y. Kang, J. Topolancik, P. Bhattacharya, M. E. Meyerhoff and S. Chakrabarti, “Photonic Crystal Microcavity source-based Chemical Sensor,” Optics East, Boston, MA, October 2005.

26. S. Chakravarty, J. Topolancik, S. Chakrabarti and P. Bhattacharya, “Electrically Injected Quantum Dot Bottom-emitting Photonic Crystal Single Mode Microcavity Light Source”, Device Research Conference, University of California-Santa Barbara, Santa Barbara, CA, June 2005.

25. M. Holub, J. Shin, S. Chakrabarti and P. Bhattacharya, “Electrically-injected spin-polarized quantum well vertical-cavity surface-emitting lasers”, Device Research Conference, University of California-Santa Barbara, Santa Barbara, CA, June 2005.

24. X. Bai, T. Eckhause, S. Chakrabarti, P. Bhattacharya, R. Merlin and C. Kurdak, “Phonon detection Using Quasi-One Dimensional Quantum Wires,” submitted to Electronic Properties of Two-Dimensional systems(EP2DS), Albuquerque, NM, July 2005.

23. L. A. Farina, X. Bai, C. Kurdak, S. Chakrabarti and P. Bhattacharya, “Study of Quantum Hall Edge States with a Single Electron Transistor Coupled to an Antidot,” Electronic Properties of Two-Dimensional systems(EP2DS), Albuquerque, NM, July 2005.

22. S. Chakrabarti, X. H. Su, G. Ariyawansa, A. G. U. Perera and P. Bhattacharya, “Room Temperature Operation of Resonant Tunneling Quantum Dot Infrared Detectors”, Conference on Lasers and Electro-Optics, Baltimore, MD, May 2005.

21. P. Bhattacharya, M. Holub, J. Shin and S. Chakrabarti, (INVITED) “Spin-polarized Semiconductor Light Sources,” Photonics West 2005, San Jose, CA, January 2005.

20. P. Bhattacharya, M. Holub, J. Shin and S. Chakrabarti, A. R. Kovsh, S. S. Mikhrin, I. L. Kresnikov, A. V. Kozhukov and N. N. Ledentsov, (INVITED) “High Performance Quantum Dot Lasers”, US-Korea Conference, Research Triangle Park, NC, August 2004.

19. J.N. Gleason, M.E. Hjelmstad, V.D. Dasika, S. Fathpour, S. Chakrabarti, P.K. Bhattacharya, and R.S. Goldman, “Nanometer-Scale Studies of Point Defect Distributions in GaMnAs Films”, Gordon Research Conference on Defects in Semiconductors, Colby-Sawyer College, New London, NH, July 2004.

18. M. Holub, S. Fathpour, S. Chakrabarti, J. Topol’ancik, P. Bhattacharya and Y. Lei, “High-temperature spin-polarized quantum dot light-emitting diodes,” Device Research Conference, Notre Dame University, Notre Dame, IN, June 2004.

17. S. Fathpour, Z. Mi, S. Chakrabarti, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnoikov, A. V. Kozhukov and N. N. Ledenstov, “Characteristics of High-Performance 1μm and 1.3μm Quantum Dot Lasers: Impact of p-doping and Tunnel Injection,” Device Research Conference, Notre Dame University, Notre Dame, IN, June 2004.

16. X. H. Su, A. D. Stiff-Roberts, S. Chakrabarti, J. Singh and P. Bhattacharya, “Resonant Tunneling Quantum Dot Infrared Photodetector (RT-QDIP): Separating Dark Current and Photocurrent,”Device Research conference, Notre Dame University, Notre Dame, IN, June 2004.

15. M. Holub, S. Chakrabarti, S. Fathpour, P. Bhattacharya, Y. Lei, T. D. Mishima, M. B. Santos, M. B. Johnson and D. A. Blom, “Mn-doped InAs self-organized quantum dos with Curie temperature above 300K,” Electronics Materials Conference, Notre Dame University, Notre Dame, IN, June 2004.

14. J.N. Gleason, M.E. Hjelmstad, V.D. Dasika, S. Fathpour, S. Chakrabarti, P.K. Bhattacharya, and R.S. Goldman, “Nanometer-Scale Studies of Point Defect Distributions in GaMnAs Films”, Electronics Materials Conference, Notre Dame University, Notre Dame, IN, June 2004.

13. J. N. Gleason, M. E. Hjelmstad, V. D. Dasika, , S. Fathpour, S. Chakrabarti, P. Bhattacharya and R. S. Goldman, “Coss Sectional Scanning Tunneling Microscopy Studies of Mn distribution in Ga1-xMxAs,” 31st Conference on the Physics and Chemistry of Semiconductor Interfaces, Kailua-Kona, HI, January 2004.

12. A. D. Stiff-Roberts, S. Chakrabarti, P. Bhattacharya, and S. Kennerly, “Tailoring of Quantum Dot Infrared Photodetector Performance with AlAs/GaAs Superlattice Barriers,” Lasers and Electro-Optics Society Meeting, Tucson, AZ, October 2003.

11. P. Bhattacharya, S. Fathpour, S. Chakrabarti, M. Holub and S. Ghosh, (INVITED) “Application of Dilute Magnetic Semiconductors and Quantum Dots to Spin Polarized Light Sources,” Mater. Res. Soc. Symp. Proc., Boston , 2003, 794, (2003) T8-1.

10. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, and S. Kennerly, “Heterostructures for Achieving Very Large Responsivity in InAs/GaAs Quantum Dot Infrared Photodetectors,” North American Conference on Molecular Beam Epitaxy, Keystone, CO, September 2003.

9. S. Chakrabarti, K. Moazzami, S. Fathpour, P. Bhattacharya and J. Phillips, “Pulsed Laser Annealing of Self-Organized InAs/GaAs Quantum Dots,” Electronics Materials Conference, Salt Lake City, UT, June 2003

8. A. D. Stiff-Roberts, S. Chakrabarti, S. Kennerly, and P. Bhattacharya, “High-responsivity, polarization-sensitive, 70-layer InAs/GaAs quantum dot infrared photodetector,” Conference on Lasers and Electro-Optics, Baltimore, MD, June 2003.

7. P. Bhattacharya, A. Stiff-Roberts, S. Chakrabarti, S. Krishna, C. Fischer, T. Norris and J. Uriyama, (INVITED) “Carrier Dynamics in self-organized In(Ga)As/Ga(Al)As quantum dots and their application long wavelength sources and detectors”, Compound semiconductors2002 Institute of Physics Conference Series 174, pp. 117-124, 2003.

6. P. Bhattacharya, A. Stiff-Roberts, S. Chakrabarti, S. Kennerly, and S. Krishna, (INVITED) “Quantum Dot Inter-sublevel Transition-Based Devices,” Nano-Optoelectronics Workshop, Berlin, Germany, July 2002.

5. S. Chakrabarti and S. Dhar, “Current components in a Cu2S-PSi junctions,” 10th International Workshop on Physics of Semiconductor Devices, New Delhi, India, December 1999.

4. S. Chakrabarti and S. Dhar, “Photoresponse of CdO/Porous Si junction,” 1st International Conference on Computes and Devices for Communication, Calcutta, India, January 1998.

3. S. Chakrabarti and S. Dhar, “Temperature dependent behavior of chalcogenide thin-film contacts on porous silicon,” International Conference on Fiber Optics and Photonics – PHOTONICS’96, Madras, India, December 1996.

2. S. Chakrabarti and S. Dhar, “A Chalcogenide- Porous Si Photodiode,” 3rd International Conference on Semiconductor Material and Technology, New Delhi, India, December 1996.

1. S. Chakrabarti and S. Dhar, “Ohmic Contacts to Porous Silicon by electroless nickel plating,” 8th International Workshop on Physics of Semiconductor Devices, New Delhi, India, December 1995.

Invited Talks

After joining IIT Bombay

25. S. Chakrabarti, “In(Ga)As/GaAs quantum dot infrared photodetectors and thermal imagers”, JNCASR, Bangalore, 24th May 2012.

24. S. Chakrabarti, “In(Ga)As/GaAs quantum dot infrared photodetectors and thermal imagers”, Dept. of Electrical Engineering, IIT Delhi, New Delhi, 23rd May 2012.

23. S. Chakrabarti, “Molecular Beam Epitaxial Growth, fabrication and characterization of quaternary capped InAs/GaAs Quantum Dot Infrared Photodetectors and Arrays” , Dept. of Electronic Science, Calcutta University, 17th May 2012.

22. S. Chakrabarti, “Molecular Beam Epitaxial Growth, fabrication and characterization of quaternary capped InAs/GaAs Quantum Dot Infrared Photodetectors”, S. N. Bose Center for Advanced Research, Calcutta, 16th May 2012.

21. S. Chakrabarti, “Molecular Beam Epitaxial Growth, fabrication and characterization of quaternary capped InAs/GaAs Quantum Dot Infrared Photodetectors”, IISER, Calcutta, 14th May 2012.

20. S. Chakrabarti, “Quaternary Capped Nanoscale In(Ga)As/GaAs Quantum Dot based Devices for High Temperature Infrared Detection” , International Workshop on Physics of Semiconductor Devices (IWPSD) 2011, JMI, New Delhi, December 2011.

19. S. Chakrabarti, “Quaternary Capped Nanoscale In(Ga)As/GaAs Quantum Dot based Devices for High Temperature Infrared Detection” International Conference on Trends in Optics and Photonics (ICONTOP 11), University of Calcutta, December 7-9, 2011

18. S. Chakrabarti, “Quaternary Capped Nanoscale In(Ga)As/GaAs Quantum Dot based Devices for High Temperature Infrared Detection” , Indian Vacuum Society symposium on thin films: science and technology (TFST) 2011, BARC, Mumbai, November 9-12, 2011.

17. S. Chakrabarti, “Quantum dot infrared detectors and its potential for future IR detector applications,” International Conference on contemorary trens in optics and opto-electronics, Indian Institute of Space Science and Technology, Thirunvanthapuram, India, January 17-19, 2011.

16. S. Chakrabarti, “Molecular Beam epitaxial growth of InAs/GaAs Quantum Dot Heterostructures and the impact of annealing on strain-coupled Quantum Dot Heterostructure,” Indo-Italian Advanced Level Workshop on semicondctor nanostructures, Ultra thin films and applications, Anna University, Chennai, India, September 8-10, 2010.

15. S. Chakrabarti, “Molecular Beam epitaxial growth of In(Ga)As/GaAs Quantum Dot Heterostructures for High Temperature Infrared detection”, International Workshop on Physics of Semiconductor Devices 2009 (IWPSD 2009), New Delhi, India, December 14-17, 2010.

14. S. Chakrabarti, “Molecular Beam Epitaxial Growth and Characterization of Nano-scale In(Ga)As/GaAs based Quantum Dot Heterostructures,” SEMI-NANO, University of Calcutta, Calcutta, India, June 13-14 2008.

13. S. Chakrabarti, “Molecular Beam Epitaxial Growth and Characterization of InAs-GaAs Bi-layer Quantum Dots,” IUMRS-ICAM 2007, IISC Bangalore, Banglore, India October 2007.

12. S. Chakrabarti, “High Temperature Quantum Dot-based Infrared Sensors”, International Conference on Sensors and Related Networks(SENNET 07), Vellore, December 12-14, 2007.

Before joining IIT Bombay

11. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Dept. of Radip-Physics and Electronics, University of Calcutta, 4th August 2006

10. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Dept. of Electrical Engineering, Indian Institute of Technology, Mumbai, 21th July 2006

9. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Dept. of Electrical Engineering, Indian Institute of Technology, Chennai, 17th July 2006

8. S. Chakrabarti, “Quantum dot Infrared Photodetectors”, School of Physical Sciences, Dublin City University, Dublin, Ireland, 23rd March 2006.

7. S. Chakrabarti, “Nano-scale Quantum Dot-based Devices for High Temperature Infrared Detection and Spintronic Applications,” Department of Physics, Lancaster University, UK, 1st February, 2006.

6. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Dept. of Physics., University College Cork, Cork, Ireland, November 29th, 2005

5. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” National Chao Tung University, Taipei, Taiwan, October 26th, 2005

4. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Academia Sinica, Taipei, Taiwan, October 25th, 2005

3. S. Chakrabarti, “Quantum Dot Infrared Photodetector for High Temperature Imaging Applications,” Dept. of Elec. Engr. & ComputerSc., University of Waterloo, ON, Canada, October 17th, 2005

2. S. Chakrabarti, X. H. Su, A. D. Stiff-Roberts and P. Bhattacharya, “Quantum Dot Infrared Photodetectors,” III-V IR Detector workshop, Army Research Laboratory, Baltimore, MD, April 2005.

1. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya and S. Kennerly, “Heterostructures for Achieving Very Large Responsivity in InAs/GaAs Quantum Dot Infrared Photodetector,” International Conference on Computers and Devices for Communication (CODEC 2004), Calcutta, India, January 2004.

Collaborators

faculty/subho.txt · Last modified: 2021/09/06 08:38 (external edit)