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Chapter 1

Introduction

Small-signal rotor angle stability analysis mainly deals with a study of electromechanical

oscillations-related performance of the system about an operating point when the system

is subjected to sufficiently small magnitude of disturbance that will not trigger non-linear

behaviour of the system. Thus, this study is mainly concerned with the ability of the

power system to maintain synchronism under small disturbances. The disturbances are

considered to be sufficiently small that linearization of system equations is possible for

analysis purposes. This permits linear system theory to be applied for system analysis

even though the system is inherently non-linear.

A power system at a given operating condition may be large disturbance unstable, still

such a system can be operated, though unsecurely. However, if the system is small-signal

unstable at a given operating condition, it cannot be operated. Therefore, small-signal

stability is a fundamental requirement for the satisfactory operation of power systems.

Such a study mainly involves the verification of sufficiency of damping of all modes asso-

ciated with a system so that power transfer is not constrained.

It is known that when a dynamic system such as power system is perturbed from its

steady state condition, the system variables trace out a flow, referred to as trajectories.

These trajectories may exhibit oscillatory or monotonic behaviour. For the system to be

stable, these trajectories must remain bounded and converge to an acceptable operating

point.

1.1 Power System Oscillations:

A study of power system oscillations is of interest in a system where more than one

generator is working in parallel to deliver a common load. In small systems, there may be

only tens of generators and in large systems there may be thousands of generators working

in parallel. In such a situation synchronous machines produce torques that depend on the

relative angular displacement of their rotors. These torques act to keep the generators in

NITK Surathkal 1 Electrical Dept.



Introduction Version-1.0

synchronism (synchronizing torque), thus, if the angular displacement between generators

increases, an electrical torque is produced that tries to reduce that angular displacement.

It is as though the generators were connected by torsional spring, and just as in spring

mass system where a restraining force due to spring action against moment of mass, results

in oscillations, the moment of inertia of rotors and synchronizing torques cause the angular

displacement of the generators to oscillate following the occurrence of a disturbance when

it is operating under steady state. Under these conditions, the generators behave as rigid

bodies and oscillate with respect to one another using the electrical transmission path

between them to exchange energy. If a system is small-signal unstable, oscillations can

grow in magnitude over the span of many seconds and, can eventually result in outages of

major portions of the power system. Further, a power system is continuously subjected

to random disturbances in the form of load or generation changes/changes in controller

settings. Hence it never settles to a steady state at any given point of time. Therefore

having adequate damping of all system oscillations is critical to system stability and

therefore, to system security and reliability.

In a well designed and operated system, these oscillations of the rotor angle dis-

placement decay and settle to a value that will not constraint power flow through the

transmission network. Such a system is said to be small-signal stable. In the following

circumstances, the system may be small-signal unstable [1, 2, 3]

1. Use of high gain fast-acting exciters.

2. Heavy power transfer over long transmission lines from remote generating plants

3. Power transfer over weak ties between systems which may result due to line outages.

4. Inadequate tuning of controls of equipment such as generator excitation systems,

HVDC converters, static var compensators.

5. Adverse interaction of electrical and mechanical systems causing instabilities of tor-

sional mode oscillations.

In an over stressed system, a relatively low inherent damping and a small magnitude

of synchronous torque coefficient may constrain the system operation by limiting power

transfer. Further, in such cases, predicting oscillation boundaries and therefore to manage

them, becomes increasingly difficult.

1.2 Classification of Power System Oscillation:

The power system oscillations are mainly concerned with small excursions of the system

conditions about a steady state operating point following a small disturbance. For a
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convenience of analysis, the oscillations associated with a power system is classified as

follows [1, 2].

1. Swing mode oscillations.

2. Control mode oscillations.

3. Torsional mode oscillations.

1.2.1 Swing Mode Oscillations:

This mode is also referred to as electromechanical oscillations. For an n generator system,

there are (n− 1) swing (oscillatory) modes associated with the generator rotors. A swing

mode oscillation is characterised by a high association of the generator rotor in that

mode, where generator(s) in two coherent groups swinging against each other with an

approximate phase difference of 180◦ among the groups. It is shown later that in the

eigenvalue analysis, a high association is denoted by participation factors and formation

the of coherent groups is identified by right eigenvectors associated with rotor slip. In

addition, there will be a mode referred to as a rigid body mode or zero mode, in which all

generator rotor take part as a single rigid rotor. This mode is generally associated with

the movement of the center of inertia which corresponds to the dynamics of the average

frequency. Not all generators are involved in all modes. Typically, each mode is associated

with a group of generators swinging against another group. The location of generators in

the system determines the type of swing mode.

Swing mode oscillations can be further grouped into four broad categories:

1. Local machine-system oscillations.

2. Interunit (Intra-plant) mode oscillations.

3. Local mode oscillations.

4. Inter-area mode oscillations.

1. Local Machine-system oscillations: These oscillations generally involve one or

more synchronous machines at a power station swinging together against a compar-

atively large power system or load center at a frequency in the range of 0.7 Hz to

2 Hz. These oscillations become particularly troublesome when the plant is at high

load with a high reactance transmission system. The term local is used because the

oscillations are localized at one station or a small part of the power system.

2. Interunit (Intra-plant) mode oscillations: These oscillations typically involve

two or more synchronous machines at a power plant swing against each other, usually

at a frequency of between 1.5 Hz to 3 Hz.
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3. Local mode oscillations: These oscillations generally involve nearby power plants

in which coherent groups of machines within an area swing against each other. The

frequency of oscillations are in the range of 0.8 to 1.8 Hz.

4. Inter-area mode oscillations: These oscillations usually involve combinations

of many synchronous machines on one part of a power system swinging against

machines on another part of the system. Inter-area oscillations are normally of a

much lower frequency than local machine system oscillations in the range of 0.1 to

0.5 Hz. These modes normally have wide spread effects and are difficult to control.

1.2.2 Control Mode Oscillations:

Control modes are associated with generating units and other controls. Poorly tuned

exciters, speed governors, HVDC converters and static var compensators are the usual

causes of instability of these modes.

1.2.3 Torsional Mode Oscillations:

These oscillations involve relative angular motion between the rotating elements (syn-

chronous machine, turbine, and exciter) of a unit, with frequencies ranging from 4Hz and

above. This mechanical system has very little inherent natural damping. The source of

torque for inducing torsional oscillations with the excitation system comes from a combi-

nation of modulation of excitation system output power, and modulation of synchronous

machine power due to changes in generator field voltage. Beside the excitation systems,

there are other mechanisms that can excite torsional oscillations such as dc lines, static

converters, series-capacitor-compensated lines and other devices.

A wide bandwidth excitation system may have the capability to provide enough neg-

ative damping at any of these torsional natural frequencies to destabilize one or more of

these torsional modes, particularly with the application of a power system stabilizer.

Of these oscillations, local machine-system mode, local mode, intra-plant mode, con-

trol mode and torsional mode are generally categorized as local problems as it involves a

small part of the system. Further, inter-area mode oscillations are categorized as global

small-signal stability problems and are caused by interactions among large groups of gen-

erators and have widespread effects.

1.3 Methods of Analysis of Small Signal Stability:

1. Eigenvalue analysis [4].

2. Synchronizing and damping torque analysis [1, 5].
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3. Frequency response- and residue-based analysis [6, 7].

4. Time-domain solution analysis [2, 1, 8, 10]

1.3.1 Eigenvalue Analysis:

Eigenvalues:

The eigenvalue of a matrix is given by the value of the scalar parameter λ for which

there exist non-trivial solution (i.e. other than u = 0) to the equation

Au = λu (1.1)

where A is an (n× n) matrix (real for a physical system such as a power system) and u

is an (n× 1) vector referred to as eigenvector.

To find the eigenvalue, (1.1) may be written in the form

(A− λI)u = 0 (1.2)

where I is an identity matrix of dimension (n× n).

For a non-trivial solution,

det (A− λI) = 0 (1.3)

Expansion of the determinant gives the characteristic equation. The n solutions of

λ = λ1, λ2, · · · , λn are referred to as the eigenvalues of the matrix A. The eigenval-

ues may be real or complex, and a complex eigenvalue always occur in conjugate pair.

In general, λi = σi + jωi, where σi is referred to as neper frequency (neper/s), and ωi is

referred to as radian frequency (rad/s).

Eigenvectors:

For any eigenvalue λi, the n element column vector ui, which satisfies (1.1) is called

the right eigenvector of A associated with eigenvalue λi, Therefore we have

Aui = λiui i = 1, 2, · · · , n (1.4)

The eigenvector ui has the form

ui =













u1i

u2i

...

uni












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Since (1.4) is homogeneous, k ui (where k is a scalar) is also a solution. Thus, the

eigenvectors are determined only to within a scalar multiplier.

Similarly, the n element row vector wj which satisfies

wjA = λjwj j = 1, 2, · · · , n (1.5)

is called the left eigenvector associated with the eigenvalue λj, and has the form

wj =
[

wj1 wj2 · · · wjn

]

The left and right eigenvector corresponding to different eigenvalues are orthogonal. In

other words, if λi is not equal to λj, we have,

wj ui = 0 (1.6)

However, in case of eigenvectors corresponding to the same eigenvalue λi, we have,

wi ui = Ci (1.7)

where Ci is a non-zero constant.

Since, as noted above, the eigenvectors are determined only to within a scalar multiplier,

it is common practice to normalize these vectors so that

wi ui = 1 (1.8)

Eigenvalues and Stability:

The time-dependent characteristic of a mode corresponding to an eigenvalue λi is given

by eλit. Therefore, the stability of the system is determined by the eigenvalues as follows:

1. A real eigenvalue corresponds to a non-oscillatory mode. A negative real eigenvalue

represents a decaying mode. The larger its magnitude, the faster the decay. A

positive real eigenvalue represents aperiodic monotonic instability.

2. Complex eigenvalues occur in conjugate pairs and each pair corresponds to an os-

cillatory mode. The real component of the eigenvalues gives the damping, and the

imaginary component gives the frequency of oscillations. A negative real part rep-

resents a damped oscillations where as a positive real part represents oscillation of

increasing amplitude. Thus, for a complex pair of eigenvalues given by,

λ = σ ± jω (1.9)
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The frequency of oscillation in Hz is given by

f =
ω

2π
(1.10)

The damping ratio is given by

ζ = − σ√
σ2 + ω2

(1.11)

The damping ratio ζ determines the rate of decay of the amplitude of the oscillation.

The time constant of amplitude decay is 1
|σ|

. In other words, the amplitude decays to

1
e

or 37% of the initial amplitude in 1
|σ|

seconds or in

(

1
2π

√
1−ζ2

ζ

)

cycles of oscillations.

This also corresponds to
(

f

|σ|

)

cycles. For example, a damping ratio of 5% means that

in 3 oscillation periods the amplitude is damped to about e−|σ|t = e−
|σ|
f

(cycles) = e−0.3146×3

= 0.3892 of its initial value. The small-signal stability analysis program determines the

dynamic performance of the system by computing the eigenvalues and eigenvectors of the

state matrix of the linearized power system model. In a power system, it is required that

all modes, i.e., all eigenvalues are stable. Moreover, it is desired that all electromechanical

oscillations are damped out as quickly as possible.

1.3.2 Synchronizing and Damping Torque Analysis:

With electric power system, the change in electrical torque of a synchronous machine

following a perturbation can be resolved into two components as follows:

∆Te = TS∆δ + TD∆Sm (1.12)

where

• TS∆δ is the component of torque change in phase with the rotor angle perturbation

and is referred to as the synchronizing torque component; TS is the synchronizing

torque coefficient.

• TD∆Sm is the component of torque in phase with the speed deviation and is referred

to as the damping torque component; TD is the damping torque coefficient.

System stability depends on the existence of both components of torque for each of the

synchronous machine. This analysis assumes that the rotor angle and the speed deviations

oscillate sinusoidally. Hence, the phasor notations can be used to analyse the stability

performance of power systems. Figure (1.1) is drawn based on the observation that

dδ

dt
= SmωB (1.13)
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and
d∆δ

dt
= ∆SmωB (1.14)

For sinusoidal oscillations

jω∆δ(jω) = ∆Sm(jω)ωB

 (j   )

 (j   )

∆T ∆

∆

Te

∆δ

ΦL

S∆ m ω

ω
T

eD

eS

Figure 1.1: Phasor representation of sinusoidally varying angle, speed and torque devia-
tions.

From the figure the damping torque component can be written as

∆TeD = ∆Te cosφL (1.15)

and the synchronizing torque component can be written as

∆TeS = ∆Te sin φL (1.16)

If either or both damping and synchronizing torques are negative, i.e., if ∆TeD < 0 and/or

∆TeS < 0, then the system is unstable. A negative damping torque implies that the re-

sponse will be in the form of growing oscillations, and a negative synchronizing torque

implies monotonic instability.

NOTE:

The phase angle φL can be related to the compensated phase angle obtained in the

design of power system stabilizers -see section 3.3.2. In this analysis, the angle φL is

measured taking ∆Sm(jω) phasor as reference and is treated as positive for lagging angle.
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1.3.3 Frequency Response- and Residue- Based Analysis:

Frequency response is just another characterisation of a systems’ transfer function be-

tween a given input and output. Frequency response methods allow a deeper insight into

small-signal dynamics and have widespread use in the design of power system controllers.

Frequency response can also be measured directly, even in a power system. It is thus an

excellent method to validate mathematical models that are to be used in control design

and stability analysis [6, 7].

Residues give the contribution of a mode to a transfer function. They also give the

sensitivity of the corresponding eigenvalue to a positive feedback between the output

of the transfer function and its input [5]. Thus, residues are useful to get an idea of

which modes will be affected most by feedback. This concept has been used in [11]

to determine the suitable location of power system stabilizers. An advantage of using

residues in such analysis is that it takes into account the transfer function structure of the

excitation system unlike participation factors. However, evaluation of residues dependent

on the specific input/output combinations and may be computationally intensive for large

systems.

1.3.4 Time-Domain Solution:

Conventional method solves the non-linear differential-algebraic system of equations nu-

merically, employing numerical techniques to provide solution to each variable at rect-

angular intervals of time and thus, they basically provide time domain solutions. Time-

domain techniques provide an exact determination of stability of non-linear systems both

for small and large disturbances. However, the use of time response alone to look at small

disturbance damping can be misleading. The choice of disturbance and selection of vari-

ables to be observed in time response are critical. The input, if not chosen properly, may

not provide substantial excitation of the important modes. The observed response may

contain many modes and the poorly damped modes may not be dominant. Number of

modes depends on modeling details employed for different dynamic components. Larger

systems may have a number of inter-area modes of similar frequencies, and it is quite

difficult to separate them from a response in which more than one is excited. Therefore,

for a large power system it is not possible to identify any desired mode and study their

characteristics.

Of all these methods, eigenvalue or modal analysis is widely used for analysing the

small-signal stability of power system [7, 12, 14].
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1.4 Advantages of Eigenvalue or Modal Analysis:

With eigenvalue techniques, oscillations can be characterized easily, quickly and accu-

rately. Different modes, which are mixed with each other in curves of time-domain simu-

lation, are identified separately. Root loci plotted with variations in system parameters or

operating conditions provide valuable insight into the dynamic characteristics of the sys-

tem. Using eigenvectors coherent groups of generators which participate in a given swing

mode can be identified. In addition, linear models can be used to design controllers that

damp oscillations. Further, information regarding the most effective site of controller,

tuning of existing one, installation of new controller can be decided.

From the eigenvalue-based analysis, time responses to any chosen small disturbance

can be generated for comparison with field test results. In addition, frequency response

characteristics of the model can be generated. This is useful for comparison with system

models developed from frequency response measurements.

Eigenvalue or modal analysis describes the small-signal behavior of the system about

an operating point, and does not take into account the nonlinear behavior of components

such as controller’s limits at large system perturbations. Further, design and analysis

carried out using various indices such as participation factors, residues, etc. may lead to

many alternate options. These options need to be verified for their effectiveness using

system responses for small/large disturbances. In such cases, time-domain simulations

are very essential. In this context, time-domain simulation, and modal analysis in the fre-

quency domain should be used in a complement manner in analyzing small-signal stability

of power systems [2, 15].

1.4.1 Computation of Eigenvalues:

Following are the important algorithms used in the literature [16, 17] to compute eigen-

values numerically.

1.4.1.1 QR Techniques:

The QR method is one of the most widely used decomposition methods for calculating

eigenvalues of matrices. It uses a sequence of orthogonal similarity transformations. Sim-

ilar to the LU factorization, the matrix A can also be factored into two matrices such

that

A = QR (1.17)

where Q is a unitary matrix, i.e., Q−1 = Q∗, and R is an upper triangular matrix, ∗

denotes complex conjugate transpose.

The following algorithm may be used for finding the eigenvalues [16]:
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1. Perform QR factorization of A0 (= A). The QR factors are denoted as Q0 and R0.

2. Compute A1 = R0Q0.

3. Perform QR factorization of A1. The QR factors are denoted as Q1 and R1

4. Repeat the above steps till convergence. In the kth iteration, the matrix Ak converges

to an upper triangular matrix with eigenvalues of A as its diagonal elements.

It is numerically stable, robust, and converges rapidly. The QR method with the support

of inverse iteration scheme [6], has been used in many standard packages [12] to determine

all eigenvalues to check interaction among various modes.

1.4.1.2 Arnoldi Method:

In large interconnected systems, it is either impractical or intractable to find all of the

eigenvalues of the system state matrix due to restrictions on computer memory and com-

putational speed. Thee Arnoldi method has been developed as an algorithm that itera-

tively computes k eigenvalues of an n × n matrix A, where k is typically much smaller

than n. This method therefore bypasses many of the constraints imposed by large matrix

manipulation required by methods such as QR decomposition. If the k eigenvalues are

chosen selectively, they can yield rich information about the system under consideration,

even without the full set of eigenvalues.

The basic approach of the Arnoldi method [17] is to iteratively update a low order

matrix H whose eigenvalues successively approximate the selected eigenvalues of the larger

A matrix, such that

AV = V H; V ∗V = I (1.18)

where V is an n×k matrix and H is a k×k Hessenberg matrix. As the method progresses,

the eigenvalues of A are approximated by the diagonal entries of H yielding

HVi = ViDλ (1.19)

where Vi is a k × k matrix whose columns are the eigenvalues of H (approximating the

eigenvectors of A) and Dλ is a k× k matrix whose diagonal entries are the eigenvalues of

H (approximating the eigenvalues of A).

In the original form, the Arnoldi method had poor numerical properties, the main

problems being loss of orthogonality and slow convergence if several dominant eigenval-

ues are needed. These problems are solved by using complete re-orthogonalization and

an iterative process in the modified Arnoldi method (MAM) [12].
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NOTE: The following functions in MATLAB [13] are used in the programme to compute

eigenvalues numerically:

• eig: It finds all eigenvalues and the corresponding eigenvectors. It uses Hessen-

berg/QZ factorization techniques.

• eigs : It uses modified Arnoldi method and is used to obtain the eigenvalues se-

lectively and it can handle sparse matrices. It employs an algorithm based on

ARPACK.

1.5 Modelling of Power System:

The behaviour of a power system is described by a set of n first order nonlinear ordinary

differential equations of the following form

ẋ = F (x, u, t) (1.20)

where

x =













x1

x2

...

xn













u =













u1

u2

...

ur













F =













f1

f2

...

fn













The column vector x is referred to as the state vector, and its entries xi as state variables.

The column vector u is the vector of inputs to the system. These are the external signals

that influence the performance of the system. Time is denoted by t, If the derivatives of

the state variables are not explicit functions of time, the system is said to be autonomous.

In this case,(1.20) simplifies to

ẋ = F (x, u) (1.21)

We are often interested in output variables which can be observed on the system. These

may be expressed in terms of the state variables and the input variables in the following

form:

y = g (x, u) (1.22)
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where

y =













y1

y2

...

ym













g =













g1

g2

...

gm













The column vector y is the vector of outputs, and g is a vector of nonlinear functions

relating state and input variables to output variables. The set of equations (1.21) and

(1.22) together constitute the differential algebraic equations (DAEs) for the system.

1.5.1 Linearization of DAEs:

Let x0 be the initial state vector and u0 be the input vector corresponding to the equilib-

rium point about which the small-signal performance is to be investigated. Since x0 and

u0 satisfy (1.21), we have

ẋ0 = F (x0, u0) = 0 (1.23)

Let us perturb the system from the above state, by letting

x = x0 + ∆x u = u0 + ∆u

where the prefix ∆ denotes a small deviation.

The new state must satisfy (1.21). Hence,

ẋ = ẋ0 + ∆ẋ (1.24)

= F [(x0 + ∆x) , (u0 + ∆u)]

As the perturbations are assumed to be small, the nonlinear function F (x, u) can be

expressed in terms of Taylor’s series expansion. With terms involving second and higher

order powers of ∆x and ∆u neglected, we can write

ẋi = ẋi0 + ∆ẋi = fi [(x0 + ∆x) , (u0 + ∆u)]

= fi (x0, u0) +
∂fi

∂x1
∆x1 + · · · + ∂fi

∂xn

∆xn +
∂fi

∂u1
∆u1 + · · ·+ ∂fi

∂ur

∆ur (1.25)

Since ẋi0 = fi (x0, u0) = 0, we obtain

∆ẋi =
∂fi

∂x1

∆x1 + · · · + ∂fi

∂xn

∆xn +
∂fi

∂u1

∆u1 + · · · + ∂fi

∂ur

∆ur
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for i = 1, 2, · · · , n.

In a like manner, from(1.22), we have

∆yj =
∂gj

∂x1

∆x1 + · · ·+ ∂gj

∂xn

∆xn +
∂gj

∂u1

∆u1 + · · · + ∂gi

∂ur

∆ur

for j = 1, 2, · · · , m.

Therefore, the linearized forms of (1.21) and (1.22) in matrix notation can be written as

∆ẋ = A∆x +B∆u (1.26)

∆y = C∆x+D∆u (1.27)

where

A =







∂f1

∂x1
· · · ∂f1

∂xn

· · · · · · · · ·
∂fn

∂x1
· · · ∂fn

∂xn






B =







∂f1

∂u1
· · · ∂f1

∂ur

· · · · · · · · ·
∂fn

∂u1
· · · ∂fn

∂ur







C =







∂g1

∂x1
· · · ∂g1

∂xn

· · · · · · · · ·
∂gm

∂x1
· · · ∂gm

∂xn






D =







∂g1

∂u1
· · · ∂g1

∂ur

· · · · · · · · ·
∂gm

∂u1
· · · ∂gm

∂ur







The above partial derivatives are evaluated at the equilibrium point about which the small

perturbation is being analyzed.

∆x is the state vector of dimension (n× 1)

∆y is the output vector of dimension (m× 1)

∆u is the input vector of dimension (r × 1)

A is the state or plant matrix of size (n× n)

B is the control or input matrix of size (n× r)

C is the output matrix of size (m× n)

D is the (feed forward) matrix which defines the proportion of input which appears directly

in the output of size (m× r).

In general, to determine the small-signal stability behaviour of a non-linear dynamic

system it is sufficient to obtain the eigenvalues of A matrix indicated above. However, for

power system applications, determination of A matrix may be more involved because of

intricate relationship between the state variables and the algebraic variables. In practice,

the following are the two important methods for obtaining the state matrix:

1. Numerical approach.

2. Analytical approach.
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Numerical approach:

In this approach, the state matrix is obtained using numerical differentiation. Here,

starting from a valid equilibrium condition x0, a second state vector is created xi, in which

the ith component of x0 is perturbed by a very small amount and the ẋi is computed using

the F . This provides an intermediate state matrix in which only ith column is non zero.

This process is repeated until all columns of the state matrix are obtained by sequentially

perturbing all entries of x0. After constructing the state matrix, eigenvalues can be

obtained in an usual manner [18]. In SIMULINK toolbox [19], a function namely, linmod

is available for numerical linearization of systems.

Analytical approach:

In this approach, analytical expressions are obtained for all partial derivatives of vari-

ables. These expression are assembled in such a way that all elements are written only

in terms of state variables. In the literature, the following two basic approaches are

employed:

1. Load flow Jacobian-based approach [8].

2. Current injection-based approach [1, 2].

1.5.1.1 Load Flow Jacobian-based Approach:

The nonlinear model is of the form

ẋ = f
(

x, y, u
)

(1.28)

0 = g
(

x, y
)

(1.29)

where the vector y indicates both machine currents Id−q and V̄ vectors. Expression (1.29)

consists of the stator algebraic equations and the network equations in the power-balance

form. To show explicitly the traditional load flow equations and the other algebraic

equations, y is partitioned as

y =
[

I t
d−q θ1 V1 · · ·Vm|θ2 · · · θn Vm+1 · · · · · ·Vn

]T

y =
[

yt

a
|yt

b

]

(1.30)

Here, the vector y
b

corresponds to the load flow variables, and the vector y
a

corresponds

to the other algebraic variables. Linearizing (1.28) and (1.29) around an operating point

gives,

[

d∆x

dt

0

]

=

[

A B

C JAE

][

∆x

∆y

]

+ E [∆u] (1.31)
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where

∆y =

[

∆y
a

∆y
b

]

JAE =

[

D11 D12

D21 JLF

]

(1.32)

Eliminating ∆y
a
, ∆y

b
, we get ∆ẋ = Asys∆x where Asys = (A − BJ−1

AEC) and JLF is

the load flow Jacobian. The model represented by (1.31) is useful in both small-signal

stability analysis and voltage stability, since JLF is explicitly shown as part of the system

differential-algebraic Jacobian.

1.5.1.2 Current Injection-based Approach:

Generator Equations:

For ith generator, the differential equations are written as

∆ẋg = [Ag] ∆xg +
[

Bp
g

]

∆V p
g + [Eg]∆uc (1.33)

where ∆uc is the vector of small perturbation in the reference input variables of the

generator controllers given by ∆uc = [(∆Vref + ∆Vs) , ∆ωB]T . With ∆ωB is assumed to

be zero, we have ∆uc = [∆Vref + ∆Vs] and ∆V p
g are the small deviations in the generator

terminal voltage expressed in polar coordinates given by

∆V p
g =

[

Vg0∆θg

∆Vg

]

Using currents as the output variables of the generator, we have in Kron’s reference

frame

∆Ig =

[

∆IDg

∆IQg

]

= [Cg] ∆xg +
[

Dp
g

]

∆V p
g (1.34)

The derivations for IDg and IQg are given in Appendix- C.4.

In this analysis, a synchronous machine is represented by 2.2 model -see Figure C.1.

In addition, three IEEE-type exciters [2, 22]- single-time constant exciter, DC1A exciter

and AC4A exciter, and two IEEE specified turbines [23]- hydro turbine and reheat-type
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steam turbine, are considered. This results in the state variable vector given by

∆xg =

[

∆δ ∆Sm ∆ψf ∆ψh ∆ψg ∆ψk ∆Efd ∆vR

∆xB ∆xF ∆x1 ∆x2 ∆x3 ∆y1 ∆PGV ∆z

]T

The association of different state variables with different components are depicted in Ap-

pendix -A. The nonzero elements of matrix [Ag] ,
[

Bp
g

]

, [Cg] ,
[

Dp
g

]

, and [Eg] are given in

Appendix -C,-D and -E.

Transformation of Matrices from Polar to Rectangular forms:

It is given that

∆V p
g =

[

Vg0∆θg

∆Vg

]

In rectangular coordinates we have,

∆V r
g =

[

∆VQg

∆VDg

]

The two expressions are related by

∆V p
g =

1

Vg0

[

−VDg0 VQg0

VQg0 VDg0

][

∆VQg

∆VDg

]

= [P ]∆V r
g

The derivation of [P ] matrix is given in Appendix -B.1.

It can be seen that

[P ]−1 = [P ]

The matrices
[

Br
g

]

is obtained as

[

Br
g

]

=
[

Bp
g

]

[P ]

where
[

Bp
g

]

=
[

Bp
g (2, 1)Bp

g (2, 2)
]

and
[

Br
g

]

=
[

Br
g (2, 1)Br

g (2, 2)
]

Similarly,
[

Dr
g

]

can be obtained as

[

Dr
g

]

=
[

Dp
g

]

[P ]

The superscript r indicates the representation of matrices in rectangular coordinates.
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Network Equations:

The linearized network equations can be expressed either using admittance matrix (in

DQ variables) or using Jacobian matrix (obtained from power balance equations). Using

the former, we have

[YDQ](2nb×2nb)
∆VQD(2nb×1) = ∆IDQ(2nb×1) (1.35)

where each element of [YDQ] is a 2x2 matrix. For example,

YDQ (i, j) =

[

Bij Gij

Gij −Bij

]

∆VQDi and ∆IDQi are vectors with elements

∆VQDi =

[

∆VQi

∆VDi

]

and∆IDQi =

[

∆IDi

∆IQi

]

Note that the voltages are expressed with ∆VQi preceding ∆VDi. On the other hand, the

currents are expressed with ∆IDi preceding ∆IQi. This is deliberately done so that the

matrix [YDQ] is a real symmetric matrix (if phase shifting transformers are not considered).

Also note that the admittance matrix representation is independent of the operating point.

Derivation of System Equations:

Let the number of generators in the system be ng, the number of loads be ml. Let the

number of buses in the network be nb. Rewriting (1.35) we have,

[YDQ] ∆VQD = [PG] ∆IG − [PL] ∆IL (1.36)

where [PG] is a (2nb × 2ng) and [PL] is a (2nb × 2ml) matrix with elements

PG (i, j) =

[

1 0

0 1

]

if generator j is connected to bus i.

Otherwise,

PG (i, j) =

[

0 0

0 0

]

Similarly, [PL] can be defined. PL (i, j) is a unit matrix of dimension 2 × 2 if load j is

connected to bus i, otherwise, PL (i, j) is a null matrix. Notice that the signs associated
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with IL is negative as the load currents are assumed to flow away from the bus (load

convention).

NOTE:

The structure of [PG] and [PL] matrices for a 4 machine, 10-bus power system is pre-

sented in Appendix -B.2.

The load current ∆ILj at the jth load bus can be expressed as

∆ILj = [YL]j ∆VLj (1.37)

where

∆ILj = [∆IDLj ∆IQLj]
T

∆VLj = [∆VQLj ∆VDLj ]
T

and

[YL]j =

[

−BDQ GDD

GQQ BQD

]

The elements of [YL]j are given in Appendix -G, and [YL] is a block diagonal matrix.

In general we have,

∆VL = [PL]T ∆VQD

Using the above equation in (1.37) we get,

∆IL = [YL] [PL]T ∆VQD (1.38)

The generator current vector, ∆IG is collection of the quantities ∆Ig1, ∆Ig2, ∆Ig3 ... ∆Igng

and using (1.34), ∆IG can be expressed as

∆IG = [CG] ∆XG − [YG]∆V G (1.39)

where

∆XT
G =

[

∆xT
g1 ∆xT

g2 ...∆x
T
gng

]

∆V T
G =

[

∆V T
g1

r
∆V T

g2

r
...∆V T

gng

r
]
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∆IT
G =

[

∆IT
g1 ∆IT

g2 ...∆I
T
gng

]

[CG] and [YG] matrices are given by,

[CG] = Diag
[

Cg1 Cg2 ...Cgng

]

[YG] = Diag
[

−Dr
g1 −Dr

g2 ...−Dr
gng

]

We know that

∆V G = [PG]T ∆VQD (1.40)

Using the above equation, (1.39) can be rewritten as

∆IG = [CG] ∆XG − [YG] [PG]T ∆VQD (1.41)

Substituting (1.38) and (1.41) in (1.36) we get

[YDQ] ∆VQD = [PG] [CG]∆XG − [PG] [YG] [PG]T ∆VQD − [PL] [YL] [PL]T ∆VQD

Rearranging the terms associated with ∆VQD we get

[

Y
′

DQ

]

∆VQD = [PG] [CG]∆XG (1.42)

where
[

Y
′

DQ

]

= [YDQ] + [PG] [YG] [PG]T + [PL] [YL] [PL]T

Solving for ∆VQD from (1.42) and using it in (1.40) we get ∆V G as,

∆V G = [PG]T
[

Y
′

DQ

]−1

[PG] [CG]∆XG (1.43)

From (1.33), the collection of all the generator equations is expressed by

∆ẊG = [AG] ∆XG + [BG]∆VG + [EG] ∆U c (1.44)
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where

[AG] = Diag
[

Ag1 Ag2 · · · · · ·Agng

]

[BG] = Diag
[

Br
g1 B

r
g2 · · · · · ·Br

gng

]

[EG] = Diag
[

Eg1 Eg2 · · · · · ·Egng

]

∆UT
c =

[

∆uT
c1,∆u

T
c2 · · · · · ·∆uT

cng

]

Substituting (1.43) in (1.44) gives,

∆ẊG = [AT ] ∆XG + [EG]∆U c (1.45)

where

[AT ] = [AG] + [BG] [PG]T
[

Y
′

DQ

]−1

[PG] [CG] (1.46)

Since analytical approach provides better insight into linearization of system of equa-

tions and it is more accurate compared to numerical approach (which may suffer from

the problem of inaccurate estimates depending upon the amount of perturbation chosen),

in this report, the current injection-based analytical method is employed and the system

matrix [AT ] given in (1.46) is used to perform the eigenvalue analysis.

1.6 Modal Analysis of Linear Systems:

For an nth order LTI system, the zero-input-response, i.e., the natural response can be

described in state space form as [4].

ẋ = A x (1.47)

with initial value of states, x(0) and the state matrix A is of dimension(n × n).

Consider the transformation given by,

x = U y (1.48)

where U is assumed to be a matrix of right eigenvectors of A, pertaining to distinct

eigenvalues, [λ1, λ2, · · · · · · λn] of A.

From (1.47) we have

U ẏ = A U y

ẏ = U
−1

A U y (1.49)
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The operation, U
−1

A U represents the similarity transformation such that

W A U = Dλ (1.50)

where W = U−1, is a matrix of left eigenvector of A.

U =









...
... · · · ...

u1 u2 · · · un

...
... · · · ...









with A ui = λiui i = 1, 2, 3....n

W =













· · · w1 · · ·
· · · w2 · · ·
...

...
...

· · · wn · · ·













with wjA = λjwj j = 1, 2, 3....n

and

Dλ =













λ1

λ2

. . .

λn













NOTE:

1. ui is a column vector and wj is a row vector.

2. ui and wj are orthonormal vector, i.e.,

wjui = 1 for i = j (1.51)

= 0 for i 6= j

Using (1.50) in (1.49) we have,

ẏ = Dλ y (1.52)

From (1.48), the initial value of y is given by

y (0) = U−1 x (0) = W x (0) (1.53)
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The solution of (1.52) is obtained as

y (t) =













y1 (t)

y2 (t)
...

yn (t)













=













eλ1t

eλ2t

. . .

eλnt

























y1 (0)

y2 (0)
...

yn (0)













From ( 1.48) and (1.53) we have,













x1 (t)

x2 (t)
...

xn (t)













=













u1 u2 · · · un

























eλ1tw1x (0)

eλ2tw2x (0)
...

eλntwnx (0)













or













x1 (t)

x2 (t)
...

xn (t)













=









...

u1
...









eλ1tw1x (0) +









...

u2
...









eλ2tw2x (0) + · · · · · ·+









...

un

...









eλntwnx (0)

or x (t) =
n
∑

i=1

(wi x (0)) eλit ui (1.54)

NOTE:

1. (wi x (0)) is a scalar and it gives the contribution of the initial condition x (0) to the

ith mode. In other words, wi determines to what extent the ith mode gets excited

(in a state) for a given initial condition vector x (0). Thus, a left eigenvector carries

mode controllability information.

2. ui describes the activity of each state variable in ith mode. In other words, it shows

how ith mode of oscillation is distributed among the system states. Thus, it is said

to describe the mode shape of each state variable in ith mode. The magnitude, | uki |
gives the relative magnitude of activity and the angle, 6 uki represents relative phase

displacement of kth state in constituting the ith mode. The angle information will

be useful to group machines which swing together in a mode. A right eigenvector

carries information regarding on which state variables the mode is more observable.
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If x (0) = uj then from (1.54), we have

x (t) =

n
∑

i=1

(

wi uj

)

eλit ui

Using (1.51), a non zero value results only for i = j, hence we get,

x (t) =
(

wj uj

)

eλj t uj (1.55)

The above equation implies that only jthmode is excited.

Further, (1.55) is re-written as

x (t) =

n
∑

k=1

(wjk ukj) eλj t uj (1.56)

where wjk (ukj) represents the kth entry of the jth left(right) eigenvectors, wj

(

uj

)

of A,

which are normalized so that (1.51) is valid.

1.6.1 Eigenvalue Sensitivity - Participation Matrix:

In the analysis of large power systems. it is desirable to know the level of impact that a

set of state variables has on a given mode so that methods can be devised to control those

modes. In this regard, eigenvalue sensitivity analysis- participation factor, provides a tool

to identify the nature of modes. In the following lines, a derivation has been presented to

obtain the participation matrix [5].

Assuming that the eigenvalues are distinct, we have

Auj = λjuj (1.57)

Now consider,

(

∂A

∂ars

)

uj + A

(

∂uj

∂ars

)

=

(

∂λj

∂ars

)

uj + λj

(

∂uj

∂ars

)

where ars is an element in the A matrix in the rth row and sth column position.

Simplifying the above expression, we get,

(

∂A

∂ars

)

uj + A

(

∂uj

∂ars

)

− λj

(

∂uj

∂ars

)

=

(

∂λj

∂ars

)

uj
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(

∂A

∂ars

)

uj + (A− λjI)

(

∂uj

∂ars

)

=

(

∂λj

∂ars

)

uj (1.58)

Pre-multiply the above equation by the left eigenvector wj, we get,

wj

(

∂A

∂ars

)

uj + wj(A− λjI)

(

∂uj

∂ars

)

= wj

(

∂λj

∂ars

)

uj (1.59)

Since we know that wj(A−λjI) =0 (from the definition of the left eigenvectors) we have,

wj

(

∂λj

∂ars

)

uj = wj

(

∂A

∂ars

)

uj

Since
∂A

∂ars

is a scalar, we can write

∂λj

∂ars

=
wj

(

∂A
∂ars

)

uj

wjuj

Note that in
∂A

∂ars

all elements are zero except (r, s)th element which is 1. Therefore,

∂λj

∂ars

=
wjrusj

wjuj

(1.60)

where wjr = wj (r) and usj = uj (s), rthelement and sth element in the vectors wj and uj

respectively.

Participation Matrix is obtained when r = s = k in (1.60), (i.e., when eigenvalue sensi-

tivity is obtained corresponding to the diagonal element, akk of A). With this substitution

for r and s, we get,

Pjk =
∂λj

∂akk

=
wjkukj

wjuj

(1.61)

NOTE:

1. In the above expression for the participation factor, a division by a scalar wjujnormalizes

the eigenvectors.

2. In MATLAB, if eig function is used, then the eigenvectors are inherently normal-

ized. If eigs is used, the normalization should be carried out using the above

expression.
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Using (1.61) in (1.56) we get

x (t) =
n
∑

k=1

Pjk eλj t uj

Note that the value of Pjk is decided based on the value of ukj for a given wjk. From this

it can be said that ukj measures the activity of kth state variable in jth mode, wjk weighs

the contribution of this activity to the mode. Thus, Pjk can be used as a relative measure

to indicate the net participation of the kth state variable in building the time response of

the jth mode [20, 21].

REMARKS:

1. The components obtained in (1.60) are referred to as dimensional “generalised par-

ticipation”. As a special case when we set r = s = k, the components constitute a

P matrix. The entries, Pjk with j, k = 1, 2.....n, of the P matrix are termed as the

participation factors (PF) of the system.

2. wjk and ukj when taken separately, are unit dependent. However, Pjk s’ are dimen-

sionless, i.e., independent of the units used for the state variable. This provides a

straight forward measure of relative participation of states in a mode.

3. The sum of the values of all the entries of jth row or column of P is always equal to

1.0, i.e.,

n
∑

k=1

Pjk = 1.0 and
n
∑

j=1

Pjk = 1.0 (1.62)

4. Even if Pjk is a complex number, the condition given by (1.62) is satisfied. However,

the relative participation is measured by computing the absolute value of Pjk.

5. The participation factor, Pjk represents the sensitivity of the jth eigenvalue to the

variations in kth diagonal element, (akk) of A matrix. For example, a positive real

participation factor denotes that an introduction of a damping coefficient usually

shifts λ to the left.

6. A large Pjk indicates that jth eigenvalue is very sensitive to a local feedback around

the kth state variable.

7. The participation factor (or residue)-based analysis is valid only if the eigenvalues

are distinct. If eigenvalues are nearly identical, the mode shapes given by the right-

eigenvectors are physically meaningless and participation factors do not give the
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correct sensitivity information. It is observed in [5] that a situation of eigenvalues

with degree of multiplicity greater than 1 rarely arises in power systems. Even in

such cases, frequency response or linear response calculated using these eigenval-

ues/eigenvectors is correct.

The complete eigenvalue analysis of dynamic system is demonstrated below through a

linear spring-mass system.

1.7 Spring-Mass System Example:

Let us consider a multi-mass, multi-spring system as shown in Figure (1.2). There are 2

small masses connected by a very stiff spring which in turn are connected to a relatively

larger mass via a much less stiff spring.

M1

M2 M3

kk
2312

x

x

x

1

2

3

Figure 1.2: Multi-mass multi-spring system

An equivalent circuit for the system is shown in Figure 1.3. Choosing the state variable

vector as x = [x1, x2, x3, v1, v2, v3]
T , we can write the dynamic equation in state-space as

dx1

dt
= v1 (1.63)

dx2

dt
= v2 (1.64)

dx3

dt
= v3 (1.65)

dv1

dt
= −k12

M1
(x1 − x2) (1.66)

dv2

dt
=

k12

M2
x1 −

(

k12

M2
+
k23

M2

)

x2 +
k23

M2
x3 (1.67)

dv3

dt
=

k23

M3
(x2 − x3) (1.68)
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M1 M2 M3

12k 23kx 1 x 2 x 3

Figure 1.3: Equivalent circuit for multi-mass multi-spring system.

Writing the above equations in matrix form, we get,























ẋ1

ẋ2

ẋ3

v̇1

v̇2

v̇3























=























0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
−k12

M1

k12

M1

0 0 0 0
k12

M2
−
(

k12

M2
+ k23

M2

)

k23

M2
0 0 0

0 k23

M3
−k23

M3
0 0 0













































x1

x2

x3

v1

v2

v3























or























ẋ1

ẋ2

ẋ3

v̇1

v̇2

v̇3























=









[

0
]

3x3

[

I
]

3x3

[

Ak

]

3x3

[

0
]

3x3































x1

x2

x3

v1

v2

v3























= A x

where

[Ak] =









−k12

M1

k12

M1
0

k12

M2

−
(

k12

M2

+ k23

M2

)

k23

M2

0 k23

M3
−k23

M3








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Choose the parameters as follows:

k12 = 2 N/m; k23 = 20 N/m;

M1 = 10 kg; M2 = 1 kg; M3 = 1 kg

We can observe that k23 >> k12. This means is that masses M2 and M3 more rigidly

coupled than the group M2 and M3 with M1. Also observe that M1 >> M2 andM3. From

the knowledge of a simple spring-mass system it can be predicted that low frequency

oscillations are mainly due to mass M1 and high frequency oscillation is predominantly

associated with M2 and M3. Substituting the numerical values of the parameters, we get

[Ak] as

[Ak] =







−0.2 0.2 0

2 −22 20

0 20 −20







To determine the eigenvalues of the original system, let us first obtain the eigenvalues γ

of [Ak]. To this effect compute,

det [γI − Ak] = det







γ + 0.2 −0.2 0

−2 γ + 22 −20

0 −20 γ + 20







The characteristic equation is, γ3 + 42.2γ2 + 48γ = 0. The roots of the polynomial are

given by,

γ1 = 0, γ2 = −1.1699, γ3 = −41.0301

The eigenvalues of A can be obtained as follows:

Let λ be an eigenvalue of A and u be the corresponding eigenvector. From the definition,

we have

A u = λ u

or

[

0 I

[Ak] 0

][

u1

u2

]

= λ

[

u1

u2

]

(1.69)

Simplifying (1.69), we get

u2 = λ u1 (1.70)

[Ak] u1 = λ u2 (1.71)
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Using (1.70) in (1.71), we obtain

[Ak] u1 = λ2 u1

Again from the definition, we can write that

λ2 = γ

and the eigenvalues of A is given by

λ = ±√
γ

Thus,

λi with i=1,2,3,4,5 = 0, 0, ±j1.0816, ±j6.4055

NOTE:

1. Two zero eigenvalues represent non-uniqueness of state variables. One zero eigen-

value is due to the displacement variable x, and the other is due to the velocity

variable v.

2. A zero eigenvalue implies that if states x1, x2 and x3 are changed by a given amount,

it still unalters the relative displacement between the masses. Similar inferences can

be made about the states v1, v2 and v3.

3. A zero eigenvalue due to v also demonstrates the absence of damping factor i.e., a

force component which is a linear function of velocity.

To eliminate one-zero eigenvalue due to the variable x,the state variables are redefined

as xn = [p, q, v1, v2, v3]
T , where,

(x2 − x1) = p and (x3 − x1) = q

Using this new state-vector, the state-space equations from (1.63) to (1.68) are rewritten
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as:

dp

dt
= v2 − v1 (1.72)

dq

dt
= v3 − v1 (1.73)

dv1

dt
=

k12

M1
p (1.74)

dv2

dt
= −k12

M2
p +

k23

M2
(q − p) (1.75)

dv3

dt
= −k23

M3
(q − p) (1.76)

Writing the above equation in matrix form, we have,

















ṗ

q̇

v̇1

v̇2

v̇3

















=



















0 0 −1 1 0

0 0 −1 0 1
k12

M1

0 0 0 0
(

−k12

M2
− k23

M2

)

k23

M2
0 0 0

k23

M3
−k23

M3
0 0 0



































p

q

v1

v2

v3

















= Am xn

Using the numerical values of the parameters, we obtain,

Am =

















0 0 −1 1 0

0 0 −1 0 1

0.2 0 0 0 0

−22 20 0 0 0

20 −20 0 0 0

















The eigenvalues of Am are

λ1 = +j6.4055, λ2 = −j6.4055,

λ3 = +j1.0816, λ4 = −j1.0816,

λ5 = 0

The matrix of left-eigenvectors is given by,
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λ1 λ2 λ3 λ4 λ5

U =

















0.1123 6 −90◦ 0.1123 6 90◦ 0.5096 6 0◦ 0.5096 6 0◦ 0

0.1057 6 90◦ 0.1057 6 −90◦ 0.5358 6 0◦ 0.5358 6 0◦ 0

0.0035 6 −180◦ 0.0035 6 180◦ 0.0942 6 −90◦ 0.0942 6 90◦ 0.5774 6 0◦

0.7160 6 0◦ 0.7160 6 0◦ 0.4569 6 90◦ 0.4569 6 −90◦ 0.5774 6 0◦

0.6809 6 −180◦ 0.6809 6 180◦ 0.4853 6 90◦ 0.4853 6 −90◦ 0.5774 6 0◦

















p

q

v1

v2

v3

The matrix of right-eigenvectors is given by,

p q v1 v2 v3

W =

















2.3486 6 90◦ 2.2336 6 −90◦ 0.0180 6 −180◦ 0.3666 6 0◦ 0.3487 6 180◦

2.3486 6 −90◦ 2.2336 6 90◦ 0.0180 6 180◦ 0.3666 6 0◦ 0.3487 6 −180◦

0.4635 6 0◦ 0.4923 6 0◦ 0.8837 6 90◦ 0.4285 6 −90◦ 0.4552 6 −90◦

0.4635 6 0◦ 0.4923 6 0◦ 0.8837 6 −90◦ 0.4285 6 90◦ 0.4552 6 90◦

0 0 1.4434 6 0◦ 0.1443 6 0◦ 0.1443 6 0◦

















λ1

λ2

λ3

λ4

λ5

The participation matrix is given by,

λ1 λ2 λ3 λ4 λ5

P =

















0.2638 0.2638 0.2362 0.2362 0

0.2362 0.2362 0.2638 0.2638 0

0.0001 0.0001 0.0833 0.0833 0.8333

0.2625 0.2625 0.1958 0.1958 0.0833

0.2374 0.2374 0.2209 0.2209 0.0833

















p

q

v1

v2

v3

NOTE:

• The eigenvalues for the above matrix Am are determine using the MATLAB com-

mand [U, D] = eig(Am)

where U is the matrix of right-eigenvectors and D is the diagonal matrix having the

eigenvalues as the diagonal elements.

• The matrix of left-eigenvectors is determine using the command W = inv(U)

• the participation factor matrix P is determine using the command P=U.*conj(W’)

Observations:

1. All the participation factors are real and positive.

2. For the low frequency oscillation of 1.0816 rad/s (λ3 and λ4), the participation

factors corresponding to the velocities (v1, v2 and v3) are relatively close to each
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other, and from the right-eigenvector matrix we can see that (v2, v3) are in phase,

and 180◦ out-off phase with v1. From this, we can conclude that M1, M2 and M3

participate almost equally in this mode and masses M2 and M3 together swing

against M1.

3. For the high frequency oscillations of 6.4055 rad/s (λ1 and λ2), the participation

factors corresponding to the velocities (v2 and v3) are relatively higher than that for

the velocity v1, and from the right-eigenvector matrix we can see that v2 and v3 are

180◦ out-off phase with respect to each other. From this, we can conclude that the

mass M1 has very low participation in this mode. This mode is predominantly seen

in velocities v2 and v3, and the mass M2 swinging against the mass M3.

4. The zero-mode (λ5) is not seen in p and q since, U(1, 5) = 0 and U(2, 5) = 0.

Further, since U(3, 5) = U(4, 5) = U(5, 5), it is clear that the zero-mode (the rigid-

body mode) is seen almost equally in state variables, v1, v2 and v3, and the mode

exists due to the redundancy of the velocity state variables.

5. The positive participation factor denotes that a damping coefficient usually shifts λ

to the left.

6. For a 3- mass system there are only 2 oscillatory modes: 6.4055 rad/s and 1.0816

rad/s. These represent swing modes in a power system as these modes are mainly

constituted by velocity associated with (rotor) masses.

Analysis with Damping Coefficient:

Figure (1.2) is modified as follows to include the effect of damping coefficient.

Assuming B2 = B3 = 0, and considering only B1, the differential equations for the reduced

system are written as follows:

dp

dt
= v2 − v1 (1.77)

dq

dt
= v3 − v1 (1.78)

dv1

dt
=

k12

M1

p− B1

M1

v1 (1.79)

dv2

dt
= −k12

M2

p +
k23

M2

(q − p) (1.80)

dv3

dt
= −k23

M3

(q − p) (1.81)
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M1

M2 M3

x

x

x

1

2

3

B BB 1 2 3

k 12 k 23

Figure 1.4: Modified multi-mass multi-spring system with damping.

The above equations are written in the matrix form as,

















ṗ

q̇

v̇1

v̇2

v̇3

















=



















0 0 −1 1 0

0 0 −1 0 1
k12

M1

0 − B1

M1

0 0
(

−k12

M2
− k23

M2

)

k23

M2
0 0 0

k23

M3
−k23

M3
0 0 0



































p

q

v1

v2

v3

















= An xn

For the chosen parameters with B1 = 1 N/m/s, we have,

An =

















0 0 −1 1 0

0 0 −1 0 1

0.2 0 −0.1 0 0

−22 20 0 0 0

20 −20 0 0 0

















The eigenvalues of An are

λ1 = −0.0000 + j6.4055, λ2 = −0.0000 − j6.4055,

λ3 = −0.0083 + j1.0809, λ4 = −0.0083 − j1.0809,

λ5 = −0.08340

(λ1 and λ2 have negligible damping)

NOTE:

From the definition of participation factor, it can be verified that due to the intro-
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duction of a diagonal term, An(3, 3) = -0.1 which is brought about by a non-zero viscous

damping B1, the eigenvalue with damping can be approximately estimated as

λ3 new = λ3 old + P (3, 3)×−0.01

= j1.0816 + 0.0833 ×−0.1

= −0.00833 + j1.0816 (there is a small change in frequency)

Similar observation can be made with respect to λ4 new

Construction of Time-domain Response:

We know from (1.54) that having determined the eigenvalues and eigenvectors (right

and left), we can estimate the time-domain zero-input response as:

xn (t) =

n
∑

i=1

(wi x (0)) eλit ui

or

xn (t) = w1 x (0) eλ1t u1 + w2 x (0) eλ2t u2 + w3 x (0) eλ3t u3 +

+w4 x (0) eλ4t u4 + w5 x (0) eλ5t u5 (1.82)

where xn = [p, q, v1, v2, v3]
T .

In the following lines, the time-domain response is constructed for 3 different initial

values of states without accounting any damping.

Case-1 xn (0) = [−1,−1, 0, 0, 0]T

From (1.82), the time-domain response is obtained as:

xn (t) = −j0.1150 eλ1t u1 + j0.1150 eλ2t u2 − 0.9558 eλ3t u3 − 0.9558 eλ4t u4 − (0) eλ5t u5

Further simplification leads us to the following result:

p (t) = −0.0258 cos(6.4055t) − 0.9742 cos(1.0816t) (1.83)

q (t) = +0.0242 cos(6.4055t) − 1.0242 cos(1.0816t) (1.84)

v1 (t) = −0.0008 sin(6.4055t) − 0.1800 sin(1.0816t) (1.85)

v2 (t) = +0.1646 sin(6.4055t) + 0.8734 sin(1.0816t) (1.86)

v3 (t) = −0.1566 sin(6.4055t) + 0.9276 sin(1.0816t) (1.87)
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The above response is verified by numerical solution of system of equation from (1.72) to

(1.76). The plots obtained are as shown in Figure 1.5.
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Figure 1.5: Numerical solution for Case-1.

Note that for this xn(0), where vi(0) = 0 for i=1, 2 and 3, the zero-mode is not excited

and the lower frequency mode is excited to a larger extent than the higher frequency mode

in all the state variables.

Case-2 xn (0) = [1, 0, 0, 0, 0]T

From (1.82), the time-domain response is obtained as:

xn (t) = j2.3486 eλ1t u1 − j2.3486 eλ2t u2 + 0.4635 eλ3t u3 + 0.4635 eλ4t u4 − (0) eλ5t u5
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Further simplification leads us to the following result:

p (t) = +0.5274 cos(6.4055t) + 0.4724 cos(1.0816t) (1.88)

q (t) = −0.4964 cos(6.4055t) + 0.4966 cos(1.0816t) (1.89)

v1 (t) = +0.0164 sin(6.4055t) + 0.0872 sin(1.0816t) (1.90)

v2 (t) = −3.3632 sin(6.4055t) − 0.4234 sin(1.0816t) (1.91)

v3 (t) = +3.1984 sin(6.4055t) − 0.4498 sin(1.0816t) (1.92)

The above response is verified by numerical solution of system of equation from (1.72) to

(1.76). The plots obtained are as shown in Figure 1.6.
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Figure 1.6: Numerical solution for Case-2.

Note that for this xn(0), where only p(0) 6= 0, the higher frequency mode is excited to

a larger extent in v2(t) and v3(t).
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Case-3 xn (0) = [0, 0, 1, 0, 0]T

From (1.82), the time-domain response is obtained as:

xn (t) = −0.0180 eλ1t u1 − 0.0180 eλ2t u2 + j0.8837 eλ3t u3 − j0.8837 eλ4t u4 + 1.4434 eλ5t u5

Further simplification leads us to the following result:

p (t) = −0.0040 sin(6.4055t) − 0.9006 sin(1.0816t) (1.93)

q (t) = +0.0038 sin(6.4055t) − 0.9468 sin(1.0816t) (1.94)

v1 (t) = +0.0001 cos(6.4055t) + 0.1664 cos(1.0816t) + 0.8335 (1.95)

v2 (t) = −0.0256 cos(6.4055t) − 0.8074 cos(1.0816t) + 0.8335 (1.96)

v3 (t) = +0.0244 cos(6.4055t) − 0.8576 cos(1.0816t) + 0.8335 (1.97)

The above response is verified by numerical solution of system of equation from (1.72) to

(1.76). The plots obtained are as shown in Figure 1.7.
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Figure 1.7: Numerical solution for Case-3.
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Note that for this xn(0), where only v1(0) 6= 0, the mode-zero is excited and only the

low frequency mode is predominantly seen in all the state variables.

Observations:

1. If p (0) = q (0) with vi(0) = 0 for i = 1, 2 and 3, the modal frequency 1.0816 rad/s

is excited to a larger extent than that of the modal frequency 6.4055 rad/s. This is

to some extent true as an equal amount of initial displacement is given to masses

M2 and M3.

2. As long as vi (0) = 0 for i = 1, 2 and 3, mode-zero (rigid-body mode) is not excited.

3. In all cases the modal frequency 6.4055 rad/s is not predominantly seen in the state

variable v1 as is evident from the participation factor-vector pertaining to v1.

4. Mode-zero is absent in state variables p and q as is clear from the right eigenvector

corresponding to mode-zero. Further, any specification of p(0) and/or q(0) alone

cannot excite mode-zero.

NOTE:

The above case studies have been illustrated in spring_mass.m file. Having selected

a case in the MATLAB file, the numerical solution of the differential equations (1.72) to

(1.76) can be obtained by running a SIMULINK file spring_mass_sim.mdl.
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Chapter 2

4-machine Power System Example

2.1 Four Machine System Details:

A well known 4 machine, 10-bus power system has been used to demonstrate the modal

analysis of a power system. The single line diagram of the system is shown in Figure 2.1.

The system details are adopted from [1].

1

2 4

3

1 6 9 10 8 7 3

42

Load A Load B

5

9

8  4

5

1
2
3

6

7

10

11

Figure 2.1: Four machine power system.

In all case studies presented 2.2 model has been used for all machines. The pro-

gramme permits the selection of simplified models (even classical model) for generator.

See Appendix (C.7) for details.

2.2 Base Case:

In this case, generators are provided with a single-time constant static exciter with no

PSS, and turbines are not considered. Further, constant impedance type load model has

been employed for both real and reactive components of loads. The eigenvalues obtained
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are shown in Table 2.1. Here, reduced state matrix has been used. In this case the number

of valid state variables is 27 (including 1-zero eigenvalue).

Mode No. Eigenvalue Damp. factor Freq.(Hz)
1 -42.9191 1.0000 0
2 -42.7135 1.0000 0

3,4 -16.0251 ± j 16.9998 0.6859 2.7056
5 -38.6952 1.0000 0
6 -37.6193 1.0000 0
7 -33.9306 1.0000 0
8 -33.6063 1.0000 0

9,10 -16.3995 ± j 12.2283 0.8017 1.9462
11 -27.4529 1.0000 0
12 -25.3330 1.0000 0

13,14 -1.1037 ± j 7.4473 0.1466 1.1853
15,16 -1.0488 ± j 6.7981 0.1525 1.0820
17,18 -0.0372 ± j 4.4583 0.0083 0.7096
19 -17.5410 1.0000 0

20,21 -15.6187 ± j 0.9081 0.9983 0.1445
22 -13.6191 1.0000 0
23 -0.0000 1.0000 0
24 -4.5000 1.0000 0
25 -4.8931 1.0000 0
26 -5.0199 1.0000 0
27 -4.6860 1.0000 0

Table 2.1: Eigenvalues for four machine system -base case.

The above results are obtained by executing the following steps:

1. Perform the power flow studies by running: fdlf_loadflow.m file. It requires the

following .m and data files:

(a) B_bus_form.m, fdlf_jacob_form.m, powerflow.m and lfl_result.m.

(b) busno.dat : System details- number of lines, buses, transformers, etc

(c) nt.dat : Transmission line and transformer data

(d) pvpq.dat : Generation data and load data.

(e) shunt.dat : Shunt data

On successful run, it generates two output files: lfl.dat and report.dat. The

converged loadflow results are available in lfl.dat.

2. To perform the small-signal analysis execute the main file: small_sig.m . This file

in turn calls the following .m files:
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(a) initcond.m : It calculates the initial conditions. The other .m files used by

this file are:

• exciter-related files: static_exciter.m, DC1A_exciter.m and AC4A_exciter.m.

• turbine-related files: hydro_turbine.m and Reheat_turbine.m.

• PSS-related files: pss_slip_signal.m, pss_delpw_signal.m and

pss_power_signal.m.

• load model related file: load_zip_model.m.

(b) yform.m: It constructs the YDQ and YBUS matrices and prepares data for

running time-domain simulation programme.

(c) pmat.m : It prepares PG and PL matrices.

(d) exciter_settings.m : Linearizes the equations pertaining to static, DC1A

and AC4A exciters.

(e) primemover_settings.m : Linearizes the equations pertaining to hydro and

reheat steam -type turbines with their associated speed-governors.

(f) genmat.m : Constructs generator related Ag, B
r
g , Cg and Eg matrices.

(g) statld.m : It constructs YL matrix for the static loads.

3. Run trace_mode.m to evaluate eigenvalues and identify the nature of a mode. It

in turn calls r_eig_plot.m for obtaining the compass plot of right-eigenvectors

pertaining to slip in an interactive fashion.

4. Run pss_selection.m to identify the candidate generators for PSS placement. It

in turn calls pss_design.m for determining the GEPS plot, and the compensated

GEPS plot for a chosen PSS.

5. Run freq_response.m to draw frequency response of the transfer function ∆Te(jω)
∆Vref (jω)

.

6. Run transtability.mdl to perform time-domain simulation in SIMULINK.

NOTE: Programmes given in items (3), (4), (5) and (6) can be executed in any order

having executed small_sig.m file.

The main small_sig.m file requires the following data files:

(i) lfl.dat : Converged loadflow results.

(ii) nt.dat : Transmission line and transformer data.

(iii) ld.dat : Load data.
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(iv) shunt.dat : Shunt data.

(v) gen.dat : Generator data.

(vi) busno.dat : System details- number of lines, buses, transformers, etc.

(vii) exc_static.dat : Single-time constant static exciter data .

(viii) exc_AC4A.dat : IEEE AC4A type AC exciter data.

(ix) exc_DC1A.dat : IEEE DC1A type DC commutator exciter data.

(x) turb_hydro.dat : Simplified hydro-turbine data.

(xi) turb_rhst.dat : Reheat-type steam turbine data.

(xii) slip_pss.dat : Slip-signal-based PSS data.

(xiii) power_pss.dat : Power-signal-based PSS data.

(xiv) delPw_pss.dat : Delta-P-Omega type PSS data.

2.2.1 Format of Data Files:

In the following lines the format of each of the data file has been given using 4 machine

power system data:

System details:

File name: busno.dat

---------------------------------------------------------------------

3 ---> Slack bus number.

0.001 ---> Loadflow convergence tolerance.

10 ---> Number of buses in the system.

11 ---> Number of lines.

4 ---> Number of transformers.

3 ---> Number of PV buses = (Number of generators - 1).

0 ---> Q-bit (please set this bit to zero only).

2 ---> Number of load buses (including loads at PV and slack buses).

2 ---> Number of shunts.

1.03 ---> Slack bus voltage magnitude.

60 ---> Nominal frequency in Hz.

----------------------------------------------------------------------
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Network data:

File name: nt.dat

-----------------------------------------------------------------------

From To R X B (total)/Tap ratio Remarks

-----------------------------------------------------------------------

9 10 0.022 0.220 0.330 ---Line 1

9 10 0.022 0.220 0.330 ---Line 2

9 10 0.022 0.220 0.330 ---Line 3

9 6 0.002 0.020 0.030 ---Line 4

9 6 0.002 0.020 0.030 ---Line 5

10 8 0.002 0.020 0.030 ---Line 6

10 8 0.002 0.020 0.030 ---Line 7

5 6 0.005 0.050 0.075 ---Line 8

5 6 0.005 0.050 0.075 ---Line 9

7 8 0.005 0.050 0.075 ---Line 10

7 8 0.005 0.050 0.075 ---Line 11

1 5 0.001 0.012 1.000 ---> Transformer data starts here.

2 6 0.001 0.012 1.000

3 7 0.001 0.012 1.000

4 8 0.001 0.012 1.000

------------------------------------------------------------------------

Generation and load data:

File name: pvpq.dat

--------------------------------------------------------------------------

Bus No. Vg/PL0 Pg0/QL0 Remarks

--------------------------------------------------------------------------

1 1.03 7.00 ---> Generator buses other than the slack bus

2 1.01 7.00 are specified as PV buses

4 1.01 7.00

9 11.59 2.12 ---> Load data starts here (including loads at

10 15.75 2.88 PV and slack buses)

--------------------------------------------------------------------------
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Shunt admittances:

File name: shunt.dat

--------------------

Bus No. G B

--------------------

9 0.0 3.0

10 0.0 4.0

--------------------

Converged load flow results:

File name: lfl.dat

---------------------------------------------------------------------------------

Bus No. Vb0 theta0 Pg0 Qg0 PL0 QL0

---------------------------------------------------------------------------------

1 1.030000 8.215523 7.000000 1.338523 0.00 0.00

2 1.010000 -1.503809 7.000000 1.591791 0.00 0.00

3 1.030000 0.000000 7.217178 1.446427 0.00 0.00

4 1.010000 -10.204916 7.000000 1.807834 0.00 0.00

5 1.010800 3.661654 0.000000 0.000000 0.00 0.00

6 0.987533 -6.243121 0.000000 0.000000 0.00 0.00

7 1.009533 -4.697706 0.000000 0.000000 0.00 0.00

8 0.984958 -14.944164 0.000000 0.000000 0.00 0.00

9 0.976120 -14.419101 0.000000 0.000000 11.59 2.12

10 0.971659 -23.291847 0.000000 0.000000 15.75 2.88

----------------------------------------------------------------------------------

Load data:

File name: ld.dat

--------------------------------------------

Load Bus No. PL0 QL0

--------------------------------------------

9 11.59 2.12

10 15.75 2.88

---------------------------------------------
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Generator data (2.2 model):

File name: gen.dat

-----------------------------------------------------------------------------

Gen.No. xd xdd xddd Td0d Td0dd xq xqd xqdd Tq0d Tq0dd H D

-----------------------------------------------------------------------------

1 0.2 0.033 0.0264 8.0 0.05 0.190 0.061 0.03 0.4 0.04 54 0

2 0.2 0.033 0.0264 8.0 0.05 0.190 0.061 0.03 0.4 0.04 54 0

3 0.2 0.033 0.0264 8.0 0.05 0.190 0.061 0.03 0.4 0.04 63 0

4 0.2 0.033 0.0264 8.0 0.05 0.190 0.061 0.03 0.4 0.04 63 0

-----------------------------------------------------------------------------

NOTE: Armature resistance, Ra is neglected. Generators are identified by their bus num-

bers to which they are connected.

Single-time constant static exciter:

File name: exc_static.dat

------------------------------------------

Gen.no. KA TA EFDMIN EFDMAX

------------------------------------------

1 200 0.02 -6.0 6.0

2 200 0.02 -6.0 6.0

3 200 0.02 -6.0 6.0

4 200 0.02 -6.0 6.0

-------------------------------------------

IEEE AC4A-type exciter:

File name: exc_AC4A.dat

----------------------------------------------------------------------------

Gen.no. Tr KA TA TC TB VIMAX VIMIN VRMIN VRMAX KC

----------------------------------------------------------------------------

1 0.02 200 0.02 1.0 10 10 -10 -4.53 5.64 0

2 0.02 200 0.02 1.0 10 10 -10 -4.53 5.64 0

3 0.02 200 0.02 1.0 10 10 -10 -4.53 5.64 0

4 0.02 200 0.02 1.0 10 10 -10 -4.53 5.64 0

----------------------------------------------------------------------------
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IEEE DC1A-type exciter:

File name: exc_DC1A.dat

-------------------------------------------------------------------------

Gen. no. Tr KA TA TC TB VRMAX VRMIN KE TE E1 SE1

--------------------------------------------------------------------------

1 0.02 20 0.06 1 1 6.0 -6.0 -0.0485 0.250 3.5461 0.08

2 0.02 20 0.06 1 1 6.0 -6.0 -0.0633 0.405 0.9183 0.66

3 0.02 20 0.06 1 1 6.0 -6.0 -0.0198 0.500 2.3423 0.13

4 0.02 20 0.06 1 1 6.0 -6.0 -0.0525 0.500 2.8681 0.08

--------------------------------------------------------------------------

--------------------------

E2 SE2 KF TF

--------------------------

4.7281 0.260 0.040 1.0

1.2244 0.880 0.057 0.5

3.1230 0.340 0.080 1.0

3.8241 0.314 0.080 1.0

---------------------------

Speed-governor for hydro-turbine:

File name: turb_hydro.dat

----------------------------------------------------

Gen. no. TW TG SIGMA T2 PMAX_fac PMIN_fac

---------------------------------------------------

1 1 0.2 0.05 0 1.1 0.1

2 1 0.2 0.05 0 1.1 0.1

3 1 0.2 0.05 0 1.1 0.1

4 1 0.2 0.05 0 1.1 0.1

----------------------------------------------------
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Speed-governor for steam turbine- reheat type:

File name: turb_rhst.dat

-----------------------------------------------------------------------------

Gen.no. T1 T2 T3 SIGMA PMAX_fac PMIN_fac TCH TRH TCO FHP FIP FLP

-----------------------------------------------------------------------------

1 0.2 0.0 0.1 0.05 1.1 0.1 0.3 10 0.4 0.3 0.3 0.4

2 0.2 0.0 0.1 0.05 1.1 0.1 0.3 10 0.4 0.3 0.3 0.4

3 0.2 0.0 0.1 0.05 1.1 0.1 0.3 10 0.4 0.3 0.3 0.4

4 0.2 0.0 0.1 0.05 1.1 0.1 0.3 10 0.4 0.3 0.3 0.4

-----------------------------------------------------------------------------

NOTE: The data files turb_hydro.dat, and turb_rhst.dat should not contain any

entries for generators whose Pg0 = 0.

Slip-signal PSS:

File name: slip_pss.dat

-------------------------------------------------------------------------

Gen.no. KS TR TW T1 T2 VSMAX VSMIN a0 a1 TRF

-------------------------------------------------------------------------

1 15 0.02 10 0.07577 0.03715 0.1 -0.1 570 35 1

-------------------------------------------------------------------------

TRF = 0 enables torsional filter, 1 disables it.

NOTE: In pss_slip_signal.m, a variable Tmd_slip_nt and Tmd_slip_t provides an

option to enable/disable input measurement delay given by TR depending on the value

of TRF.

Power-signal PSS:

File name: power_pss.dat

-------------------------------------

Gen.No. TW TR KS VSMAX VSMIN

-------------------------------------

1 10 0.05 0.03 0.1 -0.1

2 10 0.05 0.07 0.1 -0.1

3 10 0.05 0.07 0.1 -0.1

4 10 0.05 0.03 0.1 -0.1

-------------------------------------
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Delta-P-Omega PSS:

File name: delPw_pss.dat

--------------------------------------------------------------

Gen.No. Tw1 Tw2 Tw3 Tw4 T6 T7 H KS3 T8 T9

--------------------------------------------------------------

2 10 10 10 10 0.01 10 54 1 0 0.1

1 10 10 10 10 0.01 10 54 1 0 0.1

3 10 10 10 10 0.01 10 63 1 0 0.1

4 10 10 10 10 0.01 10 63 1 0 0.1

--------------------------------------------------------------

------------------------------------------------------------

T1 T2 T3 T4 KS1 VSMAX VSMIN

------------------------------------------------------------

0.06322 0.04452 0.06322 0.04452 10 0.1 -0.1

0.06322 0.04452 0.06322 0.04452 15 0.1 -0.1

0.06322 0.04452 0.06322 0.04452 10 0.1 -0.1

0.06322 0.04452 0.06322 0.04452 10 0.1 -0.1

------------------------------------------------------------

2.2.2 Component Selectors:

To perform stability studies with a variety of exciters, power system stabilizers and tur-

bines, the following kinds of selectors are used:

1. Main Selectors.

2. Individual Selectors.

These selectors permit us to choose a specific type of exciter/PSS/turbine for a given

generator. For example, if one wants to select any one type of exciter for a given generator

out of 3 different IEEE-type exciters (for which data files have been prepared), it can be

carried out by using Individual Selectors without altering the data files. Whereas, the

Main Selectors can be used to disable an exciter on a generator without modifying the

Individual Selectors.

The Main Selectors are as follows:

Variable name Component Enable Disable

AVR Exciters 0 1

TURB Turbines 0 1

PSS Power System Stabilizers 0 1
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NOTE:

These selectors have been provided in file initcond.m. The vector size of these vari-

ables is equal to the number of buses in a system.

The Individual Selectors are as follows:

1. Individual Selectors for exciters:

ng_static ---> Single-time constant static type exciter.

ng_AC4A ---> IEEE AC4A-type exciter.

ng_DC1A ---> IEEE DC1A-type exciter.

Indicate the generator number on which a specific type of exciter is present, other-

wise null. For example, if all generators are with single-time constant static type

exciters, then the selectors are initialized as follows:

ng_static=[1,2,3,4]

ng_AC4A=[]

ng_DC1A=[]

The Main Selector, AVR is enabled for all exciters as: AVR = zeros(1,nb), where

nb denotes the number of buses in the system.

NOTE:

(a) Since all the variables used in .m and transtability.mdl files are to be initial-

ized, it is necessary to prepare the data file for IEEE AC4A and IEEE DC1A

-type exciters, atleast for one machine. One may use typical data for the same.

However, the respective exciter output is not used in the programme.

(b) If it is required to enter a large set of generator numbers to initialize the Indi-

vidual Selectors, one can list the generator numbers in a file ng_****.dat and

use the load ng_****.dat command. This has to be done after comment-

ing out the corresponding initialization command as %ng_**** = [...] in file

initcond.m.

(c) If classical model is used for a machine, then it is recommended to disable the

exciter of that machine by using the Main Selector, AVR.
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2. Individual Selectors for turbines:

ng_hydro ---> Hydro-turbines.

ng_rht ---> Reheat-type steam turbines.

The procedure to initialize these selectors is the same as that described for the

exciters. For example, if no generators are with any types of turbines, then the

selectors are initialized as follows:

ng_hydro =[]

ng_rht =[]

In addition, the Main Selector, TURB is set as TURB=ones(1,nb)

NOTE:

(a) To initialize the variables pertaining to all turbines, it is necessary to prepare

the data file using typical data for any one machine. However, the respective

turbine output is not used in the programme.

(b) If it is required to enter a large set of generator numbers to initialize the Indi-

vidual Selectors, one can list the generator numbers in a file ng_****.dat and

use the load ng_****.dat command. This has to be done after comment-

ing out the corresponding initialization command as %ng_**** = [...] in file

initcond.m.

3. Individual Selectors for power system stabilizers:

ng_slip_pss ---> Slip signal-based PSS.

ng_power_pss ---> Power signal-based PSS.

ng_delPw_pss ---> Delta-P-Omega signal-based PSS.

The procedure to initialize these selectors is the same as that described for the

exciters. For example, for the case in hand, no power system stabilizer on any

generators is considered. This is implemented by making the following settings:

ng_slip_pss=[]

ng_power_pss=[]

ng_delPw_pss=[]

The Main Selector, PSS is set as PSS = ones(1,nb).
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NOTE:

(a) To initialize the variables pertaining to slip signal-, power signal- and delta-P-

omega signal- based PSS, it is necessary to prepare the data files using typical

data for any one machine. However, the respective PSS outputs are not used

in the programme.

(b) If it is required to enter a large set of generator numbers to initialize the Indi-

vidual Selectors, one can list the generator numbers in a file ng_****.dat and

use the load ng_****.dat command. This has to be done after comment-

ing out the corresponding initialization command as %ng_**** = [...] in file

initcond.m.

(c) The Main Selector, PSS is normally used to disable any PSS without changing

the Individual Selectors. For example, even if ng_slip_pss=[1], with all other

selectors initialized to [], a setting given by PSS=ones(1,nb) disables all power

system stabilizers.

2.2.3 Load Modelling:

Both real and reactive components of loads are modelled following polynomial approach.

The composition of real and reactive components can be specified in file load_zip_model.m

as follows:

1. Real component of load:

p1 ---> fraction for constant power.

p2 ---> fraction for constant current.

p3 ---> fraction for constant impedance.

For example, for the case considered, the real power component is modelled as

constant impedance type, then the fractions are set as follows:

p1 = 0;

p2 = 0;

p3 = 1;

2. Reactive component of load:

r1 ---> fraction for constant power.

r2 ---> fraction for constant current.

r3 ---> fraction for constant impedance.
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For example, if reactive power component is modelled as constant impedance type,

then the fractions are set as follows:

r1 = 0;

r2 = 0;

r3 = 1;

The frequency-dependency of loads are not accounted, hence the following variables in

file yform.m are to be set to zero. Please do not tamper this settings.

kpf = 0;

kqf = 0;

Determination of Nature of Oscillatory Modes:

To identify the nature of an oscillator mode the following procedure is employed:

1. Compute the normalized slip participation factors (SPF) for the chosen mode.

2. Identify an actively participating generator if the amplitude of its SPF is greater

than a certain value. Thus a set of candidate generators is formed.

3. If the sum of the amplitudes of the normalized participation factors pertaining to

slip of the candidate generators is very low, then the mode is declared as a Non

swing mode with very low slip participation.

4. For the mode, if the slip participation is relatively high, then the feasibility of

formation of two coherent groups of generators among the generators in the set

formed in item-2, is checked. The coherency of generators is verified by using the

phase angle of the right eigenvector associated with slip [24]. If all modes are

purely imaginary except the zero-eigenvalue(s), the phase angle difference between

the coherent group is 180◦. Otherwise, this angle difference may be less than 180◦.

5. If the set formed in item-2 can be divided into two groups of coherent generators,

then the mode is declared as a Swing mode, otherwise as a Non-swing mode.

6. If the mode has been classified as either Non-swing mode or Non-swing mode with

very low slip participation, such a mode’s association with the state variables is

declared using the highest magnitude of state participation factor.

Using the above procedure, the oscillatory modes are characterized. For each mode,

state variables which have a normalized participation factor amplitude greater than 0.1

are listed. For swing modes, the formation of coherent groups of generators is displayed

by plotting the corresponding right eigenvectors associated with slip. The programme

developed provides a feature to identify the generators in an interactive fashion.
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2.2.4 A Sample Run:

The above case is simulated by using the following steps:

1. Prepare the data files as indicated in the previous sections.

2. Initialize the Main and Individual Selectors in file initcond.m

3. Execute small_sig.m. The statements displayed in the MATLAB Command Win-

dow and the respective inputs are shown below:

--------------------------------------------------------------------------

wB = 376.9911

Enter 1 if you want to run transtability programme for network disturbances,

otherwise 0: 0

Enter 1 if you want to run transtability programme for perturbation of VREF,

otherwise 0: 1

Enter the generator number whose Vref needs to be perturbed: 1

---------------------------------------------------------------------------

4. Execute trace_mode.m. The statements displayed in the MATLAB Command

Window and the respective inputs are shown below:

Enter 1 to display ALL eigenvalues (EIG), otherwise 0 (using EIGS): 1

-------------------------------------------------------------------

SL_number Eigenvalue dampingfactor frequency(Hz)

--------------------------------------------------------------------

1.0000 -42.9191 1.0000 0

2.0000 -42.7135 1.0000 0

3.0000 -16.0251 +16.9998i 0.6859 2.7056

4.0000 -16.0251 -16.9998i 0.6859 2.7056

5.0000 -38.6952 1.0000 0

6.0000 -37.6193 1.0000 0

7.0000 -33.9306 1.0000 0

8.0000 -33.6063 1.0000 0

9.0000 -16.3995 +12.2283i 0.8017 1.9462

10.0000 -16.3995 -12.2283i 0.8017 1.9462

11.0000 -27.4529 1.0000 0

12.0000 -25.3330 1.0000 0

13.0000 -1.1037 + 7.4473i 0.1466 1.1853
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14.0000 -1.1037 - 7.4473i 0.1466 1.1853

15.0000 -1.0488 + 6.7981i 0.1525 1.0820

16.0000 -1.0488 - 6.7981i 0.1525 1.0820

17.0000 -0.0372 + 4.4583i 0.0083 0.7096

18.0000 -0.0372 - 4.4583i 0.0083 0.7096

19.0000 -0.0000 1.0000 0

20.0000 -17.5410 1.0000 0

21.0000 -15.6187 + 0.9081i 0.9983 0.1445

22.0000 -15.6187 - 0.9081i 0.9983 0.1445

23.0000 -13.6191 1.0000 0

24.0000 -4.5000 1.0000 0

25.0000 -5.0199 1.0000 0

26.0000 -4.8931 1.0000 0

27.0000 -4.6860 1.0000 0

28.0000 -0.0000 1.0000 0

---------------------------------------------------------------------

Enter the serial number of the eigenvalue for which you want to obtain the

P.factor: 13

----------------------------------------------------------------------------------

State variable Mag(Norm PF) ang(Norm PF)deg. Mag(PF) ang(PF)deg.

----------------------------------------------------------------------------------

Delta-2 1.0000 0.00 0.5971 -8.21

Slip-2 0.5328 2.55 0.3182 -5.66

Slip-1 0.4127 2.29 0.2464 -5.92

DampG-2 0.1003 131.86 0.0599 123.65

----------------------------------------------------------------------------------

You have chosen a SWING-MODE

----------------------------------------------------------------------------------

The generator(s) in group-1 is(are) ...

Group1 =

2

The generator(s) in group-2 is(are) ...

Group2 =

1

----------------------------------------------------------------------------------

Enter 1 if you want to plot the compass plot, otherwise 0: 1

NOTE: Use mouse click on the plot to identify the generator

Press any key
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Current plot held

Enter 1 if you want to repeat for another eigenvalue, otherwise 0: 0

As shown above, the slip participation factor for machines 1 and 2 are more dominant.

Further, the grouping of machines prepared by the programme is shown in Figure 2.2.

The figure shows that this mode is a swing mode in which machine-1 swings against

machine-2, and it constitute a local mode.
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Figure 2.2: Plot of slip-right eigenvector for machines 1 and 2.

Time-domain verification:

The inference made from eigenvalue analysis is verified from a time-domain simulation

by perturbing Vref for generator-1. This is carried out as follows:

• By entering 1 for the option: ‘Enter 1 if you want to run transtability programme

for perturbation of VREF, otherwise 0 :’ while executing small_sig.m (see above).

• Run transtability.mdl programme.

• Observe the scope labled Slip_COI.

The plots are shown in Figure 2.3, where the local mode is seen clearly in the initial part

of the response. The frequencies for the inter-area mode and the local mode (machines

1-2) are also verified from Figure 2.3.
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Figure 2.3: Slip COI plots for perturbation of Vref of m/c-1.

For clarity only oscillatory modes are listed in Table 2.2 with their nature.

SL No Eigenvalue Nature of Modes
1 -16.0251 ± j 16.9998 Non-swing mode (exciter mode)
2 -16.3995 ± j 12.2283 Non-swing mode (exciter mode)
3 -1.1037 ± j 7.4473 Swing-mode (m/cs. 1 and 2)
4 -1.0488 ± j 6.7981 Swing-mode (m/cs. 3 and 4)
5 -0.0372 ± j 4.4583 Swing-mode (m/cs. (1,2) and (3,4))
6 -15.6187 ± j 0.9081 Non-swing mode (exciter mode)

Table 2.2: Oscillatory modes - 4 machine system (Base case).

NOTE:

1. With the un-reduced state matrix, the non-zero eigenvalues are the same as that

with the reduced state matrix, however, the zero eigenvalue in the reduced state

matrix, is replaced by a complex conjugate pair 0.0000 ± j0.0235. Thus, there are

28 eigenvalues which is equal to the number of state variables in the un-reduced

case. Due to errors in the load flow (mismatch in power) and other numerical errors

in the computations, the two eigenvalues which should have been zero are calculated

as a complex pair of small magnitude (0.0000± j0.0235). The matrix, if reduced by

following the procedure indicated in Appendix- B.3, the confusing zero eigenvalue
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reduces to a perfect zero eigenvalue, see mode-23 in Table 2.1.

2. Another observation is that some functions like rank in MATLAB works unreliably

with the un-reduced state matrix.

2.2.5 Exciters on Manual Control:

In this case, exciters are disabled on all machines by setting AVR=ones(1,nb). For clarity,

only the swing modes are listed in Table 2.3. From the table it can be inferred that the

inter-area mode has a better damping than that in the base case. This demonstrates the

effect of a high gain fast acting static exciter [25] in reducing the damping of the inter-

area mode. However, the presence of a static exciter improves the synchronizing torque

component as is reflected by an increase in the inter-area mode frequency (see Table 2.1).

By comparing the results in Table 2.3 with that in Table 2.1, it can also be inferred that

the exciter improves the damping of local modes.

SL No Eigenvalues Dampingfactor Freq.(Hz) Nature of the mode
1 -0.7041 ± j 7.2910 0.0961 1.1604 Swing mode(2 & 1)
2 -0.6529 ± j 6.7193 0.0967 1.0694 Swing mode(4 & 3)
3 -0.1459 ± j 4.0792 0.0357 0.6492 Swing mode([1 2]&[3 4])

Table 2.3: Swing modes with all exciters on manual control.

2.2.6 Effect of Load Model with Exciters on Manual Control:

When both real and reactive power components of loads are model as constant power type,

though the damping of swing modes are not effected with respect to constant impedance

case, it makes the system small signal unstable as indicated by a negative damping factor

for a pure real eigenvalue as shown in Table 2.4. This monotonic instability has been

validated by plotting the magnitude of load bus voltages for a 3-phase fault at bus-1 with

a fault duration of 0.01 s without line clearing - see Figure 2.4.
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Modelling of Mode Damping Freq. Nature of mode
P, Q components factor (Hz)

100% power -0.7345 ± j7.2286 0.1011 1.1505 Swing mode(2 & 1)
p1 = 1, p2 = 0, p3 = 0 -0.7609± j6.5561 0.1153 1.0434 Swing mode(4 & 3)
r1 = 1, r2 = 0, r3 = 0 -0.1924± j4.2506 0.0452 0.6765 Swing mode([1 2]&[3 4])

1.0795 -1.0000 0 Non-Oscillatory mode
0.0046 -1.0000 0 Non-Oscillatory mode

Table 2.4: Effect of constant power type load model for P & Q load components with
manual exciter control.
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Figure 2.4: Variation of the magnitude of the load bus voltages.
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Chapter 3

Design of Slip-signal PSS

3.1 Introduction:

Power system stabilizer (PSS) is a cost effective way of improving the damping of elec-

tromechanical oscillations of rotors and in turn it improves the power transfer capability

of transmission lines. It provides the damping by modulating the voltage reference of

exciter control so as to develop a component of electrical torque in phase with the rotor

speed deviations. The location of PSS in a power system is depicted in Figure 3.1.

PSS

AVR Exciter

Main 
Field i   machine

th

PSS input signal(s)

Measurement

block

Vref

+
+/−

−

Vg

PT

Power

systemΣ

Vs

Figure 3.1: Location of PSS in a power system.

Such a way of producing damping torque is the most cost-effective method of enhanc-

ing the small-signal stability of power systems, in comparison to FACTS-based controllers

[26]. The necessary power application is brought about in the normal process of torque

development mechanism in the generator. Generally, PSS is installed to improve damping

of local modes which is destabilized by the use of a high gain fast acting exciter. However,

by judiciously placing power system stabilizers in a system, and with appropriate tuning
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of PSS parameters, it is possible to even improve the damping of inter area modes. While

designing a PSS to produce damping torque in a desired frequency range, care must be

taken to see that the PSS does not destabilize the other oscillatory modes, for example,

torsional modes [1]. Another important criterion in designing a PSS is to provide addi-

tional damping torque without affecting the synchronizing torque at critical oscillation

frequencies, so that the inter-tie power transfer is not constrained.

3.2 Types of Power System Stabilizers:

As per IEEE standards 421.5 - 1992 [22], the following are the two main categories of

PSS:

1. Single input power system stabilizer: It is known that in order to modify a mode

of oscillation by feedback, the chosen input must excite the mode and it must be

visible in the chosen output [5]. Thus, for this kind of PSS design, commonly used

input signals are shaft speed, terminal bus frequency and electrical power output.

2. Dual input power system stabilizer: In this kind of PSS design, a combination of

signals such as speed and electrical power output are used.

The design of speed-single input-based PSS design is presented in the following sections.

3.2.1 Slip-single Input PSS:

In the following lines, the structure of a speed-signal input PSS, is briefly discussed.

Typical structure of a single input PSS -see Figure 3.2. It consists of a washout circuit,

compensator, torsional filter, gain and a limiter. The function of each of the components

of PSS with guidelines for the selection of parameters are given below [1].

s TW

s TW1 + 
FILT(s)

VsK
S

G
C
(s)T

R
(s)

TORSIONAL
FILTER

MEASUREMENT
DELAY CIRCUIT

WASHOUT GAIN LIMITERLEAD−LAG
COMPENSATOR

u

Figure 3.2: Block diagram of a single input PSS.

3.2.1.1 Washout Circuit:

Washout circuit is essentially a high-pass filter which removes dc offsets in the input signal

and it eliminates the steady state bias in the output of PSS which will modify the field

NITK Surathkal 62 Electrical Dept.



Design of Slip-signal PSS Version-1.0

voltage. From the viewpoint of the washout function, the value of TW is not critical

and may be anywhere in the range of 1 to 20 seconds. For local mode oscillations in

the range of 0.8 to 2.0 Hz, a washout time constant of 1.5 s is satisfactory. From the

viewpoint of low-frequency inter-area oscillations, a washout time constant of 10 seconds

or higher is desirable, since lower-time constants result in significant phase lead at low

frequencies. Unless this is compensated for elsewhere, it will reduce the synchronizing

torque component at inter-area frequencies.

3.2.1.2 Lead-Lag Compensator:

To damp rotor oscillations, a PSS must produce a component of electrical torque in phase

with rotor speed deviation. This requires a phase-lead circuits to be used to compensate

for the lag between the PSS output point (at the exciter) and the resulting electrical

torque developed. The amount of phase lag to be compensated depends on the generator

parameters, the type of exciters used and the system conditions. Though the degree of

phase compensation should be designed so that the PSS contributes to damping over

a wide range of frequencies covering both inter-area and local modes of oscillation, a

phase characteristic acceptable for different system conditions is selected. Generally, slight

under-compensation is preferable to overcompensation so that the PSS does not contribute

to the negative synchronizing torque component. General transfer function of GC(s) is

given by

GC(s) =
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)

If the degree of phase compensation required is small, a single first-order phase-compensation

block may be used.

3.2.1.3 Torsional Filter:

The torsional filter in the PSS is essentially a band reject or a low pass filter to attenuate

the first torsional mode frequency. The transfer function of the filter can be expressed as

[1]

FILT (s) =
ω2

n

s2 + 2ζωns+ ω2
n

=
a0

s2 + a1 s+ a0

(3.1)

Torsional filter is necessitated by the adverse interaction of a slip-signal-based PSS

with the torsional oscillations. This can be lead to shaft damage, particularly at light

generator loads when the inherent mechanical damping is small. Even if shaft damage

does not occur. stabilizer output can go into saturation (due to torsional frequency

components) making it ineffective. The criteria for designing the torsional filter are:
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1. The maximum possible change in damping of any torsional mode is less than some

fraction of the inherent torsional damping.

2. The phase lag of the filter in the frequency range of the filter 1 to 3 Hz is minimized.

3.2.1.4 Stabilizer Gain:

The amount of damping associated with the rotor oscillations depends on the stabilizer

gain KS. The damping increases with an increase in stabilizer gain up to a certain value

beyond which further increase in gain results in a decrease in the damping. To set the

gain of the PSS, the following criterion are generally employed:

1. Based on the gain for instability: The optimal PSS gain is chosen for the particular

tuning condition as the gain that results in the maximum damping of the critical

(least damped) mode. The optimal gain (KS) is related to the value of the gain K∗
S

that results in instability. For example, for speed input stabilizers, KS =
K∗

S

3
may

be used [27]. In [14], KS =
K∗

S

2
has been used. These studies are carried out using

root locus method.

2. Damping factor of the critical mode: Here, the gain is selected such that damping

factor for the mode is above some typical value say 0.05 [5].

3. High frequency gain: The high frequency gain of PSS is given by KS
T1T3

T2T4
. This

should not be too high as it would lead to noise amplification decreasing the effec-

tiveness of a PSS.

3.2.1.5 Stabilizer Limits:

In order to restrict the level of generator terminal voltage fluctuations during transient

conditions and to prevent the PSS acting to counter the action of AVR, limits are imposed

on the PSS output.

The positive output limits of the stabilizer is set at a relatively large value in the

range of 0.1 to 0.2 pu. This allows a high level of contribution from the PSS during large

swings. With such a high value of stabilizer output limit, it is essential to have a means

of limiting the generator terminal voltage to its maximum allowable value, typically in

the 1.12 to 1.15 pu range [2].

The negative limit of PSS output is of importance during the back swing of the rotor

(after initial acceleration is over). Negative side limit are raised to prevent the PSS from

reducing the generators terminal voltage excessively following a fault. The AVR action is

required to maintain the voltage (and thus prevent loss of synchronism) after the angular

separation has increased. Typically, -0.02 to -0.05 pu is used for the negative limit. This

allows sufficient control range while providing satisfactory transient response [28].
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3.3 Tuning of PSS:

The major objective of providing PSS is to increase the power transfer in the network,

which would otherwise be limited by oscillatory instability. Further the PSS must also

function properly when the system is subjected to large disturbances. In the literature,

two basic tuning techniques have been successfully utilized with power system stabilizer

applications:

• Phase compensation method: This method consists of adjusting the stabilizer to

compensate for the phase lag through the generator, excitation system, and power

system such that the stabilizer path provides torque changes which are in phase

with speed changes. This is the most straightforward approach, easily understood

and implemented in the field [27].

• Root locus method: Synthesis by root locus involves shifting the eigenvalues asso-

ciated with the power system modes of oscillation by adjusting the stabilizer pole

and zero locations in the s-plane [29]. This approach gives additional insight to

performance by working directly with the closed-loop characteristics of the system,

as opposed to the open-loop nature of the phase compensation technique, but is

more complicated to apply, particularly in the field.

The steps involved in designing a PSS are as follows:

1. Computation of GEPS(s).

2. Design of compensator using phase compensation technique.

3. Determination of compensator gain.

3.3.1 Computation of GEPS(s):

As stated earlier, a PSS acts through generator, exciter system, and power system (GEPS).

Therefore, a PSS must compensate the phase lag through the GEPS. To obtain the

phase information of GEPS, the frequency response of the transfer function between the

exciter reference input (i.e., PSS output) and the generator electrical torque should be

observed. In computing this response, the generator speed and rotor angle should remain

constant, otherwise, when the excitation of a generator is modulated, the resulting change

in electrical torque causes variations in rotor speed and angle and that in turn affect the

electrical torque. As we are interested only in the phase characteristics between exciter

reference input and electrical torque, the feedback effect through rotor angle variation

should be eliminated by holding the speed constant. This is achieved by removing the
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columns and rows corresponding to rotor speed and angle from the state matrix [5]. The

procedure involved has been explained in the following lines.

The generator-exciter-power system (GEPS) frequency response, which involves the

determination of the frequency response of a system function between Te and Vs points,

is obtained as follows:

For ith machine, the expression for Te (see C.37) is linearized as

∆Te = CT ∆XG +BT ∆V G (3.2)

where

• CT is constituted by appropriately choosing the elements from Ag (2, :) after multi-

plying it by (−2H).

• BT is constituted by using the elements from Br
g (2, :) after multiplying it by (−2H).

• ∆XG is the vector of state variables -(16ng × 1)

• ∆V G is the vector of QD components of generator terminal voltages -(2ng × 1).

CT and BT are filled with zeros to match the dimension of ∆XG and ∆V G, respectively.

From(1.43) we can relate ∆V G to state vector as

∆V G =

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)

∆XG (3.3)

Using (3.3) in (3.2) we have

∆Te = CT ∆XG +BT

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)

∆XG

=

[

CT + BT

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)]

∆XG (3.4)

= DT ∆XG (3.5)

Since GEPS(jω) is obtained for ∆δ = 0 and ∆Sm = 0, the respective elements are

removed from DT . This reduces the size of DT to [1 × (16 − 2)ng]. Accordingly, ∆XG

is reduced to ∆XT [(16 − 2)ng × 1]

Hence,

∆Te = D
′

T ∆XT (3.6)
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From (1.45), we can write that,

∆ẊG = [AT ]∆XG + [EG] [∆Vref + ∆Vs] (3.7)

where [EG] = EG (:, i) for ith generator.

To meet the requirement of ∆δ = 0 and ∆Sm = 0, the necessary changes are made in

[AT ] and [EG] to give.

∆ẊT =
[

A
′

T

]

∆XT +
[

E
′

G

]

∆Vs

Note that in the above equation only change in Vs is considered, with ∆Vref = 0.

Rearranging the terms in s-domain, we get

∆XT (s) =
[

sI − A
′

T

]−1 [

E
′

G

]

∆Vs(s) (3.8)

Using (3.8) in (3.6) we have,

∆Te(s) = D
′

T

[

sI − A
′

T

]−1 [

E
′

G

]

∆Vs(s)

GEPS(s) =
∆Te(s)

∆Vs(s)
= D

′

T

[

sI − A
′

T

]−1 [

E
′

G

]

The frequency response is obtained by letting s = jω and spanning ω in the desired range,

i.e.,

GEPS(jω) =
∆Te(jω)

∆Vs(jω)
= D

′

T

[

jωI − A
′

T

]−1 [

E
′

G

]

(3.9)

NOTE:

1. The above derivation assumes that PSS is not present on any machine.

2. The GEPS computation is independent of the turbine-governor models.

3.3.2 Design of Compensator GC(s):

Using (3.9), GEPS(jω) for machine-1 is obtained (for the base case) and its phase re-

sponse is shown in Figure 3.3.

If a PSS is to provide pure damping torque at all frequencies, ideally, the phase

characteristics of PSS must balance the phase characteristics of GEPS at all frequencies.

However, this is not practical, and the objective of designing a PSS is to see that it

• maximizes the damping of local modes as well as inter-area mode oscillations in-

cluding other critical modes such as exciter/control modes without reducing the

synchronizing torque component at those frequencies.

NITK Surathkal 67 Electrical Dept.



Design of Slip-signal PSS Version-1.0

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Phase angle of GEPS(jw)

Frequency in Hz

P
ha

se
−

de
g

Figure 3.3: Phase angle of GEPS(jω), for machine-1

• enhances the stability performance of a system for large disturbances.

• provides such a setting of parameters which is acceptable and does not require

frequent retuning as system conditions change.

• provides better performance during major system upsets which cause large frequency

excursions.

• provides such a setting of parameters which gives the required degree of tolerance

to allow for uncertainties in machine and system modelling.

To meet these requirements the following criteria are chosen to design the phase compen-

sation for PSS.

1. The compensated phase angle, φL = − 6 GEPS(jω)PSS(jω), should pass through

90◦ at frequency around 3.5 Hz.

2. The compensated phase angle at local mode frequency should be below 45◦, prefer-

ably 20◦.

3. The gain of the compensator at high frequencies should be minimized.

The first criterion is important to avoid destabilization of intra-plant modes with higher

frequencies. It is also preferable to have the compensated phase angle to be lagging at

inter-area modes so that PSS provides some synchronizing torque at these frequencies.

The third criterion is required to minimize the noise amplification through PSS.
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NOTE:

1. The compensated phase angle, φL can also be read from Figure 1.1 and is assumed

to be positive for lagging angle. If φL=0, it shows that the torque change produced

is purely damping (at a given frequency). A negative φL denotes that the developed

torque ∆Te has a negative synchronizing torque component.

2. An improvement in the damping torque component is reflected in an increase in the

damping factor of the mode.

3. An improvement in the synchronizing torque component is reflected in an increase

in the frequency of the mode. This observation is identical to that in SMIB system

where the natural frequency of oscillation ω of the rotor is given by
√

Ts ωB

2H
for

classical modal of generator and with negligible damping.

For simplicity, the compensator transfer function is assumed to be of the form given by,

Gc(s) =
(1 + sT1)KS

(1 + sT2)
(3.10)

Determination T1 and T2 [30]

The phase angle lead φm to be provided by the compensator is related to T1 and T2 as

sin φm =
1 − α

1 + α
(3.11)

where

α =
T2

T1

with 0 < α < 1, (3.12)

Further, the center frequency at which it offers a phase lead φm is given by

ωm =
1√
α T1

(3.13)

Choosing φm = 20◦ and fm = 3 Hz, (with ωm = 2πfm), and using (3.11), (3.12) and

(3.13) we get T1 = 0.07577 s and T2 = 0.03715 s with T1

T2
= 2.0396. The phase angle of

the compensator is shown in Figure 3.4.

NOTE: Typically
T1

T2

must be less than 10.

In Figure 3.5, the phase response of the PSS which is the combined phase response

of GC(s) and a washout circuit with TW = 10 s is depicted. The compensated phase

response is also plotted in the figure. From the figure, it can be seen that the phase angle

φL is around 60◦ at 3 Hz, below 2 Hz the angle φL is less than 40◦ and at inter-area mode

of 0.7 Hz the angle is around 12.6◦.
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Figure 3.4: Phase angle of compensator GC(jω).

The above results/plots have been obtained by using the following steps:

1. Execute small_sig.m with appropriate options.

2. Run pss_design.m programme.

A list of statements printed out by the programme is given below.

Enter the generator number for which you want to obtain the angle of GEPS(s): 1

Enter 1 :To design single input PSS - Slip signal

2 :To design double input PSS

3 :To design single input PSS -Power signal

Enter your choice : 1

Enter the center frequency f_m for the PSS (in Hz) : 3

Enter the amount of phase lead required (in Degrees): 20

Enter the PSS gain Ks: 15

The ratio of T1 to T2 = 2.0396 is less than 10

Enter 1 : Only compensator

2 : Washout only

3 : Washout and measuring ckt.

4 : Washout, measuring ckt. and torsional filter

Enter your choice : 2

Enter the value of Tw (in s) for the wash-out circuit [1 - 20]s : 10
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Figure 3.5: Phase angle of GEPS(jω), GPSS(jω) and P (jω) for machine-1.

Enter 0 if you are satisfied with the design, otherwise 1 to re-design the pss: 0

Update the slip_pss.dat for the machine 1

---------------------------------------------------------

gen.no Ks Tw T1 T2

---------------------------------------------------------

1 15 10 0.07577 0.03715

---------------------------------------------------------

Use typical value for TR (0.02 s), a0 =570, and a1 = 35

---------------------------------------------------------

Press any key to obtain the amplitude response of GEPS(iw)

NOTE: A tentative value of KS needs to be entered while feeding the data for the pro-

gramme. This will be used for printing purpose only.

3.3.3 Determination of Compensator Gain:

The compensator gain is chosen based on the amplitude response of GEPS(s), see Fig.

3.6. This plot also has been obtained by running the pss_design.m programme.

For speed input PSS, the highest amplitude results for heavily loaded system condition

[27]. In this thesis, the gain is chosen to provide a damping factor of more than 0.05 for
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Figure 3.6: Plot of amplitude of GEPS(s) for machine-1.

lightly damped modes in the base case. To see the performance of the system with PSS,

the system matrix needs to be modified to account for PSS. This interfacing procedure is

discussed in the following section.

3.3.3.1 Interfacing PSS to the System Matrix:

The linearized model of the slip-input PSS is given by

∆ẋPSS = APSS ∆xPSS +BPSS ∆Sm (3.14)

∆Vs = CPSS ∆xPSS +DPSS ∆Sm (3.15)

where ∆Sm denotes the deviation in slip for ith generator.

The interfacing of the PSS to the system equations is carried out as follows:

Rewriting (1.45) considering only the change in Vs, we have,

∆ẊG = [AT ]∆XG + [EG] ∆Vs (3.16)

where [EG] = EG (:, i) for ith generator.

Writing ∆Sm in terms of ∆XG, we have

∆Sm = eT
2 ∆XG (3.17)

where eT
2 = [0 · · ·1 · · ·0 · · ·0 · · · 0](1×16ng), with 1 corresponding to slip state variable of ith

machine.
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Now using (3.17) in (3.14) and (3.15) we get,

∆ẋPSS = APSS ∆xPSS +BPSS e
T
2 ∆XG (3.18)

∆Vs = CPSS ∆xPSS +DPSS e
T
2 ∆XG (3.19)

Using (3.19) in (3.16) and rewriting the state model accounting PSS, we obtain,

∆ẊN = AN ∆XN

where ∆XN = [∆XG ∆xPSS]T

AN =







[AT ] + [EG] DPSS e
T
2 [EG] CPSS

BPSS e
T
2 APSS







3.3.3.2 Eigenvalues with Slip-input PSS:

For the PSS designed in the previous section for machine-1, all oscillator modes are listed

in Table 3.1, for KS = 15. Note that in this implementation FILT(s) and TR(s) are not

considered.

SL No Eigenvalues Dampingfactor Freq.(Hz) Nature of the mode
1 -15.4522± j17.0633 0.6712 2.7157 Non-Swing mode
2 -15.6284± j12.5252 0.7803 1.9934 Non-Swing mode
3 -2.5472± j8.4109 0.2899 1.3386 Swing mode(2 & 1)
4 -1.0555± j6.8044 0.1533 1.0830 Swing mode(4 & 3)
5 -0.2653± j4.5064 0.0588 0.7172 Swing mode([1 2]&[3 4])
6 -14.5481± j1.9838 0.9908 0.3157 Non-Swing mode

Table 3.1: Oscillatory modes for the base case with PSS on m/c-1.

The results are obtained by using the following steps:

1. Prepare the data file slip_pss.dat as shown below (see section 2.2.1):

File name: slip_pss.dat

-------------------------------------------------------------------------

Gen.no. KS TR TW T1 T2 VSMAX VSMIN a0 a1 TRF

-------------------------------------------------------------------------

1 15 0.02 10 0.07577 0.03715 0.1 -0.1 570 35 1

-------------------------------------------------------------------------

TRF = 0 enables torsional filter, 1 disables it.
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FILT(s) is not used by setting TRF = 1, and TR(s) is disabled by setting the variable

Tmd_slip_nt to 1 in file pss_slip_signal.m. Even when TRF is 1, default value of

a0 and a1 must be used in the data file.

2. Set ng_slip_pss = [1] and enable PSS by setting PSS=zeros(1,nb) in file initcond.m.

3. Run small_sig.m and then execute trace_mode.m programme.

From the tabulated results, it can be seen that the damping factor for the inter-area

mode (mode-17, 18) has increased from 0.0083 (see Table 2.1) to 0.0588. We can also

observe that, the local mode-13, 14 is also well damped from its previous value of 0.1466.

However, the presence of PSS on machine-1 has not influenced the damping of mode-15,

16 significantly as generator-1 has the lowest participation in that mode. Also note that

the PSS has contributed to the synchronizing torque component, as is demonstrated by

an increase in frequency of the inter-area mode and mode-13, 14.

NOTE: From the root locus plot it was observed that one of the local modes becomes un-

stable when KS = 235. The root locus plot is obtained by a repeated run of small_sig.m

and trace_mode.m programmes.

3.3.4 Time-domain Verification:

Rotor angle plots of all machines with and without PSS are shown in the Figures (3.7 and

3.8). Fault duration is set to 0.1 s, for a fault at bus 9 with no line clearing.
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Figure 3.7: Variation of rotor angles with respect to COI reference without PSS.
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Figure 3.8: Variation of rotor angles with PSS.

The plots are obtained by employing the following steps:

1. The steps are identical to that indicated in the previous section 3.3.3.2.

2. While running small_sig.m, the following option is chosen:

wB =

376.9911

Enter 1 if you want to run transtability programme for

network disturbances, otherwise 0: 1

If NO action to be taken, PRESS ENTER for any/every prompt.

Fault initiation time (s), Tfault= 0.5

Fault Duration,(s) Tclear= 0.1

Faulted Bus: 9

Line(s) to be tripped, [ , ]=

3. Run transtability.mdl programme.
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3.3.5 Frequency response of Te(s)
Vref (s):

Frequency response of a system function between Te and Vref -point of the exciter, is

obtained as follows:

For ith machine, the expression for Te (see C.37) is linearized as

∆Te = CT ∆XG +BT ∆V G (3.20)

where

• CT is constituted by appropriately choosing the elements from Ag (2, :) after multi-

plying it by (−2H).

• BT is constituted by using the elements from Br
g (2, :) after multiplying it by (−2H).

• ∆XG is the vector of state variables -(16ng × 1)

• ∆V G is the vector of QD components of generator terminal voltages -(2ng × 1).

CT and BT are filled with zeros to match the dimension of ∆XG and ∆V G, respectively.

From(1.43) we can relate ∆V G to the state vector as

∆V G =

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)

∆XG (3.21)

Using (3.21) in (3.20) we have,

∆Te = CT ∆XG +BT

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)

∆XG

=

[

CT + BT

(

[PG]T
[

Y
′

DQ

]−1

[PG] [CG]

)]

∆XG (3.22)

= DT ∆XG (3.23)

From (1.45), we can write that,

∆ẊG = [AT ]∆XG + [EG] [∆Vref + ∆Vs] (3.24)

where [EG] = EG (:, i) for ith generator.

Considering only the change in Vref , we have

∆ẊG = [AT ] ∆XG + [EG]∆Vref
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Rearranging the terms in s-domain, we get

∆XG(s) = [sI − AT ]−1 [EG] ∆Vref(s) (3.25)

Using (3.25) in (3.23) we have,

∆Te(s) = DT [sI − AT ]−1 [EG] ∆Vref(s)

F (s) =
∆Te(s)

∆Vref(s)
= DT [sI − AT ]−1 [EG]

The frequency response is obtained by letting s = jω and spanning ω in the desired range,

i.e.,

F (jω) =
∆Te(jω)

∆Vref(jω)
= DT [jωI − AT ]−1 [EG]

The frequency response of ∆Te(jω)
∆Vref (jω)

for machine-1 is shown in Figure 3.9.
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Figure 3.9: Frequency response plot with and without PSS.

From the figure it can see that, without PSS, the frequency response of ∆Te(jω)
∆Vref (jω)

shows

a prominent peak at inter-area mode (0.7003 Hz). However, with PSS (for KS=15) the

sharp peak is well attenuated demonstrating the effectiveness of PSS in improving the

damping for inter-area mode (see Table 3.1). The figure also depicts the damping of local

mode-13, 14 (1.3386 Hz) with the PSS.
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NOTE:

1. The plot is obtained by executing freq_response.m after running small_sig.m

programme with and without PSS.

2. In the implementation, [jωI − AT ] is realized as follows:

Using WAU = Dλ and W = U−1 we have,

(

jωI −W−1DλU
−1
)

= (jωI − UDλW )

= (jωUW − UDλW )

= U (jωI −Dλ)W

The above expression is used to overcome the numerical problem faced while com-

puting [jωI − AT ]−1

3.4 Placement of Power System Stabilizers:

Placement of PSS in power system is an important issue in modal analysis. Power system

stabilizers placed at the generators should be able to stabilize all of the electromechanical

modes. The selection of PSS location is generally carried out using participation factor,

residues and frequency response analysis [5, 27, 7].

Of these, participation factor based approach provides an initial screening of locations

[7]. In this work, the following procedure is employed to decide the location of PSS.

1. List all swing modes whose damping factor is less than 0.05.

2. List participation factor for slip-signal for each of the selected swing mode.

3. Location of PSS is decided for the machine whose slip participation is the highest

in that mode.

The above procedure is implemented in pss_selection.m. The steps to be followed are:

1. Run small_sig.m file with appropriate choice.

2. Execute pss_selection.m programme. The output of the programmes is listed

below:

Enter 1 to use EIG function, otherwise 0 to use EIGS function: 1

---------------------------------------------------------

SL_number Eigenvalue dampingfactor frequency(Hz)
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ans =

1.0000 -42.9191 1.0000 0

2.0000 -42.7135 1.0000 0

3.0000 -16.0251 +16.9998i 0.6859 2.7056

4.0000 -16.0251 -16.9998i 0.6859 2.7056

5.0000 -38.6952 1.0000 0

------ A partial List----------

27.0000 -4.6860 1.0000 0

28.0000 -0.0000 1.0000 0

---------------------------------------------------------

swing modes for which dampingfactor is less than 0.05

---------------------------------------------------------

SL_number Eigenvalue dampingfactor frequency(Hz)

ans =

18.0000 -0.0372 - 4.4583i 0.0083 0.7096

PSS is Disabled.....

---------------------------------------------------------

State variable Mag(slip-PF-nr) angle(slip-PF-nr) in deg.

---------------------------------------------------------

Slip-1 1.0000 0.00

Slip-3 0.9641 -6.28

Slip-2 0.6263 -4.41

Slip-4 0.6185 -1.98

---------------------------------------------------------

Please press a key to obtain the angle of GEPS(s) for the selected machine

Here it calls pss_design.m programme.

NOTE:

1. The programme pss_selection.m also calls pss_design.m file if any of the swing

mode has a damping factor less than 0.05.

2. While listing swing modes whose damping factor is less than 0.05, the presence of

PSS (if enabled in the previous run) is also considered. Thus, in this method effort
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is made to stabilize/improving the damping of swing modes sequentially, until all

modes are stabilized.

3. As power system stabilizers are added to a system, the sensitivity of modes to power

system stabilizers at other generators is altered. For example, a generator having

no appreciable participation in any mode in the original unstabilized system may

have a significant participation in the resulting unstable/poorly damped modes with

PSS.

4. It is known that power system stabilizers do not add damping torques to a generator

shaft directly, but indirectly through the generators’ electrical torques. The electri-

cal torque is altered by modulating the generator voltage. If the generator voltage

is kept constant by the automatic voltage regulator of another close by generator a

power system stabilizer will be less effective. Therefore, participation/residue based

design should be used with care.

Various methods of PSS tuning in multimachine environment is discussed in [31].
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Chapter 4

Design of Delta-P-Omega Signal PSS

4.1 Introduction:

In this chapter, a dual input PSS where speed and electrical power deviations are used

as input, is analyzed. This PSS is referred to as Delta-P-Omega PSS. The objective of

this PSS is to derive an equivalent speed signal ∆ωeq so that it does not contain torsional

modes. The principle of this type of stabilizer is illustrated below [2, 32]:

Neglecting D, from (C.35) we have

∆Sm =
1

2H

∫

∆Tm dt− 1

2H

∫

∆Te dt (4.1)

Note that torsional components are inherently attenuated in ∆Te signal. Now the problem

is to measure the integral of ∆Tm free of torsional modes. In many applications, the ∆Tm

component is neglected. This is satisfactory, except when changing load on the unit and

other system conditions when the mechanical power changes. Under such conditions, a

spurious stabilizer output is produced if ∆Te alone is used as the stabilizing signal. This

in turn results in transient oscillations in voltage and reactive power. A way to measure

integral of ∆Tm is presented below:

Rewriting (4.1), we have,

1

2H

∫

∆Tm dt = ∆Sm +
1

2H

∫

∆Te dt (4.2)

The delta-P-omega stabilizer makes use of the above relationship to simulate a signal

proportional to the integral of mechanical power change by adding signals proportional to

shaft-speed change and integral of electrical power change. This signal will contain tor-

sional oscillations unless a filter is used. Because mechanical power changes are relatively

slow even for fast-valve movements, the derived integral of the mechanical power signal

can be conditioned with a simple low-pass filter to remove torsional frequencies. These
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functions are realized in Figure 4.1. In the figure TFF represents a filter. The output of

the filter provides
(

1
2H

∫

∆Tm dt
)

signal which is free from torsional oscillation.

Σ
+

+

TFF

2H
1

2H

e∆ T

S∆ m

∆ T dt  signalm1

Figure 4.1: Block schematic to generate integral of ∆Tm.

Using this signal, the slip signal is synthesized which is completely free of torsional

frequency components. This obtained by realizing (4.1) having simulated
(

1
2H

∫

∆Tm dt
)

signal. This permits the selection of a higher stabilizer gain that results in better damping

of system oscillations, without causing the destabilization of exciter/swing modes unlike

that is observed in a slip-signal-based PSS with torsional filter, FILT(s) [2]. The block

schematic of a Delta-P-Omega type PSS is shown in Figure 4.2. In the figure, note that

an integrator is approximated by a first order transfer function by suitably choosing the

time constant T7. This is done to avoid offset problem in a pure integrator circuit.
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It has the following advantages over speed or frequency based systems:

• it inherently attenuates torsional modes to the extent that torsional filtering in the

main stabilizing path is not required.

• the shaft location for speed sensing is not critical.

• without the torsional filter, increased stabilizer loop gain is available.

It is superior to systems using only electrical power, as the fastest load changes can be

accommodated with minimal terminal voltage disturbance without taking the stabilizer

out of service. Design of an electrical power input PSS is discussed in the next chapter.

4.2 Design of Delta-P-Omega PSS:

Following steps employed to design and analyze the PSS:

1. Design of the compensator.

2. Interfacing of PSS to the system matrix.

4.2.1 Design of the Compensator Gc(s):

The main requirement is to determine the values of T1, T2, T3 and T4 in the compensator

transfer function given by:

GC(s) = GC1(s) GC2(s) =
(1 + sT1)

(1 + sT2)

(1 + sT3)

(1 + sT4)

To obtain the values of T1, T2, T3 and T4, the compensators GC1(s) and GC2(s) are de-

signed separately to achieve the desired overall compensated phase lag with the GEPS(s).

GC1(s) and GC2(s) are designed following the steps indicated in section 3.3.2, choos-

ing appropriate value for fm and φm. For the 4 machine example, considering the base

case, we have, fm = 3 Hz, and φm = 10◦ for both GC1(s) and GC2(s). This results in

T1 = T3 = 0.06322 s and T2 = T4 = 0.04452 s.

The compensated phase lag considering the entire structure of PSS is shown in Figure

4.3. To get this, ∆Te is approximately expressed in terms of ∆Sm as

∆Te(s) = −s 2H∆Sm(s)

neglecting the mechanical power deviation, ∆Tm.

The above plots are obtained by executing pss_design.m programme. The list of

statements printed out by the programme is shown below:
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Figure 4.3: Plot of compensated GEPS(jω) with all blocks.

Enter the generator number for which you want to obtain the angle of GEPS(s): 1

Enter 1 :To design single input PSS - Slip signal

2 :To design double input PSS

3 :To design single input PSS -Power signal

Enter your choice : 2

Now you are designing compensator Gc1(s)..............

Enter the center frequency f_m for Gc1 (in Hz) : 3

Enter the amount of phase lead required (in Degrees): 10

Enter the PSS gain Ks: 15

The ratio of T1 to T2 = 1.4203 is less than 10

Enter y : if compensator Gc2(s) is same as the compensator Gc1(s)

n : if compensator Gc2(s) is different from the compensator Gc1(s)

Enter your choice (as a character input y or n): ’y’

Enter 1 : Compensators Gc1(s)*Gc2(s) only

2 : Compensators with Washout only

3 : All Blocks

Enter your choice : 3

Enter the value of Tw1 (in s) for the wash-out circuit-1 [1 - 20]s : 10

Enter the value of Tw2 (in s) for the wash-out circuit-2 [1 - 20]s : 10

Enter the value of Tw3 (in s) for the wash-out circuit-3 [1 - 20]s : 10
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Enter the value of Tw4 (in s) for the wash-out circuit-4 [1 - 20]s : 10

Enter the value of T6 (in s) for the slip-path delay [0.01 - 0.05]s : 0.01

Enter the value of T7 (in s) for the equivalent integrator [1 - 10]s : 10

Enter the value of T8 (in s) for the Filter circuit [0 - 0.01]s : 0

Enter the value of T9 (in s) for the Filter circuit [0.1 - 0.2]s : 0.1

Enter 0 if you are satisfied with the design, otherwise 1 to re-design the pss: 0

Update the delPW_pss.dat for the machine 1

----------------------------------------------------------------------

gen.no Ks T1 T2 T3 T4

-----------------------------------------------------------------------

1 15 0.06322 0.04452 0.06322 0.04452

------------------------------------------------------------------------

Press any key to obtain the amplitude response of GEPS(iw)

4.2.2 Interfacing of PSS to the System Matrix:

For the purpose of simplification, the blocks in Figure 4.2 is redrawn as in Figure 4.4.

p.u slip

eT

ΚS3

++ +
−

TF

TF

TF TFW

T

F C

Vsu
y

PW
y u

y
PT

PCPF
PF y

PC

Figure 4.4: Delta-P-Omega PSS modified block schematic.

The transfer function block TFW can be written in the state space form as:

∆ẋPW = APW ∆xPW +BPW ∆Sm (4.3)

∆yPW = CPW ∆xPW +DPW ∆Sm (4.4)
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The transfer function block TFT can be written in the state space form as:

∆ẋPT = APT ∆xPT +BPT ∆Te (4.5)

∆yPT = CPT ∆xPT +DPT ∆Te (4.6)

The transfer function block TFF can be written in the state space form as:

∆ẋPF = APF ∆xPF +BPF ∆uPF (4.7)

∆yPF = CPF ∆xPF +DPF ∆uPF (4.8)

The transfer function black TFC can be written in the state space form as:

∆ẋPC = APC ∆xPC +BPC ∆uPC (4.9)

∆yPC = CPC ∆xPC +DPC ∆uPC (4.10)

∆uPF = ∆yPW −KS3∆yPT (4.11)

∆uPC = ∆yPF − ∆yPT (4.12)

∆VS = ∆yPC (4.13)

Simplifications are carried out as follows:

1. Substitute (4.4) and (4.6) in (4.11) and simplify.

2. The modified (4.11) for ∆uPF is substituted in (4.7) and (4.8).

3. The modified (4.8) for ∆yPF and (4.6) are substituted in (4.12).

4. The modified (4.12) for ∆uPC is substituted in (4.9) and (4.10).

After the simplifications we get,

∆ẋPW = APW ∆xPW +BPW ∆Sm (4.14)

∆ẋPT = APT ∆xPT +BPT ∆Te (4.15)

∆ẋPF =

[

(BPFCPW ) ∆xPW + (BPFKS3CPT ) ∆xPT + APF ∆xPF

+ (BPFDPW ) ∆Sm + (BPFKS3DPT )∆Te

]

(4.16)
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∆ẋPC =

[

(BPCDPFCPW ) ∆xPW + [BPC (DPFKS3CPT − CPT )] ∆xPT + (BPCCPF ) ∆xPF

APC ∆xPC + (BPCDPFDPW ) ∆Sm + [BPC (DPFKS3DPT −DPT )] ∆Te

]

(4.17)

∆VS =

[

(DPCDPFCPW ) ∆xPW + [DPC (DPFKS3CPT − CPT )] ∆xPT + (DPCCPF ) ∆xPF

CPC ∆xPC + (DPCDPFDPW ) ∆Sm + [DPC (DPFKS3DPT −DPT )]∆Te

]

(4.18)

Using (3.17) and (3.23), we have,

∆Sm = eT
2 ∆XG ; ∆Te = DT ∆XG

The state space equation for the PSS is given by,

∆ẋPSS = APSS ∆xPSS +B
′

PSS∆XG (4.19)

∆VS = CPSS ∆xPSS +D
′

PSS∆XG (4.20)

where,

∆xPSS = [∆xPW ∆xPT ∆xPF ∆xPC]T

B
′

PSS = BPSS

[

eT
2

DT

]

; D
′

PSS = DPSS

[

eT
2

DT

]

APSS =













APW [0] [0] [0]

[0] APT [0] [0]

BPFCPW BPFKS3CPT APF [0]

BPCDPFCPW [BPC (DPFKS3CPT − CPT )] BPCCPF APC













BPSS =













BPW [0]

[0] BPT

BPFDPW BPFKS3DPT

BPCDPFDPW [BPC (DPFKS3DPT −DPT )]












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CPSS =
[

DPCDPFCPW [DPC (DPFKS3CPT − CPT )] DPCCPF CPC

]

DPSS =
[

DPCDPFDPW [DPC (DPFKS3DPT −DPT )]
]

Rewriting (1.45) considering only the change in Vs, we have,

∆ẊG = [AT ]∆XG + [EG] ∆Vs (4.21)

where [EG] = EG (:, i) for ith generator.

Using (4.20) in (4.21) and rewriting the state model accounting PSS we obtain,

[

∆ẊG

∆ẋPSS

]

=

[

AT + EGD
′

PSS EGCPSS

B
′

PSS APSS

][

∆XG

∆xPSS

]

4.2.2.1 Eigenvalues with Delta-P-Omega PSS:

For the base case, a few oscillatory modes with the PSS are listed in Table 4.1 forKS = 15.

From the tabulated results it can be observed that the damping factor for inter-area mode

is 0.0606 as against 0.0588 with slip-signal PSS.

SL No Eigenvalues Dampingfactor Freq.(Hz) Nature of the mode
1 -15.44078±j 17.0756 0.6707 2.7177 Non-Swing mode
2 -15.64061 ±j 12.5809 0.7792 2.0023 Non-Swing mode
3 -2.50222 ±j 8.4307 0.2845 1.3418 Swing mode(2 & 1)
4 -1.05559 ±j 6.8045 0.1533 1.0830 Swing mode(4 & 3)
5 -0.27285 ±j 4.4942 0.0606 0.7153 Swing mode([1 2] & [3 4])

Table 4.1: Oscillatory modes with Delta-P-Omega PSS.

The above results are obtained by using the following steps:

1. Prepare the data file delPw_pss.dat -see section 2.2.1.

2. Set only ng_delPw_pss=[1], with the other Individual Selectors initialized to [].

3. Enable the Main Selector by setting PSS=zeros(1,nb).

4. Run small_sig.m and then execute trace_mode.m programme.

NOTE: From the root locus plot it was observed that one of the local modes becomes

unstable when KS = 245. It was also observed that when FILT(s) and TR(s) are used

with slip-signal based PSS, one of the local modes becomes unstable with gain KS= 40.

NITK Surathkal 89 Electrical Dept.





Version-1.0

Chapter 5

Design of Power-signal PSS

5.1 Introduction:

In a single-input power system stabilizer, electrical power output of the machine is nor-

mally used as the input signal as it provides high degree of attenuation to torsional modes

unlike slip-signal [27]. An electrical power-input based PSS can be realized by observing

the following relationship between ∆Sm and ∆Te given by

jω∆Sm(jω) = − 1

2H
∆Te(jω) (5.1)

Note that the above relationship is obtained from (C.35) by neglecting the deviation

in the mechanical power input to the machine and mechanical damping, and for sinusoidal

variation of quantities. From (5.1), it can be seen that

1. To get the same effect as a slip-input PSS, with the ∆Te input, the output of the

PSS block (Vs) is fed to the exciter VREF summing junction with a negative sign (as

against a positive sign that has been used with the slip-input PSS).

2. The phasor ∆Te(jω) leads the ∆Sm(jω) phasor by 90o (having accounted the neg-

ative sign in Vs). This implies that using electrical power signal is equivalent to

using slip signal with 90o phase lead. In other words, to get the phase angle of the

compensated GEPS, ΦL, it is required to simply add 90o to the angle of GEPS(jω).

From the above observations, a power-input PSS is implemented along with a measure-

ment delay transfer function and a washout-circuit as shown in Figure 5.1.

Note that the function of the washout-circuit is identical to that with the slip-signal

based PSS -see section 3.2.1.
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Figure 5.1: Block schematic of power-input PSS.

5.2 Interfacing of Power-input PSS to the State Ma-

trix:

The steps employed are as follows:

1. Following the procedure indicated in section 3.3.5 and rewriting (3.23), ∆Te for ith

machine is expressed in terms of the state variables as

∆Te = DT ∆XG (5.2)

2. The linearized model of the power-input PSS is given by

∆ẋPSS = APSS ∆xPSS +BPSS ∆Te (5.3)

∆Vs = CPSS ∆xPSS +DPSS ∆Te (5.4)

where ∆Te denotes the deviation in electrical power output for ith generator.

Using (5.2) in (5.3) and (5.4) we get,

∆ẋPSS = APSS ∆xPSS +BPSS DT ∆XG (5.5)

∆Vs = CPSS ∆xPSS +DPSS DT ∆XG (5.6)

3. Considering only the change in Vs, from (1.45) we have

∆ẊG = [AT ]∆XG + [EG] ∆Vs (5.7)

where [EG] = EG (:, i) for ith generator.

4. Using (5.6) in (5.7) and rewriting the state model accounting PSS, we obtain,

∆ẊP = AP ∆XP
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where ∆XP = [∆XG ∆xPSS]T

AP =







[AT ] + [EG] DPSS DT [EG] CPSS

BPSS DT APSS







5.3 4-machine Power System Example:

A power-input PSS has been designed for machine-1 in the base case. The phase angle of

the compensated GEPS(jω) is obtained accounting the measurement delay of TR = 0.05

s and the washout-circuit (TW = 10 s), as shown in Figure 5.2.
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Figure 5.2: Phase angle of the compensated GEPS with power input PSS.

The above plot has been obtained by using the following steps:

1. Execute small_sig.m with appropriate options.

2. Run pss_design.m programme.

A list of statements printed out by the programme is given below.

Enter the generator number for which you want to obtain the angle of GEPS(s): 1

Enter 1 :To design single input PSS - Slip signal

2 :To design double input PSS

3 :To design single input PSS -Power signal
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Enter your choice : 3

Enter 1 : Plain power type PSS

2 : With measurement delay and washout time constant

Enter your choice : 2

Enter the PSS gain Ks: 0.03

Enter the value of Tw (in s) for the wash-out circuit [1 - 20]s : 10

Enter the value of TR (in s) for the measurement delay [0.01 - 0.05]s : 0.05

Enter 0 if you are satisfied with the design,

otherwise 1 to re-design the pss: 0

Update the power_pss.dat for the machine 1

---------------------------------------------------

gen.no Ks TR Tw

---------------------------------------------------

1 0.03 0.05 10.0

----------------------------------------------------

Press any key to obtain the amplitude response of GEPS(iw)

5.3.1 Eigenvalues with Power-input PSS:

The effect of the PSS on the swing modes is demonstrated in Table 5.1 for KS = 0.03.

SL No Eigenvalues Damp. Factor Freq.(Hz) Remarks
1 -2.0881 ± j 5.8556 0.3358 0.9319 Swing mode(2 & 1)
2 -1.0596 ± j 6.8066 0.1538 1.0833 Swing mode(4 & 3)
3 -0.1988 ± j 4.2343 0.0469 0.6739 Swing mode([1 2] & [3 4])

Table 5.1: Swing modes with power-input PSS for the base case.

The results are obtained by using the following steps:

1. Prepare the data file power_pss.dat as shown below (see section 2.2.1):

File name: power_pss.dat

-------------------------------------

Gen.No. TW TR KS VSMAX VSMIN

-------------------------------------

1 10 0.05 0.03 0.1 -0.1

2 10 0.05 0.07 0.1 -0.1

3 10 0.05 0.07 0.1 -0.1

4 10 0.05 0.03 0.1 -0.1

-------------------------------------
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2. Set ng_power_pss = [1] and enable PSS by setting PSS=zeros(1,nb) in file

initcond.m.

3. Run small_sig.m and then execute trace_mode.m programme.

NOTE:

1. Depending on the type of exciter and the system characteristics, the phase lead

introduced by a power-input PSS may be too high at low frequencies (see Figure

5.2) leading to an increase in the damping of the swing modes at the expense of

a reduction in the synchronizing torque. This is evident from a decrease in the

frequency of oscillation of the modes (see also Table 2.1).

2. From the root locus plot it was observed that one of the exciter modes becomes

unstable when KS = 0.4. This has been verified by the time domain simulation for

a perturbation of Vref of machine-1 as shown in Figure 5.3.
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Figure 5.3: Variation of Efd for power PSS gain of 0.4.

5.3.2 Performance of the PSS for Power Ramping:

A major difficulty with power-input PSS is that they respond to ramping of the generator’s

mechanical power or load changes. The effect is that the generator’s terminal voltage may

vary considerably. In some cases such a deviation in terminal voltage may even cause the

machine to lose synchronism [5].
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In order to check the response of power-input PSS under power ramping, the mechan-

ical power of the machine is ramped-down to 50% of its quiescent power output, (Pmo),

at t = 1 s and is ramped-up again at t = 11 s at a rate of Pmo/s. The aim here is to

deteremine whether the machine is able to maintain synchronism and the terminal voltage

remain within limits. This also provides a way to check the suitability of limits on Vs.

For the case in hand, the mechanical power of machine-1 is varied as said above and the

plots of its rotor angle and the terminal voltage are shown in Figure 5.4.
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Figure 5.4: variation of rotor angle and the terminal voltage for machine-1 for power
ramping case.

The results are obtained by using the following steps:

1. Prepare the data file power_pss.dat as shown above.

2. While running small_sig.m, the following option is chosen:

wB = 376.9911

Enter 1 if you want to run transtability programme for network

disturbances, otherwise 0: 0

Enter 1 if you want to run transtability programme for

perturbation of VREF, otherwise 0: 0

Enter 1 if you want to run transtability programme for

ramping of Tm, otherwise 0: 1

Enter the generator number whose Tm needs to be ramped-up/down: 1

3. Run time-domain simulation programme by executing transtability.mdl file.
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Chapter 6

10-machine Power System Example

6.1 Ten Machine System Details:

A well known 10-machine, 39-bus New England power system has been used to demon-

strate the modal analysis of a power system. The single line diagram of the system is

shown in Figure 6.1. The system details are adopted from [1].
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Figure 6.1: 10-machine 39-bus power system.

1.0 model has been used for the generators with all exciters on manual control. Con-

stant impedance type loads have been employed. The modal analysis has been carried
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out using the following steps:

1. Prepare the data files.

2. Initialize the Main and Individual Selectors in file initcond.m

3. Execute small_sig.m with appropriate inputs.

4. Execute trace_mode.m. The statements displayed in the MATLAB Command Win-

dow and the respective inputs are shown below:

Enter 1 to display ALL eigenvalues (EIG), otherwise 0 (using EIGS): 1

-------------------------------------------------------------------

SL_number Eigenvalue dampingfactor frequency(Hz)

--------------------------------------------------------------------

ans =

------------------------A partial list--------------------------

31.0000 -0.2541 + 8.6811i 0.0293 1.3816

32.0000 -0.2541 - 8.6811i 0.0293 1.3816

33.0000 -0.1823 + 8.3340i 0.0219 1.3264

34.0000 -0.1823 - 8.3340i 0.0219 1.3264

35.0000 -0.1865 + 8.2509i 0.0226 1.3132

36.0000 -0.1865 - 8.2509i 0.0226 1.3132

37.0000 -0.1698 + 7.1939i 0.0236 1.1449

38.0000 -0.1698 - 7.1939i 0.0236 1.1449

39.0000 -0.1624 + 6.9902i 0.0232 1.1125

40.0000 -0.1624 - 6.9902i 0.0232 1.1125

41.0000 -0.1636 + 6.3584i 0.0257 1.0120

42.0000 -0.1636 - 6.3584i 0.0257 1.0120

43.0000 -0.1609 + 6.2241i 0.0258 0.9906

44.0000 -0.1609 - 6.2241i 0.0258 0.9906

45.0000 -0.1939 + 5.9474i 0.0326 0.9466

46.0000 -0.1939 - 5.9474i 0.0326 0.9466

47.0000 -0.1560 + 3.6521i 0.0427 0.5813

48.0000 -0.1560 - 3.6521i 0.0427 0.5813

49.0000 -0.6715 1.0000 0

50.0000 -0.0000 1.0000 0

51.0000 -0.0338 1.0000 0

52.0000 -0.0898 1.0000 0

53.0000 -0.2900 1.0000 0
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54.0000 -0.2663 1.0000 0

55.0000 -0.1370 1.0000 0

56.0000 -0.1575 1.0000 0

57.0000 -0.1863 1.0000 0

58.0000 -0.2285 1.0000 0

59.0000 -0.2197 1.0000 0

---------------------------------------------------------------------

Enter the serial number of the eigenvalue for which you

want to obtain the P.factor: 48

----------------------------------------------------------------------------------

State variable Mag(Norm PF) ang(Norm PF)deg. Mag(PF) ang(PF)deg.

----------------------------------------------------------------------------------

Delta-2 1.0000 -0.00 0.4145 2.02

Slip-2 0.4996 4.92 0.2071 6.94

Slip-9 0.1604 0.23 0.0665 2.25

Slip-6 0.1278 -5.98 0.0530 -3.96

Slip-4 0.1032 -1.88 0.0428 0.13

----------------------------------------------------------------------------------

You have chosen a SWING-MODE

----------------------------------------------------------------------------------

The generator(s) in group-1 is(are) ...

Group1 =

4 6 7 9 5 3 1 8

The generator(s) in group-2 is(are) ...

Group2 =

2

----------------------------------------------------------------------------------

Enter 1 if you want to plot the compass plot, otherwise 0: 1

NOTE: Use mouse click on the plot to identify the generator

Press any key

Current plot held

Current plot held

Enter 1 if you want to repeat for another eigenvalue, otherwise 0: 0

Further, the grouping of machines prepared by the programme is shown in Figures 6.2

and 6.3. Not more than 6 eigenvectors are drawn in each plot.
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Figure 6.2: Plot of slip-right eigenvector for machine groups 1 and 2.
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Figure 6.3: Plot of slip-right eigenvector for machine groups 1 and 2.

Note that trace_mode.m can also be run with the following option:

Enter 1 to display ALL eigenvalues (EIG), otherwise 0 (using EIGS): 0

You are scanning 10 eigenvalues around 1.000 Hz .....

Please press a key:
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-------------------------------------------------------------------

SL_number Eigenvalue dampingfactor frequency(Hz)

--------------------------------------------------------------------

ans =

1.0000 -0.1609 + 6.2241i 0.0258 0.9906

2.0000 -0.1636 + 6.3584i 0.0257 1.0120

3.0000 -0.1939 + 5.9474i 0.0326 0.9466

4.0000 -0.1624 + 6.9902i 0.0232 1.1125

5.0000 -0.1698 + 7.1939i 0.0236 1.1449

6.0000 -0.1865 + 8.2509i 0.0226 1.3132

7.0000 -0.1823 + 8.3340i 0.0219 1.3264

8.0000 -0.2541 + 8.6811i 0.0293 1.3816

9.0000 -0.1560 + 3.6521i 0.0427 0.5813

10.0000 -0.0000 1.0000 0

---------------------------------------------------------------------

Enter the serial number of the eigenvalue for which you

want to obtain the P.factor: 9

----------------------------------------------------------------------------------

State variable Mag(Norm PF) ang(Norm PF)deg. Mag(PF) ang(PF)deg.

----------------------------------------------------------------------------------

Delta-2 1.0000 -0.00 0.4006 -0.93

Slip-2 0.5544 -7.82 0.2221 -8.75

Slip-9 0.2207 -13.33 0.0884 -14.26

Field-9 0.1850 -15.76 0.0741 -16.69

Efd-9 0.1783 -124.43 0.0714 -125.35

Slip-6 0.1756 -7.59 0.0703 -8.52

Slip-4 0.1541 -13.09 0.0617 -14.02

Slip-5 0.1424 -15.58 0.0570 -16.50

Slip-7 0.1421 -12.34 0.0569 -13.26

Slip-3 0.1202 -14.30 0.0482 -15.23

----------------------------------------------------------------------------------

You have chosen a SWING-MODE

----------------------------------------------------------------------------------

The generator(s) in group-1 is(are) ...

Group1 =

4 6 7 9 5 3 1 8 10

NITK Surathkal 101 Electrical Dept.



10-machine Power System Example Version-1.0

The generator(s) in group-2 is(are) ...

Group2 =

2

----------------------------------------------------------------------------------

Enter 1 if you want to plot the compass plot, otherwise 0: 1

NOTE: Some times, the determination of eigenvalues using eigs function may not con-

verge. In such cases, one may require to alter the maximum number of iterations (currently

options.maxit is set to 25) or tolerance values (currently options.tol is set to 1e−12)

in trace_mode.m
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Appendix A

Names of State Variables

The state variable strings used for the system are shown in order in the following Table.

1 Delta-

2 Slip-

3 Field-

4 DampH-

5 DampG-

6 DampK-

7 Efd-

8 VR_DC-

9 xB_DC_AC-

10 xF_DC-

11 x1_st_tu-

12 x2_st_tu-

13 x3_st_tu-

14 y1_gv-

15 PG-

16 z-

Table A.1: System state variables.

1. The state variables defined for the machine are:

Delta- Slip- Field- DampH- DampG- DampK-

Table A.2: Machine state variables.

2. The state variable for the single-time constant static exciter is Efd.

3. The state variables for the DC1A exciter are

VR_DC- xB_DC_AC- xF_DC-

Table A.3: DC1A-exciter state variables.
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4. The state variables for the AC4A exciter are

Efd- xB_DC_AC-

Table A.4: AC4A-exciter state variables.

5. the state variables for the reheat-type steam turbine and the associated speed-

governor, are

x1_st_tu- x2_st_tu- x3_st_tu- y1_gv- PG-

Table A.5: Reheat steam turbine state variables.

6. The state variables for the hydraulic turbine and the associated speed-governor, are

y1_gv- PG- z-

Table A.6: Hydraulic turbine state variables.

The state-vector is given by

xg =

[

δ Sm ψf ψh ψg ψk Efd vR

xB xF x1 x2 x3 y1 PGV z

]T
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Appendix B

Derivation of P-matrix and

Construction of PG, PL and Reduced

State Matrices

B.1 Derivation of P matrix:

The generator terminal voltage is given by,

Vg
6 θg = Vg (cos θg + j sin θg)

Now consider,

∂Vg 6 θg

∂θg

= Vg0 (− sin θg + j cos θg)∆θg (B.1)

= Vg0∆θg

(

ej(π
2
+θg)

)

Let

Vg0∆θge
j(π

2
+θg) = ∆VQg + j∆VDg (B.2)

Vg0∆θg = Re
[

(∆VQg + j∆VDg) e
−j(π

2
+θg)

]

Vg0∆θg = Re

[

(∆VQg + j∆VDg)
(−Vg0 sin θg − jVg0 cos θg)

Vg0

]

Vg0∆θg =
1

Vg0
[−VDg0∆VQg + VQg0∆VDg] (B.3)

(B.4)

We know that

V 2
g = V 2

Qg + V 2
Dg
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Now consider

2Vg0∆Vg = 2VQg0∆VQg + 2VDg0∆VDg

∆Vg =
VQg0

Vg0
∆VQg +

VDg0

Vg0
∆VDg (B.5)

From (B.3) and (B.5) we can write

[

Vg0∆θg

∆Vg

]

=
1

Vg0

[

−VDg0 VQg0

VQg0 VDg0

][

∆VQg

∆VDg

]

= [P ]

[

∆VQg

∆VDg

]

∆V p
g =

[

Vg0∆θg

∆Vg

]

∆V r
g =

[

∆VQg

∆VDg

]

∆V p
g = [P ]∆V r

g

where

[P ] =
1

Vg0

[

−VDg0 VQg0

VQg0 VDg0

]
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B.2 Construction of [PG] and [PL] Matrices:

The single line diagram of a 4 machine power system is shown in Figure 2.1. The system

details are adopted from [1]. In this system, machines 1, 2, 3 and 4 are connected to buses

1, 2, 3 and 4 respectively. Loads A and B are connected to buses 9 and 10 respectively.

For this case, the [PG] and [PL] matrices are defined as follows.

Busno Gen1 Gen2 Gen3 Gen4 LoadA LoadB

PG =

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10


















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


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
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





































[

1 0

0 1

]

0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0

[

1 0

0 1

]

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

[

1 0

0 1

]

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

[

1 0

0 1

]

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0






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
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



, PL =





























































































0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
[

1 0

0 1

]

0 0

0 0

0 0

0 0

[

1 0

0 1

]





























































































2nb × 2ng 2nb × 2ml
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B.3 Derivation of Reduced-State Matrix:

For the 4-machine system the state equations are written in the matrix form as follows:
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∆δ4

∆Sm4

...

...

∆Z4













































































































Original Matrix
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Expressing the rotor angle of other machines wrt machine-1, we have,

∆δ̇2 − ∆δ̇1 = −ωB∆Sm1 + 0 · · · · · ·+ ωB∆Sm2 + · · · · · ·+ 0
...

...
...

...
...

...
...

...
...

...
...

...

∆δ̇4 − ∆δ̇1 = −ωB∆Sm1 + 0 · · · · · ·+ ωB∆Sm4 + · · · · · ·+ 0

Further, the first row and column are removed from the original A-matrix. Now

rewriting the state matrix we get,









































































































∆ ˙Sm1

...
...

∆Ż1

· · · · · · · · ·
∆δ̇2 − ∆δ̇1

∆ ˙Sm2

...
...

∆Ż2

· · · · · · · · ·
...
...
...

· · · · · · · · ·
∆δ̇4 − ∆δ̇1

∆ ˙Sm4

...

...

∆Ż4









































































































=



















































































































a2,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a2,64

... · · · ...
...

...
... · · · ...

...
...

... · · · ...
... · · · ...

...
...

... · · · ...
...

...
... · · · ...

a16,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a16,64

· · · · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · · · ·
−ωB · · · 0

... 0 ωB · · · 0
... 0 0 · · · 0

a18,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a18,64

... · · · ...
...

...
... · · · ...

...
...

... · · · ...
... · · · ...

...
...

... · · · ...
...

...
... · · · ...

a32,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a32,64

· · · · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · · · ·
... · · · ...

...
...

... · · · ...
...

...
... · · · ...

... · · · ...
...

...
... · · · ...

...
...

... · · · ...
... · · · ...

...
...

... · · · ...
...

...
... · · · ...

· · · · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · · · ·
−ωB · · · 0

... 0 0 · · · 0
... 0 ωB · · · 0

a50,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a50,64

... · · · ...
...

...
... · · · ...

...
...

... · · · ...
... · · · ...

...
...

... · · · ...
...

...
... · · · ...

a64,2 · · · · · · ... · · · · · · · · · · · · ... · · · · · · · · · a64,64



























































































































































































































∆Sm1

...

...

∆Ż1

· · · · · · · · ·
∆δ2 − ∆δ1

∆Sm2

...

...

∆Z2

· · · · · · · · ·
...
...
...

· · · · · · · · ·
∆δ4 − ∆δ1

∆Sm4

...

...

∆Z4









































































































Reduced Matrix
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NOTE:

1. For the original A matrix , there will be 2-zero eigenvalues if mechanical damping on

all machines is set to zero. This represents redundancy of state variables associated

with rotor angle and rotor speed.

2. For the reduced A matrix, there will be 1-zero eigenvalue with zero mechanical

damping on all machines. For an m-machine system, δ1, δ2 · · · , δm are the rotor

angles. The rotor variables (δ2 − δ1) , (δ3 − δ1) · · · , (δm − δ1) are the variables which

have significance leading to only (m− 1) independent rotor angles.

The process of matrix reduction removes the redundancy associated with the rotor

angle. However the redundancy associated with the rotor speed (or slip) continues

exist, which is indicated by 1-zero eigenvalue. This zero eigenvalue vanishes when

(a) Mechanical damping is accounted on any machine.

(b) Speed-governor model is considered.

(c) Frequency-dependent load models are included.
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Appendix C

Generator Modelling

C.1 Introduction:

A 3 phase synchronous machine is modelled in the rotor frame of reference as shown in

Figure C.1. The figure shows 2 fictitious d and q stator windings representing three phase

armature windings on the stator. The figure also depicts 2 rotor windings, including the

field winding ‘f’ along d-axis and 2 rotor coils along q-axis. The short circuited coils,

one along d-axis (‘h’) and two along q-axis (‘g’ and ‘k’) represent the effect of damper

windings and eddy currents induced in the rotor mass. This representation of the rotor

circuits is normally referred to as 2.2 model [1].

d−
ax

is
q−axis

d−
 ax

is 
sta

tor
 w

ind
ing

q−
 ax

is 
sta

tor
 w

ind
ing

v
 F

g− coil

k−coil

h −coil

f−coil

Figure C.1: 2.2 model of a Synchronous Machine.
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C.2 Rotor Equations:

C.2.1 d-axis Equations:

For ith generator the differential equations are written in the state-space form as follows:

dψh

dt
=

1

T
′′

d

[−ψh + ψd] (C.1)

dψf

dt
=

1

T
′

d

[

−ψf + ψd +
x

′

dEfd

(xd − x
′

d)

]

(C.2)

where

ψd = x
′′

did + E
′′

q (C.3)

E
′′

q =

[

(

x
′

d − x
′′

d

)

ψh

x
′

d

+

(

xd − x
′

d

)

xdx
′

d

x
′′

dψf

]

(C.4)

C.2.2 q-axis Equations:

The differential equations are written in the state-space form as follows:

dψg

dt
=

1

T
′

q

[−ψg + ψq] (C.5)

dψk

dt
=

1

T
′′

q

[−ψk + ψq] (C.6)

where

ψq = x
′′

q iq − E
′′

d (C.7)

E
′′

d = −
[

(

x
′

q − x
′′

q

)

ψk

x
′

q

+

(

xq − x
′

q

)

xqx
′

q

x
′′

qψg

]

(C.8)

C.3 Stator Equations:

Neglecting stator transients and ignoring speed variations, the stator d- and q-axes voltage

equations are given by

vd = −idRa − ψq (C.9)

vq = −iqRa + ψd (C.10)
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where vd and vq represent d- and q- axis generator terminal voltages respectively.

Using (C.3) and (C.7) in (C.9) and (C.10), we have

vd = −idRa − x
′′

q iq + E
′′

d (C.11)

vq = −iqRa + x
′′

did + E
′′

q (C.12)

C.4 Derivation of IDg and IQg:

Neglecting Ra, we have from (C.9) and (C.10),

vq = ψd (C.13)

vd = −ψq (C.14)

vq + jvd = Vg e
j(θg−δ) (C.15)

vq = Vg cos(δ − θg) (C.16)

vd = −Vg sin(δ − θg) (C.17)

ψd = Vg cos(δ − θg) (C.18)

ψq = Vg sin(δ − θg) (C.19)

Using (C.3), (C.7), (C.18) and (C.19) we have,

id =
vq − E

′′

q

x
′′

d

=
Vg cos (δ − θg) − E

′′

q

x
′′

d

(C.20)

iq =
E

′′

d − vd

x
′′

q

=
E

′′

d + Vg sin (δ − θg)

x
′′

q

(C.21)

iq + jid =
E

′′

d + Vg sin (δ − θg)

x
′′

q

+ j
Vg cos (δ − θg) − E

′′

q

x
′′

d

(C.22)

IQg + jIDg = (iq + jid) e
jδ (C.23)

IDg =

[

E
′′

d + Vg sin (δ − θg)

x
′′

q

]

sin δ +

[

Vg cos (δ − θg) − E
′′

q

x
′′

d

]

cos δ (C.24)

IQg =

[

E
′′

d + Vg sin (δ − θg)

x
′′

q

]

cos δ −
[

Vg cos (δ − θg) − E
′′

q

x
′′

d

]

sin δ (C.25)
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From (C.4) and (C.8) we have,

E
′′

q = C1ψh + C2ψf (C.26)

E
′′

d = −C3ψk − C4ψg (C.27)

where

C1 =
(x

′

d − x
′′

d)

x
′

d

(C.28)

C2 =
(xd − x

′

d)x
′′

d

xdx
′

d

(C.29)

C3 =
(x

′

q − x
′′

q )

x
′

q

(C.30)

C4 =
(xq − x

′

q)x
′′

q

xqx
′

q

(C.31)

Therefore,

IDg =
1

x
′′

q

[

− C3ψk − C4ψg + Vg sin (δ − θg)

]

sin δ +

+
1

x
′′

d

[

Vg cos (δ − θg) − C1ψh − C2ψf

]

cos δ (C.32)

IQg =
1

x
′′

q

[

− C3ψk − C4ψg + Vg sin (δ − θg)

]

cos δ −

− 1

x
′′

d

[

Vg cos (δ − θg) − C1ψh − C2ψf

]

sin δ (C.33)

C.5 Swing Equations:

dδ

dt
= SmωB (C.34)

dSm

dt
=

1

2H

[

−DSm + Tm − Te

]

(C.35)

In terms of the flux-linkages and the generator winding currents, the electromagnetic

torque is given by

Te = (ψdiq − ψqid) (C.36)

Using (C.18) - (C.21), (C.26) and (C.27), the above torque expression is modified as
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Te =

[

C2

x
′′

d

(

Vgψf sin(δ − θg)

)

+
C1

x
′′

d

(

Vgψh sin(δ − θg)

)

− C4

x
′′

q

(

Vgψg cos(δ − θg)

)

−C3

x
′′

q

(

Vgψk cos(δ − θg)

)

+ C5

(

V 2
g sin(2(δ − θg))

2

)]

(C.37)

where

C5 =

(

x
′′

d − x
′′

q

x
′′

dx
′′

q

)

(C.38)

C.6 Modification of Differential Equations:

Using (C.18) and (C.19) in (C.1), (C.2), (C.5) and (C.6) we get

dψf

dt
=

1

T
′

d

[

− ψf + Vg cos(δ − θg) +

(

x
′

d

xd − x
′

d

)

Efd

]

(C.39)

dψh

dt
=

1

T
′′

d

[

− ψh + Vg cos(δ − θg)

]

(C.40)

dψg

dt
=

1

T
′

q

[

− ψg + Vg sin(δ − θg)

]

(C.41)

dψk

dt
=

1

T
′′

q

[

− ψk + Vg sin(δ − θg)

]

(C.42)

After linearizing the above equations, the non-zero elements of [Ag],
[

Bp
g

]

, [Cg] and
[

Dp
g

]

matrices are given by

Ag(1, 2) = ωB (C.43)

Ag(2, 1) = − 1

2H

[

C2Vg0ψf0 cos(δ0 − θg0)

x
′′

d

+
C1Vg0ψh0 cos(δ0 − θg0)

x
′′

d

+
C4Vg0ψg0 sin(δ0 − θg0)

x
′′

q

+
C3Vg0ψk0 sin(δ0 − θg0)

x
′′

q

+ C5V
2
g0 cos(2(δ0 − θg0))

]

(C.44)
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Ag(2, 2) = − D

2H
(C.45)

Ag(2, 3) = − 1

2H

[

C2Vg0 sin(δ0 − θg0)

x
′′

d

]

(C.46)

Ag(2, 4) = − 1

2H

[

C1Vg0 sin(δ0 − θg0)

x
′′

d

]

(C.47)

Ag(2, 5) =
1

2H

[

C4Vg0 cos(δ0 − θg0)

x
′′

q

]

(C.48)

Ag(2, 6) =
1

2H

[

C3Vg0 cos(δ0 − θg0)

x
′′

q

]

(C.49)

Ag(3, 1) = −Vg0 sin(δ0 − θg0)

T
′

d

(C.50)

Ag(3, 3) = − 1

T
′

d

(C.51)

Ag(3, 7) =
1

T
′

d

[

x
′

d

xd − x
′

d

]

(C.52)

Ag(4, 1) = −Vg0 sin(δ0 − θg0)

T
′′

d

(C.53)

Ag(4, 4) = − 1

T
′′

d

(C.54)

Ag(5, 1) =
Vg0 cos(δ0 − θg0)

T
′

q

(C.55)

Ag(5, 5) = − 1

T
′

q

(C.56)

Ag(6, 1) =
Vg0 cos(δ0 − θg0)

T
′′

q

(C.57)

Ag(6, 6) = − 1

T
′′

q

(C.58)
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Bp
g(2, 1) =

1

2H

[

C2ψf0 cos(δ0 − θg0)

x
′′

d

+
C1ψh0 cos(δ0 − θg0)

x
′′

d

+
C4ψg0 sin(δ0 − θg0)

x
′′

q

+
C3ψk0 sin(δ0 − θg0)

x
′′

q

+ C5Vg0 cos(2(δ0 − θg0))

]

(C.59)

Bp
g(2, 2) = − 1

2H

[

C2ψf0 sin(δ0 − θg0)

x
′′

d

+
C1ψh0 sin(δ0 − θg0)

x
′′

d

− C4ψg0 cos(δ0 − θg0)

x
′′

q

−C3ψk0 cos(δ0 − θg0)

x
′′

q

+ C5Vg0 sin(2(δ0 − θg0))

]

(C.60)

Bp
g(3, 1) =

sin(δ0 − θg0)

T
′

d

(C.61)

Bp
g(3, 2) =

cos(δ0 − θg0)

T
′

d

(C.62)

Bp
g(4, 1) =

sin(δ0 − θg0)

T
′′

d

(C.63)

Bp
g(4, 2) =

cos(δ0 − θg0)

T
′′

d

(C.64)

Bp
g(5, 1) = −cos(δ0 − θg0)

T
′

q

(C.65)

Bp
g(5, 2) =

sin(δ0 − θg0)

T
′

q

(C.66)

Bp
g(6, 1) = −cos(δ0 − θg0)

T
′′

q

(C.67)

Bp
g(6, 2) =

sin(δ0 − θg0)

T
′′

q

(C.68)
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Cg(1, 1) =
Vg0 sin δ0 cos(δ0 − θg0)

x
′′

q

− Vg0 cos δ0 sin(δ0 − θg0)

x
′′

d

+ IQg0 (C.69)

Cg(1, 3) = −C2 cos δ0
x

′′

d

(C.70)

Cg(1, 4) = −C1 cos δ0
x

′′

d

(C.71)

Cg(1, 5) = −C4 sin δ0
x

′′

q

(C.72)

Cg(1, 6) = −C3 sin δ0
x

′′

q

(C.73)

Cg(2, 1) =
Vg0 sin δ0 sin(δ0 − θg0)

x
′′

d

+
Vg0 cos δ0 cos(δ0 − θg0)

x
′′

q

− IDg0 (C.74)

Cg(2, 3) =
C2 sin δ0

x
′′

d

(C.75)

Cg(2, 4) =
C1 sin δ0

x
′′

d

(C.76)

Cg(2, 5) = −C4 cos δ0
x

′′

q

(C.77)

Cg(2, 6) = −C3 cos δ0
x

′′

q

(C.78)

Dp
g(1, 1) =

cos δ0 sin(δ0 − θg0)

x
′′

d

− sin δ0 cos(δ0 − θg0)

x
′′

q

(C.79)

Dp
g(1, 2) =

cos δ0 cos(δ0 − θg0)

x
′′

d

+
sin δ0 sin(δ0 − θg0)

x
′′

q

(C.80)

Dg(2, 1) = −sin δ0 sin(δ0 − θg0)

x
′′

d

− cos δ0 cos(δ0 − θg0)

x
′′

q

(C.81)

Dp
g(2, 2) = −sin δ0 cos(δ0 − θg0)

x
′′

d

+
cos δ0 sin(δ0 − θg0)

x
′′

q

(C.82)
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C.7 Simplification of Machine Model:

Modifications to be made in 2.2 model to get various other simple models [1] are tabulated

in Table C.1.

Model Basic Modifications Settings for
No dynamic Saliency

2.2 - x
′′

q = x
′′

d

2.1 x
′′

q = x
′

q and T
′′

qo 6= 0 x
′

q = x
′′

d

1.1 x
′′

d = x
′

d and T
′′

do 6= 0
x

′′

q = x
′

q and T
′′

qo 6= 0 x
′

q = x
′

d

1.0 x
′′

d = x
′

d and T
′′

do 6= 0
x

′′

q = x
′

q = xq and T
′′

qo 6= 0

T
′

qo 6= 0 xq = x
′

d

0.0 x
′′

d = x
′

d and T
′′

do 6= 0
(classical) T

′

do = 10000 (say)
x

′′

q = x
′

q = xq = x
′

d and

T
′′

qo 6= 0, T
′

qo 6= 0 -

Table C.1: Simplifications in 2.2 model.

NOTE:

For classical model, the q-axis transient voltage, E
′

q = E
′′

q is assumed to be a constant.

To achieve this in 2.2 model, one may require to disable exciter in addition to choosing

an appropriate value for xd relative to x
′

d. For example, one may set xd = 6x
′

d.
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Appendix D

Exciter Modelling

As per [2, 22], the following IEEE-type exciter models are considered.

D.1 Single Time Constant Static Exciter:

 1 + s T

V

−

+

+
E

A

VREF

S

fd
AK

E

Efdmin

 fdmax

Σ

Vc

Figure D.1: Single time constant static excitation system.

The time delay associated with the bus voltage measuring transducer is neglected.

dEfd

dt
=

1

TA

[−Efd +KA (Vref + Vs − Vc)] (D.1)

After linearizing (D.1), the non-zero elements of the matrices are given by,

Ag(7, 7) = − 1

TA

(D.2)

Bp
g(7, 2) = −KA

TA

(D.3)

Eg(7, 2) =
KA

TA

(D.4)
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D.2 IEEE-type DC1A Exciter:

      1

+

+

EFD

EsT

    KE

VX

VFE

VRMAX

VRMIN

    KA
1 + sTA

1 + sTC

1 + sTB

1 + sTF

VF

VS

VC

VREF

VX FDEFD

+

+

+

−

−

−

Σ

Σ

ESS

TGR REG

= E   .   S   (E      )

VR

   sK F

Σ
BV

Figure D.2: IEEE-type DC1A excitation system.

(  )1 −
TC

TB

1+sT
Σ

V V V
F

Vc − 
ref

+

VB

(  )TC

TB

+

+x
B

s− B

Figure D.3: TGR block.
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T

1+sT
Σ

K

F

F

F

KF

TF

xF
V F

Efd(  )

(  )

+

−

Figure D.4: ESS block.

NOTE:

1. The saturation function SE(Efd) is given by

SE(Efd) = As e
Bs Efd

where As and Bs are to be determined from two sample points.

2. The time constant of the bus voltage measuring transducer is taken as 0.02 s and

the corresponding differential equation is not considered for linearization.

The differential equations for the DC1A exciter are given by,

dxF

dt
=

1

TF

[

−xF +

(

KF

TF

)

Efd

]

(D.5)

dxB

dt
=

1

TB

[

−xB +

(

1 − TC

TB

)(

Vref + Vs − Vc −
(

KF

TF

)

Efd + xF

)]

(D.6)

dvR

dt
=

1

TA

[

−vR +KA

(

xB +
TC

TB

[

Vref + Vs − Vc −
(

KF

TF

)

Efd + xF

])]

(D.7)

dEfd

dt
=

1

TE

[

−
(

KE + As e
Bs Efd

)

Efd + vR

]

(D.8)

After linearizing the above equations, the non-zero elements of the matrices are given

by,
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Ag(7, 7) = − 1

TE

[

KE + As (Bs Efd0 + 1)e(Bs Efd0)

]

(D.9)

Ag(7, 8) =
1

TE

(D.10)

Ag(8, 7) = −KA TC KF

TA TB TF

(D.11)

Ag(8, 8) = − 1

TA

(D.12)

Ag(8, 9) =
KA

TA

(D.13)

Ag(8, 10) =
KA TC

TA TB

(D.14)

Ag(9, 7) = − 1

TB

[(

1 − TC

TB

)

KF

TF

]

(D.15)

Ag(9, 9) = − 1

TB

(D.16)

Ag(9, 10) =
1

TB

[(

1 − TC

TB

)]

(D.17)

Ag(10, 7) =
1

TF

[

KF

TF

]

(D.18)

Ag(10, 10) = − 1

TF

(D.19)

Bp
g(8, 2) = −KA TC

TA TB

(D.20)

Bp
g(9, 2) = − 1

TB

[(

1 − TC

TB

)]

(D.21)

Eg(8, 2) =
KA TC

TA TB

(D.22)

Eg(9, 2) =
1

TB

[(

1 − TC

TB

)]

(D.23)
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D.3 IEEE-type AC4A Exciter:

RMAX CIFD(V           − K        )

Σ
EFD    KA

1 + sTA

VS

VC

VREF

1 + sTB

1 + sTC

  V

V1MIN

1MAX

+

+

− V1

V RMIN

VB

Figure D.5: IEEE-type AC4A excitation system.

(  )1 −
TC

TB

1+sT
Σ

V V Vcs ref
+

VB

(  )TC

TB

+

+xB

− B

Figure D.6: TGR block.

The time constant of the bus voltage measuring transducer is taken as 0.02 s and the

corresponding differential equation is not considered for linearization.

The differential equations for the IEEE-type AC4A excitation system are given by,

dxB

dt
=

1

TB

[

−xB +

(

1 − TC

TB

)

(Vref + Vs − Vc)

]

(D.24)

dEfd

dt
=

1

TA

[

−Efd +KA

(

xB +
TC

TB

[Vref + Vs − Vc]

)]

(D.25)

After linearizing the above equations, the non-zero elements of the matrices are given

by,
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Ag(7, 7) = − 1

TA

(D.26)

Ag(7, 9) =
KA

TA

(D.27)

Ag(9, 9) = − 1

TB

(D.28)

Bp
g(7, 2) = −KA TC

TA TB

(D.29)

Bp
g(9, 2) = − 1

TB

[(

1 − TC

TB

)]

(D.30)

Eg(7, 2) =
KA TC

TA TB

(D.31)

Eg(9, 2) =
1

TB

[(

1 − TC

TB

)]

(D.32)
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Appendix E

Turbine and Speed-governor

Modelling

As per the IEEE committee report [23], the following are the typical types of turbine-

governor are considered.

E.1 Hydro Turbine and its Speed Governor Model:

PGV PMW(1 − sT    )

W( 1 + 0.5 sT    )

Figure E.1: Hydraulic turbine model.

Σ
1+ TW

0.5TW

1+0.5sTW

Z 1 PM
GVP

−TW

0.5TW

+

+

Figure E.2: Modified hydraulic turbine model.
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(1 + sT )(1+sT  )

K (1 + sT  )
Σ

+

−p.u. slip Pe∆

P

P
GV

P

P

max

min

1 3

2

o

Figure E.3: Model of speed-governor for hydro turbines.

The above model is modified as shown below for the purpose of linearization.

K  
T2
T1

1+ sT
Σ

K T2

y 1pu   slip

T1

1 −

1
+

+
−1

1+ sT3∆ P e

P
GV

Figure E.4: Modified model of speed-governor for hydro turbine.

The differential equations for the hydro turbine and the speed-governor are given by,

dy1

dt
=

1

T1

[

K

(

1 − T2

T1

)

Sm − y1

]

(E.1)

dPGV

dt
=

1

T3

[

−KT2

T1
Sm − y1 − PGV

]

(E.2)

dz1

dt
=

2

TW

[3PGV − z1] (E.3)

PM = z1 − 2PGV (E.4)

NOTE:

1. P0 is a constant.

2. (E.4) is used in (C.35) in place of Tm.
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After linearization of above equations the non-zero elements of the matrices are given

by

Ag(2, 15) = − 1

H
(E.5)

Ag(2, 16) =
1

2H
(E.6)

Ag(14, 2) =
K

T1

[(

1 − T2

T1

)]

(E.7)

Ag(14, 14) = − 1

T1

(E.8)

Ag(15, 2) = −K T2

T1 T3
(E.9)

Ag(15, 14) = − 1

T3

(E.10)

Ag(15, 15) = − 1

T3
(E.11)

Ag(16, 15) =
6

TW

(E.12)

Ag(16, 16) = − 2

TW

(E.13)
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E.2 Reheat Type Steam Turbine and its Speed-governor

Model:

PGV

1 + sT RH 1 + sT  CO1 + sT CH

1 1 1

F F LPF IP HP

PM
Σ Σ

+

+

+

+

Figure E.5: Tandem compounded, single-reheat-type steam turbine model.

T3

1 1

s

PO

P

−
+   

−

Σ
p.u slip

P

P

min

max

GV

11+sT

2 )K(1+sT

Q

Figure E.6: Model for speed-governor for steam turbines.
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K  
T2
T1

1+ sT
Σ

K T2

y 1pu   slip

T1

1 −

1
+

+

Q

Figure E.7: Modified model for speed-governor for steam turbines.

The differential equations for the steam turbine and the associated speed-governor are

given by,

dx1

dt
=

1

TCH

(PGV − x1) (E.14)

dx2

dt
=

1

TRH

(x1 − x2) (E.15)

dx3

dt
=

1

TCO

(x2 − x3) (E.16)

dy1

dt
=

1

T1

[

K

(

1 − T2

T1

)

Sm − y1

]

(E.17)

dPGV

dt
=

1

T3

[

P0 −K
T2

T1
Sm − y1 − PGV

]

(E.18)

PM = FHPx1 + FIPx2 + FLPx3 (E.19)

NOTE:

1. P0 is a constant.

2. (E.19) is used in (C.35) in place of Tm.

After linearization of above equations the non-zero elements of the matrices are given by,
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Ag(2, 11) =
FHP

2H
(E.20)

Ag(2, 12) =
FIP

2H
(E.21)

Ag(2, 13) =
FLP

2H
(E.22)

Ag(11, 11) = − 1

TCH

(E.23)

Ag(11, 15) =
1

TCH

(E.24)

Ag(12, 11) =
1

TRH

(E.25)

Ag(12, 12) = − 1

TRH

(E.26)

Ag(13, 12) =
1

TCO

(E.27)

Ag(13, 13) = − 1

TC0

(E.28)

Ag(14, 2) =
K

T1

[(

1 − T2

T1

)]

(E.29)

Ag(14, 14) = − 1

T1
(E.30)

Ag(15, 2) = −K T2

T1 T3

(E.31)

Ag(15, 14) = − 1

T3
(E.32)

Ag(15, 15) = − 1

T3

(E.33)
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Appendix F

Network Modelling

F.1 Introduction:

Transmission network mainly consists of transmission lines and transformers. Since the

time constants of these elements are relatively small compared to the mechanical time

constants, the network transients are neglected and the network is assumed to be in

sinusoidal steady state. The modelling of these components are briefly discussed in the

following sections:

F.2 Transmission Lines:

Transmission Lines are modelled as a nominal π circuit [9] as shown in Figure F.1.

Node
From To

Node
Z

y y
2 2

Figure F.1: Nominal π Model of transmission lines.

where,

Z: represents the series impedance of the line.
y

2
: represents half of the total line charging y, at each node.
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F.3 Transformers:

The transformers are generally used as inter-connecting (IC) transformers and genera-

tor transformers. These transformers are usually with off-nominal-turns-ratio and are

modelled as equivalent π circuit [9] as shown in Figure F.2.

1−a )((a−1)
a

y t
a 2

y t

y t/a
No tap

side

Tap

side

Figure F.2: Transformer Model

where,

yt = 1
zt

zt: represents the series impedance at nominal-turns-ratio.

a: represents per unit off-nominal tap position.

The transmission network is represented by an algebraic equation given by

YBUSV̄ = Ī (F.1)

where

YBUS = Bus admittance matrix

V̄ = Vector of bus voltages

Ī = Vector of injected bus currents

The above equation is obtained by writing the network equations in the node-frame of

reference taking ground as the reference.
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Appendix G

Static Loads

PL = PL0

{(

V

V0

)mp

p1 +

(

V

V0

)mi

p2 +

(

V

V0

)mz

p3

}

(G.1)

QL = QL0

{(

V

V0

)np

r1 +

(

V

V0

)ni

r2 +

(

V

V0

)nz

r3

}

(G.2)

PL0 = initial value of the active component of load.

QL0 = initial value of the reactive component of load.

V0 = initial value of the bus voltage magnitude at load bus.

This model is also referred to as the ZIP model, since it consists of the sum of constant

impedance (Z), constant current (I), and constant power (P ) terms. The parameters of

this model are the coefficients p1 to p3 and r1 to r3, which define the proportion of each

component. While selecting these fractions, it should be noted that

p1 + p2 + p3 = 1

r1 + r2 + r3 = 1

For real component of load power:

constant power mp = 0.0

constant current mi = 1.0

constant impedance mz = 2.0

For reactive component of load power:

constant power np = 0.0

constant current ni = 1.0

constant impedance nz = 2.0
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We know that

IQ + jID =

(

PL + jQL

V̄

)∗

(G.3)

=

(

PL − jQL

V 2

V̄

)

(G.4)

=

(

PL − jQL

V 2

)

V̄ (G.5)

=

(

PL − jQL

V 2

)

(VQ + jVD) (G.6)

=

(

PL

V 2
VQ +

QL

V 2
VD

)

+ j

(

PL

V 2
VD − QL

V 2
VQ

)

(G.7)

Comparing the like terms, we get the Q and D components of the load current for j th

load bus as

IQ = PL

(

VQ

V 2

)

+QL

(

VD

V 2

)

(G.8)

ID = PL

(

VD

V 2

)

−QL

(

VQ

V 2

)

(G.9)

where the load bus voltage magnitude V is given by

V =
√

V 2
Q + V 2

D

Linearizing(G.8) and (G.9), we get

∆IQ =

[

VQ0

V 2
0

∆PL +
VD0

V 2
0

∆QL +
PL0

V 2
0

∆VQ +
QL0

V 2
0

∆VD

+ (PL0VQ0 +QL0VD0)

(−2

V 3
0

)

∆V

]

(G.10)

∆ID =

[

VD0

V 2
0

∆PL − VQ0

V 2
0

∆QL +
PL0

V 2
0

∆VD − QL0

V 2
0

∆VQ

+ (PL0VD0 −QL0VQ0)

(−2

V 3
0

)

∆V

]

(G.11)

Considering only the first term in (G.1), one component of ∆PL can be obtained as follows:

= PL0

(

1

V0

)mp

p1 mp V
(mp−1)
0 ∆V

= p1 mp

(

PL0

V0

)

∆V
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Following the above procedure for the remaining two terms in (G.1), we have

∆PL = mk

(

PL0

V0

)

∆V (G.12)

where

mk = mpp1 +mip2 +mzp3

Similarly, ∆QL can be obtained as

∆QL = nk

(

QL0

V0

)

∆V (G.13)

where

nk = npr1 + nir2 + nzr3

Using the result given in (B.5) we can write

∆V =
VQ0

V0
∆VQ +

VD0

V0
∆VD (G.14)

Substitution of (G.14), (G.12), and (G.13) in (G.10) and (G.11) yields

∆IQ = GQQ ∆VQ +BQD ∆VD

∆ID = −BDQ ∆VQ +GDD ∆VD

or

[

∆ID

∆IQ

]

=

[

−BDQ GDD

GQQ BQD

][

∆VQ

∆VD

]

where

BDQ =

[

QL0

V 2
0

(

(nk − 2)
V 2

Q0

V 2
0

+ 1

)

− PL0

V 2
0

(

(mk − 2)
VQ0VD0

V 2
0

)

]

(G.15)

BQD =

[

QL0

V 2
0

(

(nk − 2)
V 2

D0

V 2
0

+ 1

)

+
PL0

V 2
0

(

(mk − 2)
VQ0VD0

V 2
0

)

]

(G.16)

GQQ =

[

PL0

V 2
0

(

(mk − 2)
V 2

Q0

V 2
0

+ 1

)

+
QL0

V 2
0

(

(nk − 2)
VQ0VD0

V 2
0

)

]

(G.17)

GDD =

[

PL0

V 2
0

(

(mk − 2)
V 2

D0

V 2
0

+ 1

)

− QL0

V 2
0

(

(nk − 2)
VQ0VD0

V 2
0

)

]

(G.18)
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Appendix H

Initial Condition Calculations

From the load-flow analysis, the following end results are noted:

1. Real power output of generator, Pg0

2. Reactive power output of generator, Qg0

3. Terminal bus voltage, Vg0 6 θg0

Using these values, the initial conditions of states variables are calculated as follows [1]:

1. Compute

V̄g0 = Vg0(cos θg0 + j sin θg0) (H.1)

Īg0 =

(

Pg0 + jQg0

V̄g0

)∗

= Ig0 6 φ0 (H.2)

Ēq0 = V̄g0 + jxqĪg0 (H.3)

δ0 = 6 Ēq0 (H.4)

2. Compute

iq0 + jid0 = Īg0 e
−jδ0

= Ig0 6 (φ0 − δ0)

iq0 = Ig0 cos(φ0 − δ0) (H.5)

id0 = Ig0 sin(φ0 − δ0) (H.6)
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3. Compute

vq0 + jvd0 = V̄g0e
−jδ0

= Vg0 6 (θg0 − δ0)

vq0 = Vg0 cos(θg0 − δ0) (H.7)

vd0 = Vg0 sin(θg0 − δ0) (H.8)

4. Compute

Efd0 = Eq0 − (xd − xq)id0 (H.9)

5. Compute

ψd0 = vq0 (H.10)

ψq0 = −vd0 (H.11)

6. Compute

ψh0 = ψd0 (H.12)

ψf0 = ψd0 +
x

′

d

xd − x
′

d

Efd0 (H.13)

ψk0 = ψq0 (H.14)

ψg0 = ψq0 (H.15)

7. Compute

Tm0 = Pg0 (H.16)

8. Compute

The generator field current,

if0 =
(ψf0 − ψd0)

xfl

(H.17)

The exciter current,

IFD0 = xd if0 (H.18)
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NOTE:

• In the above calculations, the armature resistance, Ra has been neglected.

• The initial condition of state variables are calculated for the operating point whose

small-signal stability is to be determined.
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