LIST OF CITATIONS OF THE JOURNAL PAPERS OF LAST 5 YEARS

[Source: Google/Google Scholar/Scopus/Chinese journal database etc.]

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resistor Emulation Approach to Low-Power RF Energy Harvesting</td>
<td>Thurein Paing, Jason Shin, Regan Zane and Zoya Popovic</td>
<td>2008</td>
<td>IEEE Transactions on Power Electronics</td>
<td>23, No. 3</td>
<td>1494-1501</td>
</tr>
<tr>
<td>2</td>
<td>Optimum matching parameters of an MPPT unit used for a PVG-powered water pumping system for maximum power transfer</td>
<td>Mehmet Akbaba</td>
<td>2006</td>
<td>International Journal of Energy Research</td>
<td>30</td>
<td>395–409</td>
</tr>
<tr>
<td>4</td>
<td>Solar tracking system design based on linear switched reluctance motor</td>
<td>Cheung, N.C., Zhao, S.-W., Gan, W.-C., Sun, Z.-G., Kwok, S.-C.</td>
<td>2008</td>
<td>Kongzhi Lilun Yu Yinyong/Control Theory and Applications</td>
<td>25, No. 2</td>
<td>316-320</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of photovoltaic array maximum power point tracking techniques</td>
<td>Esram, T., Chapman, P.L.</td>
<td>2007</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>22, No. 2</td>
<td>439-449</td>
</tr>
<tr>
<td>7</td>
<td>Maximum power point tracking techniques for photovoltaic systems</td>
<td>Cavalcanti, M.C., Oliveira, K.C., Azevedo, G.M., Moreira, D., Neves, F.A.</td>
<td>2006</td>
<td>Przeglad Elektrotechniczny</td>
<td>82, No. 2</td>
<td>49-56</td>
</tr>
<tr>
<td>9</td>
<td>Photovoltaic Literature Survey (NO. 33)</td>
<td>Bryce S. Richards</td>
<td>2004</td>
<td>Progress in Photovoltaics: Research and Applications</td>
<td>12, No. 7</td>
<td>569-572</td>
</tr>
<tr>
<td>10</td>
<td>Photovoltaic power generation system</td>
<td>Jing, Xn Zheng-guo, Peng, Xu Hong-hua</td>
<td>2007</td>
<td>Journal of Solar Energy</td>
<td>28, No. 3</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Year</td>
<td>Journal/Publication details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------------------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A Modified MPPT Scheme for Accelerated Convergence</td>
<td>Michael Sokolov, Doron Shmilovitz</td>
<td>2008</td>
<td>IEEE trans. on Energy Conversion 23, No. 4 1105-1107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size</td>
<td>Jae Ho Lee, HyunSu Bae and Bo Hyung Cho</td>
<td>2006</td>
<td>International Power Electronics and Motion Control Conference art. no. 4061770 603-607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>An efficient photovoltaic DC village electricity scheme using a sliding mode controller</td>
<td>Sharaf, A.M. Liang Yang</td>
<td>2005</td>
<td>IEEE Conference on Control Applications Toronto, Canada art. no. 1507315 1325-1330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Maximum power point tracking using the optimal duty ratio for DC-DC converters and load matching in photovoltaic applications</td>
<td>Ortiz-Rivera, E.I.</td>
<td>2008</td>
<td>IEEE Applied Power Electronics Conference and Exposition art. no. 4522841 987-991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Modeling & control of a bidirectional converter for a standalone photovoltaic power plant</td>
<td>Chong, B.V.P. Li Zhang Dehghani, A.</td>
<td>2007</td>
<td>European Conference on Power Electronics and Applications, 2007 art. no. 4417357 1-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Study on maximum power point tracking a controller for the wind power generator</td>
<td>Ju Sung Kang, Kang Hoon Koh, Hyun Woo Lee</td>
<td>2006</td>
<td>Korea Society of electric facilities symposium art. no. 781266 345-349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Load line emulation based maximum power point tracking</td>
<td>Sokolov, M., Shmilovitz, D.</td>
<td>2008</td>
<td>IEEE Annual Power Electronics Specialists Conference art. no. 4592595 4098-4101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Conference/Event</td>
<td>Volume/Page</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Photovoltaic maximum power point tracking based on an adjustable matched virtual load</td>
<td>Sokolov, M., Shmilovitz, D.</td>
<td>2007</td>
<td>IEEE Applied Power Electronics Conference and Exposition</td>
<td>4195915 1480-1484</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Research on methods of tracking the maximum power points for a photovoltaic conversion systems</td>
<td>Li, J., Dou, W., Xu, Z., Peng, Y., Xu, H.</td>
<td>2006</td>
<td>IET Conference Publications</td>
<td>4746963 7-11</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications</td>
<td>Tan, C.W., Green, T.C., Hernandez-Aramburu, C.A.</td>
<td>2005</td>
<td>International Conference on Power Electronics and Drive Systems</td>
<td>1619736 489-494</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Modeling and Simulation of Solar PV Array under Partial Shaded Conditions</td>
<td>R.Ramaprabha and B.L.Mathur</td>
<td>2008</td>
<td>IEEE International Conference on Sustainable Energy Technologies</td>
<td>4746963 7-11</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Research on Photovoltaic</td>
<td>Pan jian</td>
<td>2009</td>
<td>Master’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid Generation System Based on DSP</td>
<td>Dissertation, Jiangnan University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34. Research on Stand-alone LED Lighting System Supplied by Photovoltaic Panel</td>
<td>Chen Shangwu, 2008 Master’s Dissertation, Zhe Jiang University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35. The Research of Inverter for PV Generation</td>
<td>Wu Chunhua, 2008 Doctoral Dissertation, Shanghai University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Evaluation on MPPT Methods of Photovoltaic Power Systems</td>
<td>Li Jing; Dou Wei; Xu Zheng-guo; Peng Yanchang; Xu Hong-hua, 2005 Proceedings of the 15th International Photovoltaic Science & Engineering Conference (PVSEC-15), Shanghai, China.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. A New Maximum Power Point Tracking for Photovoltaic Systems</td>
<td>Mohemad Azab, 2008 Proceedings of World Academy of Science, Engineering and Technology 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43. New current control based MPPT technique for single stage grid connected PV</td>
<td>Sachin Jain, Agarwal, V., 2007 Energy Conversion and Management 48, No. 2 625-644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal/Conference/Book Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems</td>
<td>S. Jain and Agarwal, V.</td>
<td>2007</td>
<td>IET Electric Power Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>An integrated hybrid power supply for distributed generation applications fed by non-conventional energy sources</td>
<td>Jain, S., Agarwal, V.</td>
<td>2008</td>
<td>IEEE Transactions on Energy Conversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>MATLAB-based modeling to study the effects of partial shading on PV array characteristics</td>
<td>Patel, H., Agarwal, V.</td>
<td>2008</td>
<td>IEEE Transactions on Energy Conversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>A comparative study of PWM schemes for grid connected PV cell</td>
<td>Agarwal, V., Vishwakarma, A.</td>
<td>2007</td>
<td>International Conference on Power Electronics and Drive Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>An investigation of new control method for MPPT in PV array using DC–DC buck–boost converter</td>
<td>D Pefitsis, G Adamidis, A Balouktsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Evaluation and design of a power source for system detection of faults in rural distribution networks</td>
<td>Fabiano Fernandes Rocha</td>
<td>2005</td>
<td>Master’s Dissertation, Federal University of Minas Gerais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Regulation of the electric power provided by the panels of the photovoltaic systems</td>
<td>M. El Ouariachi, T Mrabti, B Tidhaf, Ka. Kassmi,</td>
<td>2009</td>
<td>International Journal of Physical Sciences 4, No. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Energy planning of a domestic PV panel</td>
<td>M.B. Ammar, M. Chaabene, M. Kamoun</td>
<td>2008</td>
<td>World Renewable Energy Congress (WRECX) 1344-1349</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A Family of Interleaved DC–DC Converters Deduced From a Basic Cell With Winding-Cross-Coupled Inductors (WCCIs) for High Step-Up or Step-Down Conversions</td>
<td>Wuhua Li and Xiangning He</td>
<td>2008</td>
<td>IEEE Transactions on Power Electronics</td>
<td>23, No. 4</td>
<td>1791-1801</td>
</tr>
<tr>
<td>2.</td>
<td>Single-stage asymmetrical half-bridge regulator with ripple reduction technique</td>
<td>Chen, R.-T., Chen, Y.-Y., Yang, Y.-R.</td>
<td>2008</td>
<td>IEEE Transactions on Power Electronics</td>
<td>23, No. 3</td>
<td>1358-1369</td>
</tr>
<tr>
<td>4.</td>
<td>Performance of grid connected inverter with maximum power point tracker and power factor control</td>
<td>Saad Mekhilef</td>
<td>2008</td>
<td>Int. J. Power Electronics</td>
<td>1, No. 1</td>
<td>49-62</td>
</tr>
<tr>
<td>5.</td>
<td>Photovoltaic Literature Survey (No. 58)</td>
<td>Avi Shalav</td>
<td>2007</td>
<td>Progress in Photovoltaics: Research and Applications, Wiley Inter Science</td>
<td>15, No. 8</td>
<td>749-754</td>
</tr>
<tr>
<td>6.</td>
<td>A novel multiple output grid-connected inverter based on DSP control</td>
<td>Yao, Z., Xiao, L., Yan, Y.</td>
<td>2008</td>
<td>IEEE Annual Power Electronics Specialists Conference</td>
<td>art. no. 4591948</td>
<td>317-322</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Journal / Conference</td>
<td>Page Range</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>------</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>EMC Issues in High-Power Grid-Connected Photovoltaic Plants</td>
<td>Rodolfo Araneo, Sergio Lammens, Marco Grossi and Ivano Rodolfi</td>
<td>2008</td>
<td>IEEE Tran. on EMC</td>
<td>In press</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor</td>
<td>Patel, H., Agarwal, V.</td>
<td>2009</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>24, No. 1 256-263</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Control strategy for series and parallel output dual-buck half bridge inverters based on DSP control,</td>
<td>Yao, Z., Xiao, L., Yan, Y.</td>
<td>2009</td>
<td>IEEE Transactions on Power Electronics</td>
<td>24, No. 2 434-444</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Dual-buck full-bridge inverter</td>
<td>Yao, Z., Xiao, L., Wu, T., Yan, Y.</td>
<td>2008</td>
<td>International Conference on Electrical Machines and Systems, ICEMS</td>
<td>art. no. 4771122 2245-2250</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Research on 5kW Photovoltaic Grid-connected Inverter</td>
<td>Liang Xuefeng</td>
<td>2008</td>
<td>Master’s thesis of Beijing jiaotong University, Beijing, China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>The Design of Grid-connected Photovoltaic Inverter</td>
<td>Yang Jun</td>
<td>2008</td>
<td>Master’s thesis of Beijing jiaotong University, Beijing, China</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Single-stage sine-wave inverter for an autonomous operation of solar photovoltaic energy conversion system
G. Saravana Ilango, P. Srinivasa Rao, A. Karthikeyan and C. Nagamani
2009
Elsevier Science, Renewable Energy
In press

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ANN and fuzzy logic controller design for hybrid wind/PV system connected to MV distribution grid</td>
<td>Sotirios B. Skretas, Demetrios P. Papadopoulos and S.N. Singh</td>
<td>2008</td>
<td>International Journal of Energy Sector Management</td>
<td>2, No. 4</td>
<td>499-520</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems</td>
<td>S. Jain and Agarwal, V.</td>
<td>2007</td>
<td>IET Electr. Power Appl.</td>
<td>1, No. 5</td>
<td>753–762</td>
</tr>
<tr>
<td>6.</td>
<td>MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics</td>
<td>Hiren Patel and Vivek Agarwal</td>
<td>2008</td>
<td>IEEE Transactions on Energy Conversion</td>
<td>23, No. 1</td>
<td>302-310</td>
</tr>
<tr>
<td>7.</td>
<td>Control of a Stand-Alone Inverter-Based Distributed Generation</td>
<td>Hiren Patel and Vivek Agarwal</td>
<td>2008</td>
<td>IEEE Transactions on Power</td>
<td>23, No. 2</td>
<td>1113-1120</td>
</tr>
</tbody>
</table>
8. Optimization of Operational Energy Cost in a Hybrid Distributed Generation System

Pradeep Sharma and Vivek Agarwal
2008 IEEE International Conference on Industrial and Information Systems
art. no. 4798462
1-6

9. PV Based Distributed Generation with Compensation Feature under Unbalanced and Non-linear Load Conditions for a 3-φ, 4 Wire System

H. Patel and V. Agarwal
2006 Proc. IEEE ICIT
art. no. 372369
322-327

10. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

Thounthong, P., Raël, S., Davat, B.
2009 Journal of Power Sources
193, No. 1
376-385

11. Fuel starvation

Thounthong, P., Davat, B., Raël, S., Sethakul, P.
2009 IEEE Industry Applications Magazine
15, No. 4
52-59

12. Research on the reactive power control of distributed generation system based on genetic algorithm

2009 Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control
37, No. 2
24-27

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper Description</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sliding mode control of a photovoltaic grid connected system</td>
<td>Y. Weslati, A. Sellami, F. Bacha, R. Andoulsi</td>
<td>JES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>A Photovoltaic Grid</td>
<td>Y. Beck</td>
<td>2007</td>
<td>IEEE art. no.</td>
<td></td>
<td>152-</td>
</tr>
</tbody>
</table>
5. Photovoltaic power conditioning and maximum power point tracking by means of a self commutated inverter
 Beck, Y., Shmilovitz, D., Medini, D., Bishara, B. 2008 IEEE Annual Power Electronics Specialists Conference art. no. 4592144 1476-1479

6. Modeling photovoltaic DC primary sources as grid connected inverter supplies considering non linear effects

7. Maximum power point algorithm in PV generation: An overview

8. MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor

9. A new design for analogue maximum power point tracking

10. Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system
 Syafaruddin, Engin Karatepe and Takashi Hiyama In press Elsevier Science Journal of Renewable Energy

This paper is cited by:
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Conference/Journal</th>
<th>Volume/Issue/Art. No.</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Shunt active power filters and PWM rectifiers in three-phase three wire systems: a survey</td>
<td>Barcenas, E., Cardenas, V., Arau, J.</td>
<td>2007</td>
<td>International Review of Electrical Engineering (IREE)</td>
<td>2, No. 3</td>
<td>337-345</td>
</tr>
<tr>
<td>3</td>
<td>Service entrance multiple-function power converter for quality power supply to critical and sensitive loads</td>
<td>Chen, F., Wang, L., Cheung, R., Nabhani, F.</td>
<td>2007</td>
<td>Large Engineering Systems Conference on Power Engineering</td>
<td>art. no. 4059358</td>
<td>8-12</td>
</tr>
<tr>
<td>8</td>
<td>A Computationally Efficient RDFT Based Reference Signal Generator for Active Compensators</td>
<td>Konstantin Borisov, Herbert Ginn and Guangda Chen</td>
<td></td>
<td>IEEE Tran. on Power Delivery</td>
<td>In press</td>
<td></td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A DSP-based active power filter for low voltage distribution systems</td>
<td>Wajiha Shireen, Li Tao</td>
<td>2008</td>
<td>Electric Power Systems Research Elsevier</td>
<td>78</td>
<td>1561-1567</td>
</tr>
<tr>
<td>3.</td>
<td>Control of a Stand-Alone Inverter-Based Distributed Generation Source for Voltage Regulation and Harmonic Compensation</td>
<td>Hiren Patel and Agarwal, V.</td>
<td>2008</td>
<td>IEEE Transactions on Power Delivery</td>
<td>23, No. 2</td>
<td>1113-1120</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
</table>
 Cheng Xiaoli, Xie Jianying, Wang 2007 Chinese Periodicals, Automation and Computer Technology

3. Research on Speed Stability of Permanent Magnet Synchronous Servo System
 Dong Xu, Tianmiao Wang, Jingmeng Liu and Hongxing Wei 2007 2nd IEEE Conference on Industrial Electronics and Applications 851-855

4. Integrated design for permanent magnet synchronous motor servo systems based on sliding mode control

5. Development of Power Converters for Wind Generators
 Su Grown 2007 Master’s Dissertation, National Taiwan University of Science and Technology

6. Development of Power Converters for Wind Generators
 Chang-Cheng Su 2008 Master’s Dissertation, National Taiwan University of Science and Technology

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Design of a current-sense</td>
<td>Mainali, K., Oruganti,</td>
<td>2008</td>
<td>IEEE Annual</td>
<td>art. no.</td>
<td>1632-</td>
</tr>
</tbody>
</table>
4. Multimodal characterization of power-line filters and electronic devices
 Pérez Jiménez, Antonio 2008 Doctoral Dissertation, Universitat Ramon Llull, Barcelona, Spain

5. ElectroMagnetic Compatibility Design of AC/DC/AC Converter Used in Wind Power Generator
 Zhang Xianli 2008 Master’s Dissertation, Hefei University of Technology

6. Conducted EMI identification in power electronics converters using the Wiener filtering method
 Piotr Musznicki 2007 Doctoral Dissertation, Grenoble and the Gdansk University of Technology

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>A Simulation Method for Maximum Power Point Tracking against Stepped I-V characteristics</td>
<td>Takuya Arayashiki, and Hirotaka Koizumi</td>
<td>2008</td>
<td>IEEE International Conference on Sustainable Energy Technologies</td>
<td>4747080</td>
<td>611 - 615</td>
</tr>
<tr>
<td>6.</td>
<td>Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded</td>
<td>Syafaruddin, Karatepe, E., Hiyama, T.</td>
<td>2009</td>
<td>IET Renewable Power Generation</td>
<td>3, No. 2</td>
<td>239-253</td>
</tr>
</tbody>
</table>
7. Optimal design of photovoltaic arrays under partial shading
Xiao, J.-L., Xu, Z., Lin, C., He, S.-Q.
2009 Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering
29, No. 11 119-124

8. Comprehensive approach to modeling and simulation of photovoltaic arrays
Villalva, M.G., Gazoli, J.R., Filho, E.R.
2009 IEEE Transactions on Power Electronics
24, No. 5 1198-1208

9. Shade Matters
Peter Hoberg
2009 Solmetric Corporation

10. Implementation of a Power Supply with Photovoltaic Cell Characteristics
2009 Electronic Thesis or Dissertation, National Taiwan University of Science and Technology

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. No.</td>
<td>Paper Description</td>
<td>Name of the Author</td>
<td>Year of publication</td>
<td>Name of Journal</td>
<td>Volume</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>8. Control of a cascade STATCOM with star configuration under unbalanced conditions</td>
<td>Song, Q., Liu, W.</td>
<td>2009</td>
<td>IEEE Transactions on Power Electronics</td>
<td>24, No. 1</td>
<td>45-58</td>
</tr>
</tbody>
</table>

Research and Applications

2. A new maximum power point tracking method for photovoltaic arrays using golden section search algorithm
 - Shao, R., Chang, L.
 - 2008
 - Canadian Conference on Electrical and Computer Engineering
 - art. no. 4564609
 - 619-622

3. Recherche du maximum de puissance sur les générateurs photovoltaïques
 - V. Boitier and P. Maussion
 - 2008
 - National network of electrical resources, University of Toulouse, France

4. Solar Energy Car
 - Ricardo Jorge Ferreira de Araújo
 - 2008
 - Master’s Dissertation, University of Porto, Portugal

5. Photovoltaics literature survey (No. 62)
 - Avi Shalav
 - 2008
 - Progress in Photovoltaics: Research and Applications
 - 16
 - 361-368

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A Single-Phase Voltage Controlled Grid Connected Photovoltaic System with Power Quality Conditioner Functionality</td>
<td>Rosa A. Mastromauro, Marco Liserre, Tamas Kerekes, and Antonio Dell’Aquila</td>
<td>2009</td>
<td>IEEE Transactions on Industrial electronics</td>
<td>Accepted for future publication</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Executive Yuan National Science Council Study Report</td>
<td>National Taiwan University of Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
controller based maximum power point tracking control under partially shaded conditions

6. Optimal design of photovoltaic arrays under partial shading
 Xiao, J.-L., Xu, Z., Lin, C., He, S.-Q.

7. Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter
 Figueres, E., Garcerá, G., Sandía, J., González-Espin, F., Rubio, J.C.
 2009 IEEE Transactions on Industrial Electronics 56, No. 3 706-717

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A current and future state of art development of hybrid energy system using wind and PV-solar: A review</td>
<td>Pragya Nema, R.K. Nema and Saroj Rangnekar</td>
<td>2008</td>
<td>Renewable and Sustainable Energy Reviews Elsevier Science journal 13, No. 8</td>
<td></td>
<td>2096-2103</td>
</tr>
<tr>
<td>3</td>
<td>Fuel starvation</td>
<td>Thounthong, P., Davat, B., Raël, S., Sethakul, P.</td>
<td>2009</td>
<td>IEEE Industry Applications Magazine 15, No. 4</td>
<td></td>
<td>52-59</td>
</tr>
<tr>
<td>4</td>
<td>Power Maximization of a PV-Wind HRES via DC-link Voltage Boosting</td>
<td>Marco Beccali, Massimiliano Luna, Marcello Pucci and Gianpaolo Vitale</td>
<td>2009</td>
<td>IEEE & PES 11Chile, Zaragoza (IEEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Photovoltaics literature survey (No. 64)</td>
<td>Avi Shalav</td>
<td>2008</td>
<td>Progress in Photovoltaics: Research and Applications 16</td>
<td></td>
<td>547-553</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Power quality issues it’s mitigation technique in wind energy generation</td>
<td>Mohod, S.W., Aware Dr., M.V.</td>
<td>2008</td>
<td>ICHQP 2008: 13th International Conference on Harmonics and Quality of Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>MATLAB/Simulink-based modelling and analysis of a grid connected wind energy conversion</td>
<td>Mohod, S.W., Aware, M.V.</td>
<td>2009</td>
<td>International Journal of Agile Systems and Management</td>
<td></td>
<td>114-129</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices</td>
<td>Tonio Biondi, Giuseppe Greco, Maria Concetta Allia, Salvatore Fabio Liotta, Gaetano Bazzano, and Salvatore Rinaudo</td>
<td>2007</td>
<td>IEEE Transactions on Power Electronics</td>
<td>22, No. 5</td>
<td>1847-1856</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Assessment of power quality for line frequency coreless induction furnaces</td>
<td>Iagăr, A., Popa, G.N., Diniş, C.M.</td>
<td>2009</td>
<td>WSEAS Transactions on Circuits and Systems</td>
<td>8, No. 1</td>
<td>115-124</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Comparison of gamma radiation performance of a range of CMOS a/D converters under biased conditions</td>
<td>Agarwal, V. and Sagar D. Birkar</td>
<td>2005</td>
<td>IEEE Transactions on Nuclear Science</td>
<td>52, No. 6</td>
<td>3059-3067</td>
</tr>
<tr>
<td>2.</td>
<td>Taguchi Based Performance and Reliability Improvement of an Ion Chamber Amplifier for Enhanced Nuclear Reactor Safety</td>
<td>R. D. Kulkarni and Agarwal, V.</td>
<td>2008</td>
<td>IEEE Transactions on Nuclear Science</td>
<td>55, No. 4</td>
<td>2303-2314</td>
</tr>
</tbody>
</table>
4. Irradiation effect on dielectric properties and electrical conductivity of Au/SiO2/n-Si (MOS) structures
A. Tataroglu, S. Altindal, M.H. Bolukdemir, G. Tanir
2007
Nuclear Instruments & Methods in Physics Research
264, No.1

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Taguchi Based Performance and Reliability Improvement of an Ion Chamber Amplifier for Enhanced Nuclear Reactor Safety</td>
<td>R. D. Kulkarni and Agarwal, V.</td>
<td>2008</td>
<td>IEEE Transactions on Nuclear Science</td>
<td>55, No. 4</td>
<td>2303-2314</td>
</tr>
</tbody>
</table>

This paper is cited by:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Paper</th>
<th>Name of the Author who has cited</th>
<th>Year of his/her publication</th>
<th>Name of Journal</th>
<th>Volume</th>
<th>Page No.</th>
</tr>
</thead>
</table>