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Abstract
In this thesis, two major aspects of the modern computing system are studied and

investigated. The first one is dynamic random access memory (DRAM) which is the

primary memory of any computing system and the second one is the electronic neuron,

a fundamental building block of an artificial neural network which drives the concept of

neuromorphic computing.

In a conventional DRAM cell, the storage capacitor fabrication is a big challenge

for sub-100 nm technology nodes. Novel floating body RAM (FB-RAM) or one transistor

DRAM (1T-DRAM) or zero-capacitor RAM (Z-RAM) can be a promising solution to

the scalability issue of the storage capacitor in a conventional DRAM cell.

In a Z-RAM cell, we take advantage of the floating body effects (FBE) to store

excess charges at the body of an n-channel silicon on insulator (SOI) MOSFET. But low

retention time due to over the barrier leakage from the body to source/drain is the main

concern with all-Si Z-RAM cells. To increase the retention time, silicon is replaced

by TiO2 at source/drain of an n-channel SOI MOSFET. Since TiO2 is an n-type high

bandgap semiconductor with a high valence band offset with silicon (∆EV ≈ 2 eV ),

the over the barrier leakage is significantly reduced. This leads to the improvement

in both sense margin and retention characteristic as compared to an all-Si Z-RAM cell.

Using well calibrated TCAD simulations, we demonstrate low bias programming for the

proposed Z-RAM cell, which is a major advantage from an application perspective. At

low drain bias, hole storage is initiated by band to band tunnelling which is subsequently

taken over by impact ionization. We predict a retention time of 2 s and 70 ms at T =

300 K and 358 K respectively for a device gate length of 30 nm. We have optimized

the device design to obtain a write ‘0’ time of 6 µs. Multiple non-destructive reading

operation for the proposed Z-RAM cell is also demonstrated.

On the other hand, the hardware implementation of an artificial spiking neural

network (SNN) requires two fundamental building blocks namely, an artificial neuron

and an artificial synapse. In this thesis, by utilizing the floating body effects, an artificial

electronic neuron using an n-channel bulk FinFET with an n+ buried layer has been

demonstrated using well calibrated TCAD simulations. The proposed neuron is seen to

have a spiking frequency in the MHz range which is five orders of magnitude higher

than that of a biological neuron and energy per spike of 6.3 fJ which is the lowest

reported till date for the integrate block of the neuron. This can be a potential building

block of a spiking neural network.



Abstract v
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Chapter 1

Introduction

In the last century, one of the greatest inventions in the field of science and technology

was the transistor. The invention of bipolar junction transistor (BJT) [1] by William

Shockley, John Bardeen, and Walter Brattain in the year of 1947 opened a new era

in the field of solid-state physics. They were jointly awarded the Nobel prize for

this extraordinary breakthrough in the year of 1956. Looking back in time, Julius

Edgar Lilienfeld first patented the concept of field effect transistor (FET) [2] in the

year of 1926. However, it took almost 30 years for a working FET to be made until

Dawon Kahng and Martin M. (John) Atalla at Bell Labs made it possible in 1959.

During the same time, in the year of 1958, Jack Kilby from Texas Instruments invented

integrated circuits (IC) [3] where several such transistors can be integrated on the same

plane of a silicon wafer. These initial breakthroughs lead the way to manufacture high

performance and small size computers and electronic devices. The hunt for smaller,

faster, and low power systems began. In 1965, Gordon Moore, co-founder of Intel

made a prediction that would set the pace for our modern digital revolution. From

careful observation of an emerging trend, Moore extrapolated that computing would

dramatically increase in power, and decrease in relative cost, at an exponential pace.

He predicted that the number of transistors that can be packed into a given unit of

space will double about every two years, though the cost per transistor is halved. In the

year of 1966 [4], the first one transistor/one capacitor dynamic random access memory

(DRAM) cell was invented by Robert Dennard at IBM and it was patented in 1968.

Prior to the existence of the Moore’s law, a computer architecture was described and

designed by John von Neumann which is called von Neumann architecture [5]. Von

Neumann architecture gave an opportunity to the designers in the Moore’s law era to

exploit the ever-increasing processing power of the microprocessors to build various

1
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complex computational systems. Modern computers are mostly based on von Neumann

architecture. But this architecture is not sufficient for today’s era of big data where

most of the task is data intensive. The data path between the central processing unit

(CPU) and the memory unit becomes a bottleneck for data transfer, referred to as the

von Neumann bottle-neck [6]. Even though since the last couple of decades both the

logic and memory transistors are scaled down following the Mooré’s law, in recent

years, performance improvement due to scaling becomes increasingly challenging. To

improve the performance of computing systems in the so-called “big data” era, we must

think beyond von Neumann architecture. The conventional approach to computation

will face a barrier in the next couple of years. There are two major factors behind this

situation. (i) Scaling will reach its fundamental limit (atomic) beyond which the device

cannot be miniaturized, (ii) power dissipation due to various leakage currents. For sub-

100 nm technology nodes, leakage is one of the main concerns to deal with. Even

though the scaling increases the integration density, it also increases the leakage current

which in turn increases the power dissipation. Leakage also affects the performance

of the memory devices. With the increase in leakage currents, memory performance

degrades in terms of data retention. Also, the storage capacitor scaling in a dynamic

random access memory (DRAM) cell for sub-100 nm technology nodes becomes increasingly

difficult. To deal with these problems, we need novel approaches, need to search for

proper materials that can be introduced besides silicon.

In today’s data-centric world, an enormous amount of data is generated every day.

For efficient management of this huge amount of unstructured data, we need i) a faster

memory system with very high integration density so that whenever we need to process

the data, we can fetch it from the memory system and do processing and ii) an intelligent

computing system which is self-learning, energy-efficient and can do parallel processing

like the human brain.

In this thesis, with the application of floating body effects, two major aspects

of the modern computing system are conceptualized and demonstrated using TCAD

simulations. The first one is TiO2 source/drain zero-capacitor random access memory

(Z-RAM) which can be an alternative to the conventional one transistor one capacitor

dynamic random access memory (1T1C-DRAM) and the second one is the bulk FinFET

based electronic neuron, a fundamental building block of an artificial neural network

which drives the concept of highly energy-efficient neuromorphic computing. Chapter-

2 of this thesis provides the literature survey where the conventional 1T1C-DRAM and
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its limitations are discussed which is followed by the discussion of Z-RAM (or floating-

body RAM or 1T-DRAM) as a possible replacement to the conventional 1T1C-DRAM.

Then a brief literature on neuromorphic computing is also provided. In Chapter-3, we

have implemented a TiO2 source/drain partially depleted (PD) silicon on insulator (SOI)

MOSFET based zero capacitor random access memory (Z-RAM). In this chapter, we

have shown the superiority of the proposed TiO2 source/drain Z-RAM cell as compared

to the all-Si Z-RAM cell in terms of sense margin and retention characteristics. Since

TiO2 source/drain PD-SOI based Z-RAM uses impact ionization based programming,

it required comparatively high drain bias which causes not only high power dissipation

but also long term reliability issues. To solve this issue, we have implemented a TiO2

source/drain fully depleted (FD) silicon on insulator (SOI) MOSFET based zero capacitor

random access memory (Z-RAM) using commercial TCAD tool (SentaurusTM ) in Chapter-

4. Here, we have used parasitic BJT based programming method where comparatively

low biases are applied for the memory operations. At the end of this chapter, a benchmark

comparison is done with the other Z-RAM cells as well as with the state-of-the-art

conventional 1T1C-DTAM cell. Chapter-5 describes the implementation of a highly

scalable and CMOS compatible bulk-FinFET based ultra-low energy artificial neuron

for spiking neural network (SNN) in a commercial TCAD tool (SentaurusTM ). Chapter-

6 concludes the thesis with a summary and a discussion of the scope for future work.





Chapter 2

Literature Review

In today’s era of “Big Data”, a high density faster memory system and an intelligent

computing system are necessary for information processing of unstructured data. In

this chapter, we review the literature on different types of memory in the memory

hierarchy specially conventional Dynamic Random Access Memory (DRAM), where

we discuss DRAM’s operating principle and the challenges in modern DRAM cell. We

also review the floating body RAM or zero capacitor RAM (Z-RAM) as an alternative to

conventional DRAM cell. In the last section of this chapter, we review the literature on

neuromorphic computing or artificial neural networks specially spiking neural networks

where we discuss why we need neural network based computing system, historical

background and the advancement in neural network based computing.

2.1 Semiconductor Memory Hierarchy

FIGURE 2.1: Semiconductor memory architecture.

5
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If we divide a computer system into subsystems, then we will get two main parts.

1) computer memory where information or data is stored in the form of binary code and

2) Central Processing Unit (CPU) or logic unit which processes or operates on different

data fetched from the memory whenever necessary. The basic unit of a memory which

can store one bit is called memory cell. Based on proximity to the CPU, speed and

volume, the memory is subdivided into three categories as shown in Fig. 2.1. First one

is the Flash memory [7] or Solid State Drive (SSD) [8] or Hard Disk Drive (HDD) [9].

As the size of a unit cell of this kind of memory is 4F 2, this is the densest memory

inside a computer. The storage size of a HDD can be 512 GB - 1024 GB or even bigger.

This memory is the furthest from the CPU and lowest in terms of speed. The access

time of this memory is in the range of 1 µs - 1 ms. A CPU cannot communicate with

this memory directly as logic transistors inside a CPU are much faster. The access time

of a logic transistor is in the range of 1ps−1ns. So, to bridge this gap between CPU and

HDD, two more types of memory were introduced. i) Static Random Access Memory

(SRAM) [10, 11] or cache memory which is the nearest to the CPU and fastest in terms

of speed. Access time of this type of memory is in the range of 1 ns - 10 ns. Since

it is directly embedded to the CPU and one unit cell of it consists of six transistors

with a cell size of 100F 2, there is a limit of how big it can be. It’s storage size is

limited to 4 MB - 8 MB. Cache memory is subdivided into L1 cache, L2 cache, and

L3 cache with increasing speed and proximity to the CPU. Cache is the costliest among

all memories discussed. ii) Dynamic Random Access Memory (DRAM) [12] which is

the most important type of memory in the whole memory architecture has a speed in

the range of 10 ns - 100 ns and a cell size of 6F 2. DRAM capacity can be as large

as 32 GB. For certain applications, DRAM is embedded into the CPU and it is called

embedded DRAM. The cell size of embedded DRAM is 30 − 50F 2 which is still less

as compared to the cell size of a SRAM cell [13] . So DRAM plays a crucial role in a

computing system by bridging the gap between the CPU and the SSD or HDD.

As can be seen from Fig. 2.2(a), total memory IC market is expected to increase in

the upcoming years after a dip in the year of 2019. DRAM and flash (NAND and NOR)

have captured 98% of the total memory industry. DRAM alone has captured 53% [14]

where as the market share of flash is 45% as shown in Fig. 2.2(b). DRAM market is

expected to grow in the upcoming years.

Fig. 2.3 shows the sales and revenue growth of leading IC product segments in

2020 [14]. DRAM leads in terms of sales with $65, 215 million and flash leads in terms

of the revenue growth percentage with 25%.
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FIGURE 2.2: (a) Total memory IC market in billions. (b) Market share of DRAM.
Figure taken from reference [14].

FIGURE 2.3: Sales and revenue growth of leading IC product segments in 2020 [14].

To continue the high market share, it becomes essential to keep on scaling the

DRAM cell size until it reaches the fundamental limit after which it can not be scaled

down further. To continue the scaling further below 100 nm node, new ideas are required

and new materials to be introduced. In the following sections, the conventional DRAM

cell is introduced and its limitations are discussed for sub-100 nm technology nodes.

Floating-body (FB) RAM or 1T-DRAM or Z-RAM cell is introduced as a possible

replacement of a conventional DRAM cell. Then the limitations of all-Si Z-RAM cell

are discussed. To overcome the limitations of an all-Si Z-RAM cell, we proposed a

TiO2 source/drain based Z-RAM cell which is discussed in greater detail in Chapter 3

and Chapter 4.

2.2 Conventional 1T-1C DRAM

Conventional DRAM cell [12, 15] has a very simple structure as compared to a complex

six transistor SRAM cell [10, 11]. It consists of an access transistor which acts as a
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switch between the input and the output node and a storage capacitor as shown in Fig.

2.4.

FIGURE 2.4: Conventional one transistor one capacitor DRAM Cell. Each cell consists
of one transistor as a switch and a capacitor as storage node. VBLH , VWLH , VWLL,
VBB are the bit-line high voltage, word-line high voltage, word-line low voltage, and
body supply respectively. Vstorage is the voltage across the storage capacitor. This

schematic is taken from reference [12].

The capacitor is used as a storage node. When the capacitor is charged, it is termed

as logic ‘state 1’ and when there is no charge stored in the capacitor, it is termed as logic

‘state 0’. As shown in Fig. 2.4, gate and drain are connected to the word line and bit

line respectively. The operating principle of a conventional DRAM cell is discussed in

the next section.

2.2.1 Operating Principle of a Conventional DRAM Cell

There are three operations which are performed by any type of memory. First, we

erase/program some data in the memory and then we read it whenever required. For

a conventional DRAM cell, these operations are performed in the following way. For

programming or writing logic ‘state 1’, first, the bit line capacitor is fully charged to

the supply voltage VDD, and a positive gate voltage (VDD) is applied to turn the access

transistor on. Once the access transistor is turned on, a part of the bit line charge will

pass through the transistor and charge the storage capacitor.

Now to read logic ‘state 1’, an intermediate voltage (in general VDD/2) is applied

at the bit line and the transistor is turned on by applying a positive gate voltage (VDD).

If the storage capacitor is charged, it transfers some part of it to the bit line. It increases
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the bit line voltage slightly which is sensed by a sense amplifier and it gives an output

of logic ‘state 1’.

In the same way if the storage capacitor is not charged then some part of the bit line

charge is transferred to the storage capacitor. This reduces the bit line voltage slightly

and it is sensed by a sense amplifier to give an output of logic ‘state 0’.

To erase or write logic ‘state 0’, data stored in the storage capacitor has to be

removed. This can be done by first discharging the bit line capacitor then turning on the

access transistor by applying VDD to the gate terminal so that the stored charge in the

storage capacitor gets drained by the bit line capacitor.

2.2.2 Challenges in Modern 1T-1C DRAM

With continuous scaling, the number of transistors per chip doubles in every technology

generation. The major drawback of the scaling of a transistor is the leakage [12,

16]. With the shrinking of device dimensions, the gate oxide thickness reduces which

increases the gate leakage, and at the same time the interaction between the source

and drain increases with scaling which causes source to drain leakage due to drain

induced barrier lowering (DIBL) effect. Further, the capacitor in a DRAM cell is not

ideal. It leaks charges. That is why the capacitor must be refreshed after every read

cycle. This leakage cannot be tolerated in a DRAM cell as it limits the charge storage

capacity of the capacitor. There is an important parameter that must be specified and

that is the retention time. The length of time during which a sufficient amount of

charge can be retained in the storage capacitor to distinguish between logic state ‘1’

and logic state ‘0’ is termed as the retention time. As per International Technology

Roadmap for Semiconductors (ITRS) [17], the retention time of a DRAM cell should

be minimum 64 ms at 358 K. This performance specification is constant for every

technology generation. Now to achieve 64 ms of retention time and to have sufficient

signal to noise ratio, the capacitance of the storage capacitor in a DRAM cell should be

at least 30 fF [18]. But even though it is possible to scale down the access transistor of

a DRAM cell below a certain technology node, the storage capacitor cannot be scaled

down as we need 30 fF of minimum capacitance to achieve 64ms of retention time and

enough signal to noise ratio to distinguish between state ‘1’ and state ‘0’. One way to

get rid of the further scaling of the storage capacitor issue is to use of high-K dielectrics

(HfO2, ZrO2, etc.) [19] instead of SiO2 to increase the capacitance with the same device
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dimensions. Another way is to increase the surface area of the capacitor by making a

trench capacitor or stacked capacitor structure.

2.2.2.1 Trench Capacitor

As shown in Fig. 2.5 , to increase the surface area, a deep trench [20–22] is formed into

Si by anisotropic etching process. Then a thin high-k dielectric is deposited followed

by the deposition of metal electrode.

FIGURE 2.5: SEM photomicrograph of 0.25-µm trench DRAM cell suitable for
scaling to 0.15 µm and below. Figure taken from reference [12].

One of the advantages of this type of structure is that even after the trench formation,

the silicon surface is planer unlike the stack capacitor which is discussed in the next

section.

The problem with this kind of structure is that, with the technology node, the trench

has to be deeper which is a challenging task as we go further into the lower technology

nodes. We cannot do high temperature processes once the capacitor dielectric is deposited

as high-k dielectrics cannot sustain very high temperatures. Another problem is trap or

defect generation [23] during the trench formation. These defects can act as a leakage

path for the charge stored in the capacitor leading to lower retention time.

2.2.2.2 Stacked Capacitor

Another way to increase the surface area of the capacitor is by stacked capacitor structure

[24, 25] as shown in Fig. 2.6.
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FIGURE 2.6: Schematic cross section of stacked capacitor cell suitable for 0.15 µm.
Figure taken from reference [12].

There are several disadvantages with this kind of structure also. As the stacked

capacitor is fabricated on top of the transistor, it is not planer and it can collapse during

the subsequent process steps which may lead to the shortening of different parts. The

aspect ratio also needs to be increased with every technology generation.

2.2.2.3 Sub-100 nm Technology Charge Leakage Issues:

As the device technology shrinks below 100 nm, several types of leakage appear (Fig.

2.7) in the device which can degrade the retention characteristic of the memory cell.

These leakages are: 1) band to band tunnelling leakage (I1) [16, 26], 2) sub-threshold

leakage (I2) [16, 27], 3) gate dielectric leakage (I3) [16, 28], 4) gate induced drain

leakage (GIDL) (I5) [16, 29, 30], 5) leakage due to drain induced barrier lowering (I6)

(DIBL) [16], 6) leakage due to non-ideal storage capacitor.

FIGURE 2.7: Summary of leakage current mechanisms of deep sub-micrometer
transistors. Figure is taken from reference [16].
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2.3 Floating-Body RAM Can be an Alternative

One transistor floating body RAM or zero capacitor RAM (1T-DRAM or Z-RAM) [35–

42] cell can be a good alternative to the conventional one transistor one capacitor DRAM

(1T-1C DRAM). Since 1T-DRAM and Z-RAM are the same, both the names are used

interchangeably in this thesis. In a Z-RAM cell, the body of an n-channel SOI MOSFET

is used as the storage node unlike the capacitor of a conventional DRAM cell. Since

the body is floating, some floating body effects [43–48] arise at the input and output

characteristics of the SOI MOSFET. These floating body effects are discussed in detail

in the next section. There are two types of SOI MOSFETs, namely partially depleted

(PD) SOI MOSFET and fully depleted (FD) SOI MOSFET. In a partially depleted (PD)-

SOI MOSFET, as the depletion region does not cover the entire body thickness, there

will be a quasi-neutral region at the body where the excess carriers (holes for an n-

channel device) can be stored. The presence of excess holes at the body can be assigned

the logic state ‘1’ and the absence of excess holes can be assigned the logic state ‘0’.

Excess holes can be generated either by impact ionization [49, 50] or by band to band

tunnelling [51–53]. This can turn on the parasitic BJT [54, 55] leading to an increase

in the drain current. The increase in the current can be used for reading logic state ‘1’.

The difference between the logic state ‘1’ (I1) and logic state ‘0’ (I0) read currents is

called the sense margin (SM = ∆I = I1 − I0). The retention time specification is one

of the most important figure of merit for a DRAM cell and it should be a minimum of

64 ms at T = 358 K as per ITRS [17]. The details about 1T-DRAM or Z-RAM cell is

discussed later in this chapter.

2.3.1 Floating Body Effects in SOI MOSFET

Although SOI technology has several advantages over bulk planer technology, it has

some serious parasitic effects. Since there is a buried oxide layer in between the

substrate and the transistor body, the body of an SOI MOSFET is floating i.e., it is

not connected to ground, unlike the bulk planer MOSFET. There are several floating

body effects [43–48] which are commonly seen in a PD-SOI MOSFET as it has a quasi-

neutral region at the bottom of the silicon body layer. Floating body effects cause several

problems in SOI MOSFET such as kink effect [43], hysteresis effect [44], parasitic BJT

Effect [45].
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FIGURE 2.8: Experimental drain current (IDS) versus gate voltage (VGS)
characteristics in SOI MOSFETs illustrating the sub-threshold slope steepening and

the single transistor latch. Figure taken from reference [44].

2.3.1.1 Hysteresis Effect

Hysteresis or latch effect [44] is seen in the sub-threshold region of the transfer characteristics

(IDS vs VGS) of an SOI MOSFET. Hysteresis phenomena can be explained by floating

body effects. When the drain voltage is high enough, impact ionization occurs. Impact

ionization causes electron-hole pair generation at the drain-body depletion region. The

excess majority carrier holes are accumulated at the floating body and the excess minority

carrier electrons go to the drain contact due to the presence of a large electric field

at the drain-body junction. The accumulation of majority carriers at the body region

causes the body potential to increase which leads to the reduction in threshold voltage

and increase in the drain current. The increase in drain current causes more impact

ionization at the drain junction and more holes are accumulated at the body region.

This is a positive feedback process that occurs when the impact ionization current at

the drain junction is larger than the drain to body leakage current, leads to a sharp

increase in the sub-threshold drain current and the sub-threshold slope become almost

0 mV/decade. During the back sweeping of the gate bias, the high impact ionization

current due to high drain voltage make the body potential high which in turn keeps

the threshold voltage low to maintain the inversion layer and high drain current and a

hysteresis appears until the positive feedback dies down. Fig. 2.8 shows the hysteresis

effect in a PD-SOI MOSFET.

From Fig. 2.8, it is seen that the width of the hysteresis increases with the increase

in drain bias. For a large drain bias, it is very difficult to turn the device off even if the

gate to source voltage goes large in the negative direction. The reason for this is, for a
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FIGURE 2.9: Experimental drain current (IDS) versus drain voltage (VDS)
characteristics in SOI MOSFETs showing kink effect(solid line), which may be

cancelled by grounding the body(dotted line). Figure taken from reference [43].

large drain bias the accumulation of majority carriers at the body is so large that it will

sustain there for a longer amount of time and we get a very large hysteresis width. To

get back to the zero state, the drain bias should be reduced to a very small value.

2.3.1.2 Kink Effect

Kink Effect [43] is seen in the saturation region of the output characteristics (IDS vs

VDS) of an n-channel PD-SOI MOSFET. In a strong inversion region, when the drain

voltage is large enough to cause impact ionization, the electron-hole pairs are generated

at the drain to body junction and the generated holes enter into the floating body and stay

there. As a result, the potential energy of the floating body increases and the threshold

voltage decreases and at the same time the source to body barrier lowers which causes

more and more minority carriers to enter into the channel and as a result of that, more

impact ionization will take place at the drain junction which causes the drain current

to rise and a kink (Fig. 2.9) appears in the output characteristics(IDS vs VDS). The

extent of this kink is limited by the recombination of the majority carriers at the floating

body. Eventually when the accumulated holes at the body are sufficient enough to make

the base-emitter junction of the parasitic BJT forward biased a second kink (Fig. 2.9)

appears which is seen in the short channel SOI MOSFET.

As shown in Fig. 2.9, for a larger gate bias the kink shifts towards right. This is

due to the fact that, with the increase in gate bias, the resultant electric field at the drain
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slows down the impact ionization process, which delays the onset of kink. Since in a

fully depleted SOI MOSFET, there is no neutral region at the body for the accumulation

of holes. So, the kink effect is not seen here.

2.3.1.3 Parasitic BJT Effect

The impact ionization current is much more important in SOI MOSFET as compared to

bulk MOSFET. There is a parasitic BJT [45] in an SOI MOSFET in which the source

acts as an emitter, floating body acts as the base and the drain as a collector of the

parasitic BJT. When a high drain bias is applied, if the accumulated hole at the floating

body is large enough to make the parasitic BJT turned on, extra minority carriers enter

into the channel from source (emitter). The number of minority carriers enter into the

channel depends on the gain (β) of the parasitic BJT, which can be given as follow:

β ≈ 2(
Ln
L

)2 − 1 (2.1)

Where, Ln is the diffusion length of minority carriers, and L is the channel length.

The collector current (βIB) of the parasitic BJT contributes to the drain current and

augments the impact ionization. The body (base) current IB can be given as follow:

IB = (Ich + βIB)(M − 1) =
Ich(M − 1)

1− β(M − 1)
(2.2)

Where, M is the multiplication factor.

Therefore the total drain current is

ID = M(Ich + βIB) =
IchM

1− β(M − 1)
(2.3)

The above equations show that the drain current increases both due to the impact

ionization and parasitic BJT effect. The breakdown occurs when

1− β(M − 1) = 0 (2.4)

So, from the above condition for breakdown, it is clear that premature breakdown

depends on the parasitic BJT current gain.
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2.3.2 Operating Principle of Floating Body RAM or Z-RAM

As there is no contact at the body of an SOI transistor (Fig. 2.10), the body is floating.

Since there is a buried oxide (SiO2) in between the transistor body and the substrate,

there is a huge valence band offset between Si and SiO2.

FIGURE 2.10: Schematic cross section of an n-channel SOI MOSFET. VGS , VDS ,
and VBG represent the gate to source voltage and drain to source voltage, and back
gate voltage. tsi, tox1, and tox2 are the silicon body thickness, gate oxide thickness
and buried oxide thickness respectively. Bottom is the SEM cross-section image of an

actual SOI MOSFET [56].

Fig. 2.11 (a), (b), and (c) shows the energy band diagram in the vertical direction

of a bulk, PD-SOI, and FD-SOI MOSFET respectively. Since the thickness of the body

of an FD-SOI MOSFET is less than the depletion layer thickness, the entire body is

depleted and there is no quasi-neutral region unlike in PD-SOI MOSFET as can be seen

from Fig. 2.11.

Once the excess carriers are generated at the drain-body junction, excess holes

come to the body region and excess electrons go to the drain contact due to drain to

body depletion electric field. Excess holes at the body face a huge barrier due to large

valence band offset between Si and SiO2 and cannot escape through the substrate. So,

these excess holes can be stored at the body for some time till they recombine in the

body or at the body-dielectric/channel-dielectric interfaces or leak out from the body to

source/drain. Depending on whether the excess holes are present at the body or not, the

memory states are decided.
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FIGURE 2.11: Energy band diagrams in (a) bulk, (b) partially depleted SOI and
(c) fully depleted SOI. All devices are represented at threshold (front gate voltage =
threshold voltage). The shaded areas represent the depleted zones. SOI devices are
represented for a condition of weak inversion (below threshold) at the back interface
[57]. EC , EV , and Ei are the conduction band energy, valence band energy and Fermi

energy levels respectively.

FIGURE 2.12: State ‘1’ and state ‘0’ are differentiated by two different threshold
voltages in the transfer characteristics of the device [58]. VGS and IDS are the gate
to source voltage and drain to source current respectively. ∆IDS is the drain current

difference between read state ‘1’ and read state ‘0’.

The presence of excess holes at the body represents state ‘1’ and the absence of

excess holes represents states ‘0’. While in state ‘1’, due to the presence of excess

holes at the body, the body potential increases which reduces the threshold voltage of

the device and we get a higher current. So, the two states are distinguished by the

two different threshold voltages as shown in Fig. 2.12. The methods of excess carrier

generation are discussed in the next section.

2.3.2.1 Different Programming Mechanisms

There are three different ways by which excess carriers are generated or the programming

or writing state ‘1’ can be done. These three programming methods are discussed below.

In this thesis, we focus only on the n-channel device with a p-type body. Excess carriers
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in this case refer to holes. The same concepts can be applied for the p-channel 1T-

DRAM cell with an n-type body region.

Impact ionization based programming

One of the earliest method for state ‘1’ programming is by impact ionization. First

generation of Z-RAM cells was programmed using impact ionization mechanism [49,

50, 59]. In this method, excess holes are generated by impact ionization. In impact

ionization based programming, the transistor operates in the inversion mode, i.e., a

positive front gate bias (VGF ) which is greater than the front channel threshold voltage

(VTHF ) is applied and a highly positive drain bias (VDS) is applied. Since the drain bias

is sufficiently high to cause impact ionization at the drain-body junction, electron-hole-

pairs are generated at the depletion region of the drain-body junction. Due to a large

junction electric field, the excess electrons go to the drain contact and the excess holes

come to the body region.

While programming, the front-gate bias VGF remains unchanged. The hold and

read operations also use the same front gate bias, while the drain bias VDS is shifted

from a low value (in the range of a mV ) to a higher value (high enough to cause impact

ionization). Since the body/drain junction is reverse biased, the excess holes which

are generated by impact ionization flow to the body, resulting in an increase in the

floating body potential above the level it had before the programming stage. VDS is

switched back to its low level (in the range of a mV ) for state ‘1’ reading (or hold).

Since the excess generated holes stay inside the body, there will be a change in the body

potential (∆VB) which is seen during writing state ‘1’ or programming. A lowering

of the “dynamic” VTHF is observed which increases the drain current. During the

reading/holding, the body potential is comparatively higher due to higher number of

stored holes than its steady-state value and the stored holes are gradually leaked out

through the body-to-source/drain junctions. This leads to a drain current overshoot or

returns to a steady state with time. Notice that the reading is non-destructive since it is

performed at a low drain voltage (in the range of a mV ).

It is clear that the high drain bias during write state ‘1’ is a concern in the first

generation of Z-RAM cells. Over time, it can degrade the gate oxide quality through

hot carrier injection, which leads to the generation of interface states at the Si-SiO2

interface, and eventually to premature oxide breakdown. A higher density of interface

states at the Si-SiO2 interface can degrade the retention time due to higher recombination.
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FIGURE 2.13: The front gate and drain biasing sequences and schematics for both the
write/read state ‘1’ programming by impact ionization. VDS and VGF are the drain to
source voltage and front gate voltage respectively. VTHF is the front channel threshold
voltage. I1 and I0 are the read state ‘1’ and read state ‘0’ currents respectively. The

image is taken from reference [59].

Furthermore, to achieve faster programming, impact ionization rate should be increased

which means higher drain voltage and higher power consumption.

Parasitic BJT based programming

FIGURE 2.14: (a) Parasitic n+ − p − n+ bipolar junction transistor inside the n-
channel SOI MOSFET. (b) The drain and front gate biasing sequences and schematics
for both the write/read state ‘1’ for parasitic BJT based programming. VDS and VGF
are the drain to source voltage and front gate voltage respectively. VTHF is the front
channel threshold voltage. I1 and I0 are the read state ‘1’ and read state ‘0’ currents
respectively. VB0 and VB1 are the body potential during read state ‘1’ and read state

‘0’. The image is taken from reference [59].

The problems of the first generation Z-RAM cell are solved up to a certain extent

in the second generation of Z-RAM cells where the parasitic BJT (Fig. 2.14(a)) inside
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an n-channel SOI MOSFET is used to write state ‘1’ [54, 55, 59, 60]. In this case,

source (N+) acts as an emitter, body (P ) as a base and drain (N+) as a collector of the

parasitic BJT inside the MOSFET. This parasitic BJT is turned on by increasing body

potential through the accumulation of holes which is initiated by impact ionization at

the drain-channel junction. Once the BJT is turned on, more electrons from the source

(emitter of the parasitic BJT) will enter the channel (base of the parasitic BJT), and

impact ionization rate increases at the drain-body junction and this is a regenerative

process which eventually leads to latch-up of current. The increase in the current can

be used for reading logic state ‘1’. The biasing mechanism for parasitic BJT based

programming and corresponding drain current are shown in Fig. 2.14(b).

Band to band tunnelling based programming

Band to band tunnelling based programming [59, 61, 62] consumes the lowest

power [62] among all the programming methods. In this method, the excess carriers

are generated by gate induced drain leakage (GIDL) which is a band to band tunnelling

mechanism at the gate-drain overlap region. The biasing scheme for this programming

method is shown in Fig. 2.15(a). Here, the transistor operates in the accumulation

mode i.e., a negative bias is applied at the gate and a positive bias is applied at the drain

contact. The interface of the overlap region between gate and drain is inverted and a

sheet of holes is created at the interface between gate and drain. The amount of holes

at the interface is much higher which causes a band bending at the drain side, sufficient

enough for band to band tunnelling of electrons from the valence band of the drain to

the conduction band of the drain leaving behind the holes at the interface. Since a large

electric field is present at the positively charged sheet and the drain, the holes come out

from that region and populate the body.

At the onset of programming, since a large negative front gate bias is applied

(VGF << VFB), the body potential decreases by dynamic gate coupling and becomes

negative (Fig. 2.15(b)). The accumulation layer holes cannot be supplied within a quick

time. Initially, the interface is depleted and it takes some time to go into accumulation

from depletion. Excess holes generated by GIDL, start to fill the body gradually. As

a result, the body potential keeps on increasing until it reaches a steady state when the

transistor completely enters into accumulation mode. Programming time can be reduced

by increasing the BTBT rate. BTBT rate can be enhanced by increasing the potential

difference between the gate and drain terminal (|VG − VD|). Since the BTBT current is
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FIGURE 2.15: (a) The drain and front gate biasing sequences and schematics for both
the write/read state ‘1’ for band to band tunnelling based programming. VDS and VGF
are the drain to source voltage and front gate voltage respectively. I1 and I0 are the read
state ‘1’ and read state ‘0’ currents respectively. (b) Comparison between the impact
ionization and the band to band tunnelling injection methods in terms of body potential

variations during the programming. The image is taken from reference [59].

much lower as compared to the drain current generated by the impact ionization process,

it consumes low power which is one of the advantages of BTBT based programming.

2.3.2.2 Erasing Mechanism

There are two different ways by which excess holes at the body region can be erased or

writing state ‘0’ is performed. These two methods are discussed below.

Erasing by forward biasing the drain-body junction

Excess carriers which are generated during the programming can be removed by

forward biasing the drain-body junction [35]. In this method, a negative drain bias is

applied as shown in Fig. 2.16. The drain-body depletion layer barrier reduces due to

the applied forward bias at the drain terminal and the accumulated holes at the body

which are generated during the programming stage cross the barrier and goes to the

drain contact.

Since the time response of the forward body/drain junction to the bias switch is

nearly instantaneous, erasing by forward bias is a reliable and fast. The resulting body

potential variation is inefficient as the state ‘0’ and the state ‘1’ current nearly the same

which results in the high power consumption during the read operation.
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FIGURE 2.16: The drain and front gate biasing sequences and schematics for both
the write/read state ‘0’ for forward bias based erasing. VDS and VGF are the drain to
source voltage and front gate voltage respectively. I1 and I0 are the read state ‘1’ and

read state ‘0’ currents respectively. This image is taken from reference [59].

Erasing by capacitive coupling

A hole accumulation layer is created at the front interface when the front gate bias

VGF is lower than the front flat-band voltage VFB. A fast removal can be performed by

applying a front-gate pulse higher than VFB. When VGF increases, the body potential

follows due to capacitive coupling. With the increase in body potential, the front

interface becomes depleted and the body/drain and/or body/source junctions become

“forward biased”. Therefore, the excess holes are removed through the body/drain

and/or body/source junctions [36, 63]. While reading, a negative bias is applied at

the gate and as a result the body potential decreases to a negative value by capacitive

coupling. The body potential is pinned to its negative value as the holes cannot be

accumulated instantly. Depending on the hole charging via the junction leakage current,

the steady-state during the reading is returned. Leakage is detrimental as it can change

the retention time by increasing the state ‘0’ drain current.

In Fig. 2.17, to prevent the parasitic BJT activation during read, body potential VB
is decreased by the capacitive coupling method. For a compatibility with the whole BJT

method, the drain bias is kept at a high positive value during erase. In order to avoid the

the parasitic BJT turn on, a positive source bias has to be applied . On the other hand,

we cannot apply too high source bias in order to allow the excess holes to be removed

from the body.

Difficulty arises in choosing proper combination of programming and erasing methods

to achieve high performances, i.e. low programming voltage, high retention time as well
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FIGURE 2.17: The drain and front gate biasing sequences and schematics for both the
write/read state ‘0’ for capacitive coupling based erasing. VDS and VGF are the drain
to source voltage and front gate voltage respectively. I1 and I0 are the read state ‘1’
and read state ‘0’ currents respectively. VB0 and VB1 are the body potential during read

state ‘1’ and read state ‘0’. This image is taken from reference [59].

as sense margin and at the same time the best compatibility with a specific technology

(PD-SOI, FD-SOI, double-gate, FinFET).

2.3.2.3 Reading Operation

After programming and erasing the Z-RAM cell, the states need to be read. Biasing

schemes for read operation are shown for all the program (impact ionization based (Fig.

2.13), parasitic BJT based (Fig. 2.14) and band to band tunnelling based (Fig. 2.15)

programming) and erase (forward biasing (Fig. 2.16) and capacitive coupling (Fig.

2.17)) methods. During the read operation, impact ionization is avoided by reducing

the drain bias.

2.3.3 Limitations of all-Si Z-RAM cells

The retention time specification is one of the most important figure of merit for a DRAM

cell and it should be a minimum of 64 ms at T = 358 K as per ITRS [17]. For

an all-Si Z-RAM cell, the retention time is less than 64 ms [64, 65] which does not

meet the ITRS specification. The reasons being the leakage of excess holes from the

floating body to source/drain due to low barrier height for holes and Shockley-Read-

Hall (SRH) recombination in the body. As the body is charged by excess injected

holes, the barrier height reduces, leading to an unfavourable compromise between the
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retention time and the sense margin. To overcome this problem, few hetero-structure

based Z-RAM cells [66–69] have been proposed. In all these Z-RAM cells, the barrier

height for holes at the body is increased either by using a high bandgap semiconducting

material at the source/drain with a large valence band offset with Si [66, 67, 69] or by

introducing a comparatively lower bandgap material like Si1−xGex [68] at the body of

an SOI MOSFET. Write ‘0’ time is an important parameter for hetero-structure based

Z-RAM cell as with the increase in valence band offset, write ‘0’ time increases. Write

‘0’ process and the time required for the same are not elaborated in the literature.

Other all-Si based Z-RAM cell architectures, namely meta stable dip DRAM (MSDRAM)

[70], A2RAM [71] and zero-slope zero-impact ionization (Z2FET) DRAM [72], have

been proposed for the possible replacement of the conventional DRAM cell. MSDRAM

[70] makes use of the dynamic coupling between the front and back interfaces of a

double gate FD-SOI MOSFET to give rise to hysteresis in the IDS−VGS characteristics.

MSDRAM suffer from high power dissipation due to a constant high positive voltage

supply at the back gate and for ultra-thin SOI, electrons and holes cannot coexist at the

same body due to super coupling effect. A2RAM [71] is similar to MSDRAM. But,

instead of an electro-statically doped channel at the back, a physically n-doped channel

is created below the p-type body. The fabrication process for A2RAM is complex.

Variability for ultra-thin SOI A2RAM, and high power dissipation due to comparatively

high biases used for programming are other disadvantages. Z2FET [72] is a lateral

p+ − i − n+ diode with one top gate and either a bottom gate or fixed positive oxide

charge created by CVD deposited SiO2 at the top ungated portion to create a barrier for

holes. For reliable operation of the device, precise control of the positive fixed oxide

charge (QS) for low channel length device is desirable. For a back gated device, where

there is no fixed oxide charge, a sufficiently large back gate voltage is required to create

a barrier at the ungated region, leading to high power dissipation.

To overcome the limitations of different all-Si Z-RAM cells discussed above, we

have utilized the floating body effects to demonstrate, an n-channel TiO2 source/drain

SOI MOSFET based dynamic memory cell. Chapter 3 and chapter 4 describe the

applications of floating body effects in demonstrating the TiO2 source/drain based Z-

RAM cell.
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2.4 Literature Review on Neuromorphic Computing

In almost every aspect of today’s life, whether it is science and technology, entertainment

and communications or process control, computer is essential. At present, around 10-15

% of the total global energy [73] is consumed in some form of information transmission,

manipulation or processing. Since the data generation rate is increasing day by day, the

energy consumption is also going to increase in the near future if the traditional von

Neumann computer architecture [5, 73] is continued. We need a computer architecture

which is more energy efficient. Neural network based architecture [74, 75] is currently

one of the most energy efficient computer architecture. Since early 1990s, research

in neuromorphic computing started to increase. Neuromorphic computing [76, 77] is

brain inspired computing which is a million times more power and energy efficient than

that time’s best computing devices. Though, the traditional computing had achieved

remarkable feats in those times, they failed to do some of the basic tasks like image

and speech recognition which a biological system can do with ease. Hence, the ideas

from the biological system were required for the implementation of a computing system

which can do things like image and speech recognition with much less power consumption.

In recent times, we have seen unprecedented advancement in CMOS technology.

Some of the semiconductor industry giants like TSMC and SAMSUNG have already

announced 5 nm and even 3 nm CMOS technology [78] to revive the Moor’s law.

This progress in CMOS technology made a revolution in parallel processing. For

example, parallel processing is inevitable in millions of cell phones nowadays, personal

computers are having multiple processors, the top supercomputers in the world are

having millions of CPU counts. But in today’s data-centric world where every day

over 2.5 quintillion [79] bytes of data are generated, it is very difficult to manage these

data. It is only going to grow from there. By 2020, it is estimated that 1.7 MB of

data [79] will be created every second for every person on earth. Using traditional

computing systems, this huge amount of data can not be managed. Based on solid

engineering and scientific data, it is predicted that traditional computing will face a

huge challenge within the next ten years. There are two main reasons for this. First

of all, present CMOS technology will reach its fundamental limit after which it can

not be miniaturized further, and secondly, there will be huge power dissipation (20-

30 megawatts [73] for exascale computing) by the traditional computing systems while

properly managing these hugely generated data. Even though today’s computing is very

powerful but they fail to handle this huge amount of complex and unstructured data.
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There are two approaches [73] to tackle this problem. One is the software approach

where “machine learning” [80] algorithm is used to tackle these huge numbers of complex

and noisy datasets which the traditional non-learning algorithms are not able to tackle.

It is a rapidly growing field. At present day, this “machine learning” approach is so

popular that almost every computing and internet company have opened a new branch

on “machine learning”. Even all the major universities and research institutes across

the world have their R and D in this area. The second approach is the hardware

implementation [81, 82] of neural networks. In this approach, behaviour of a biological

neuron is mimicked through hardware. In the software approach, the conventional

processor is optimized for “machine learning” algorithms to mimic the behaviour of

a biological neuron. Even though this optimized processor is 120 times more power-

efficient [73] than a general-purpose processor, they are not fundamentally different

from an existing CPU. So the hardware approach is in line. In the early 1980s, researchers

across the world have started working to model the behaviour of a biological neuron

through analog CMOS based circuits. One of the greatest examples of the advancement

in the hardware implementation of a neuromorphic computing system is IBM’s “True

North” chip [83] which is biologically inspired and it consists of one million of spiking

neurons and 256 million synapses. There are 5 billion transistors in this chip. Even

though this biologically inspired chip consumes only 65 milliwatts of power, it is still

not as power-efficient as the biological system is. So, more research and innovation are

required in this field.

2.4.1 Von Neumann versus Neuromorphic Computing

Traditional computer architecture follows the principle of von Neumann architecture

[5] as shown in Fig. 2.18. The system with von Neumann architecture is divided into

several components like central processing unit (CPU), arithmetic logic unit (ALU),

memory unit (MU), and data paths. All these units are separate entities and not embedded

which makes the whole system slow and less energy efficient.

These constraints limit the future development of this architecture. Even though the

conventional von Neumann architecture based parallel computer consists of thousands

and millions of traditional processors connected to each other increases the computational

power several times, the basic processor is the same as used in a single serial computer.

It limits the further development of von Neumann architecture based computing system.
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FIGURE 2.18: Comparison of high-level conventional von Neumann and
neuromorphic computer architectures. (a) Schematic of a von Neumann architecture.
The so-called “von Neumann bottleneck” [6] is the data path between the CPU
(consists of Arithmetic Logic Unit (ALU) and Control Unit ) and the memory unit. (b)
Schematic of a basic concept of a neuromorphic architecture. A neural network-based
architecture combines synapses and neurons into a fine grain distributed structure that
scales both memory (synapse) and compute elements (soma) elements as the systems
increase in scale and capability, thus avoiding the bottleneck between computing and

memory. The schematics are taken from reference [84].

FIGURE 2.19: Delay time per transistor versus the power dissipation plot. The
operating regime for neuromorphic devices is in the upper left corner indicating the
extremely low power dissipation of biological synapses and the corresponding delay
time. Systems built in this region would be more “brain-like” in their power and cycle

times. The image is taken from reference [73].

On the other hand, the neuromorphic system functions in a completely different

way which is very high power-efficient, self-learning and works in the principle of the

human brain. One of the major advantages of a neural network [85] or neuromorphic

computing over von Neumann or traditional computing is its ability to do highly power

efficient [73] parallel processing. Delay versus power dissipation curve in Fig. 2.19

shows the difference between neuromorphic system and present-day technologies. It

clearly shows the advantages of neuromorphic system or brain-inspired computing over

the other technologies in terms of density and power efficiency.
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2.4.2 Recent Advancement in Neuromorphic Systems

The concept of bio-inspired computing has been there for more than eighty years [86,

87]. Biologically inspired algorithms of neural computation are referred to as Artificial

Neural Networks (ANNs). It can mimic the process by which the human brain acquires

and processes sensory information. ANNs consist of two fundamental building blocks.

1) Artificial neuron, and 2) artificial synapse which is the connection between two

neurons. Using these two building blocks information is processed according to a

specified set of rules and equations which are called models of information processing

in neural circuits. Neurons can be connected to each other through synapses by different

ways which give rise to different models [88, 89]. Advances in consolidating the

vast number of new findings and insights from neuroscience into such computational

models in a biologically plausible way have been largely lacking in the mainstream

ANN community.

While it has been known for long that neurons communicate with spikes (electrical

pulses, action potentials), it was only in the early 1990′s when studies found evidence

for biological brains making use of the exact timing of single spikes to encode information

[90, 91]. This observation gave rise to SNNs after their property of explicitly modeling

individual spikes, rather than average firing rates like their predecessors. The utilization

of spikes brings together the definitions of time varying Post-Synaptic Potential (PSP),

firing threshold (ϑ), and spike latencies (∆), as depicted in Fig. 2.20. They try to

simulate the processes carried out between the neurons (synapses) in a network. More

than two decades have passed since one of the most influential papers on the topic was

published [92]. Nowadays, SNNs can still be considered a niche of artificial intelligence

research.

FIGURE 2.20: Biological neuron and its association with an artificial spiking neuron
[93].

Spiking Neural Networks (SNNs) [94] is the new generation of ANNs [92] which

are popular for its ability to capture the informational dynamics seen in biological

neurons. In describing the realistic biological information processing, SNNs theory is
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mostly accepted. SNNs are not only more realistic but also they are easy to implement

on reliable hardware platforms because of their “integrate-and-fire” nature. For a better

understanding, we explained both ANNs and SNNs in the below sections.

FIGURE 2.21: (a) Basic neuron model in ANNs. (b) Basic neuron model in SNNs.
The figures are taken from reference [95].

2.4.2.1 Artificial Neural Networks (ANNs)

Artificial neurons act as node in artificial neural networks. An artificial neuron is a

computational model inspired by the natural neurons. The complexity of real neurons

is highly abstracted when modelling artificial neurons. Neurons accept weighted inputs

through synapse and then computed by a mathematical function which determines the

activation of the neuron. Another function computes the output of the artificial neuron

depending on a certain threshold. ANNs combine artificial neurons in order to process

information. Fig. 2.21(a) depicts a simple model of a typical artificial neuron. For an

ANNs, the computational process is governed by the following equation.

y = ϕ(b+
∑
j

xjwj) (2.5)

Where,

x, and y are the input and output respectively. w and b are the synaptic weight and

bias respectively and j is the index of the pre-synaptic input neurons. ϕ(.) is a non-

linear activation function, e.g., ϕ(x) = ReLU(x) = max(x, 0). The communications

between neurons in ANNs take place using the activations coded in high-precision and

continuous values, and only propagate information in the spatial domain (i.e., layer by

layer). It can be seen from the above equation, that the multiply-and-accumulate of

inputs and weights is the major operation in ANNs. Even though ANNs are inspired by



Chapter 2. Literature Review 30

the biological nervous system and are successfully used in various applications [96–98],

their high abstraction compared to their biological counterpart [99] and their inability

to capture the complex temporal dynamics of biological neurons have resulted in a new

area of ANNs where the focus is placed on more biologically plausible neuronal models

known as Spiking Neural Networks (SNNs).

2.4.2.2 Spiking Neural Networks (SNNs)

Spiking neural networks (SNNs) have the ability to capture the rich dynamics of biological

neurons and to represent and integrate different information dimensions such as time,

frequency, and phase. SNNs offer a promising computing paradigm and are potentially

capable of modelling complex information processing in the brain [100–102]. SNNs

are also potentially capable of dealing with large volumes of data and using trains

of spikes for information representation [102]. Additionally, SNNs are suitable for

implementation on low power hardware. A typical spiking neuronal model is shown

in Fig. 2.21(b). Even though it has a similar structure, the behaviour is different as

compared to the ANNs. In SNNs, the neurons communicate through electrical spikes

coded in binary events rather than the continuous activations in ANNs. The input

spikes from the pre-synaptic neurons comes to the soma (body of a neuron) through

synapses and it is then integrated. Once the integrated value reaches a certain threshold,

it produces an output spike. This behaviour is usually modeled by the popular Leaky

Integrate and Fire (LIF) model [103]. The model consist of a capacitor (C) in parallel

with a resistor (R) driven by a current I(t) described by the following equation.

τ
dVc
dt

= −Vc(t) +RI(t) (2.6)

Where, τ = RC is the membrane time constant. The working principle of LIF model

is explained in detail in chapter 5. LIF model is the most widely used spiking neuron

model. There also exist other neuron models in SNNs besides the LIF model, such as

the model of Izhikevich [104] or Hodgkin & Huxley [105]. However, due to the higher

complexity they are not widely used in practical SNNs.

2.4.2.3 Recent Advances in the Hardware Implementation of SNNs

The main goal of neuromorphic computing or artificial neural network is to mimic the

functionalities of a human brain. Spiking Neural Network (SNN) is the new generation
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of artificial neural networks which is more energy-efficient [92] than other neural networks

as well as a von Neumann architecture based traditional computer. An artificial neuron

and an artificial synapse are the two fundamental building blocks of an artificial SNN.

Artificial neurons act as node of SNNs and the nodes are connected through artificial

synapses. So, for the hardware implementation of SNNs, it is essential to realise

both neuron and synapse using electronic devices and circuits. The functionalities

of a neuron have been implemented in several CMOS based analog circuits [106–

114], digital circuits [115, 116], and some non Si-based devices [117–119]. In all the

implementations, there are two major challenges: (i) the implemented neuron must be

energy and area efficient and (ii) it should be highly scalable so that it can match the

high neuronal density of the human brain. Analog based implementation of a neuron is

superior to digital implementation in terms of area and energy efficiency [108]. Joubert

et. al. [108] compared LIF neuron using CMOS technology in both digital and analog

implementation at 65 nm node and claimed that the analog implementation consumes

5X less area and 20X less energy than digital implementation. Integrate and reset

are the two circuit blocks of a LIF neuron. Efforts have been made to replace the

area and energy inefficient CMOS circuit based integrate block with nano-scale devices

[117, 119, 120]. Although, several CMOS based LIF neurons have been reported, it

is believed that using nanoscale devices, neuromorphic systems can be improved in

terms of both area and power consumption by almost a factor of 10, as compared to

conventional CMOS neurons [153]. However, most of the novel nanoscale artificial

neurons use non-Si materials [117–119, 157], which can be a disadvantage from a

fabrication point of view. Recently S. Dutta et al. [120], demonstrated an analog

based implementation of a low energy integrate block of a LIF neuron for SNN using a

partially depleted silicon on insulator (PD-SOI) MOSFET with a spiking frequency in

the order of MHz and energy consumption of 1.3× 10−11 J /spike which is three orders

of magnitude less energy efficient than a biological neuron (∼ 10−14 J /spike [121]). So,

the opportunities are there to design an electronic device which has an energy efficiency

equivalent to that of a biological neuron.

In this thesis, we mainly focus on the realization of an electronic neuron for spiking

neural networks. In Chapter 5, with the application of floating body effects, we demonstrate

through well-calibrated TCAD [122] simulations, a highly scalable bulk FinFET based

analog implementation of the integrate block of a LIF neuron. The charge integration

mechanism is shown at the body of the proposed device through the addition of a buried

n+ layer. We also demonstrate that the proposed neuron is seen to have a spiking
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frequency in the MHz range and the lowest energy consumption for the integrate block

reported till date.



Chapter 3

TCAD Implementation of PD-SOI
Based TiO2 S/D Zero Capacitor
Random Access Memory (Z-RAM)

3.1 Introduction

A conventional dynamic random access memory (DRAM) [12] consists of a transistor

and a storage capacitor as shown in Fig. 2.4. The storage capacitor should have a

minimum capacitance value of 30 fF [18] to obtain a sufficient signal to noise ratio.

The minimum capacitance requirements are met using trench capacitor [20, 21] or stack

capacitor [24, 25] technologies for sub 100 nm technology nodes. The limitations

of trench and stack capacitor DRAM cells are discussed in Chapter-2. Another big

challenge for a conventional 1T-1C DRAM is the migration from 6F 2 to 4F 2 (where F is

the bit line half-pitch) cell size. The majority of the foundries manufacture DRAM cells

with 6F 2 cell size. The most recent 1T-1C DRAM (LPDDR4X is being manufactured

using ‘1y’ nm technology [123] . ‘1y’ nm is defined as 14 − 16 nm [124]. Gate length

is approximately 20 nm [125] for the ‘1y’ nm technology node chip manufactured by

SAMSUNG and this has a cell size of 6F 2. The most promising way to increase the

number of bits per chip for the next generation technology node is by scaling the cell

size factor ‘a’ (where a = [DRAM cell size]/[DRAM half pitch]2). Migration from 6F 2

(a = 6) to 4F 2 (a = 4) cell size is very challenging. Z-RAM cell [49, 50, 59] can be a

good alternative. The size of a Z-RAM cell is 4F 2 due to its capacitor-less structure.

This increases the number of bits per chip for future technology nodes. This is one of

33
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the major advantages of Z-RAM cells over conventional 1T-1C DRAM cells. In the first

generation of Z-RAM cell [49, 50], the floating-body of n-channel silicon on insulator

(SOI) MOSFET is used as the storage node. The presence of excess majority carriers

(holes in this case) at the body can be assigned the logic state ‘1’ and the absence of

excess holes can be assigned the logic state ‘0’. These excess majority carriers at the

body are created by impact ionization at the drain-body junction and they are stored

at the lower part of the body near the body-buried oxide (BOX) interface. Due to

the presence of excess majority carriers at the floating body, the threshold voltage is

changed which confirms the two states (logic state ‘1’ (I1) and logic state ‘0’ (I0)) of

the first generation of Z-RAM cell. The difference between the logic state ‘1’ (I1) and

logic state ‘0’ (I0) read currents is called the sense margin (SM = ∆I = I1 − I0). As

per our device design, the retention time is defined as the time when the sense margin

reaches it’s 50% value. The retention time specification is one of the most important

figure of merit for a DRAM cell and it should be a minimum of 64 ms at T = 358 K

as per ITRS [17]. But, due to over the barrier leakage, an all-Si Z-RAM cell faces low

retention time [64, 65] problem.

FIGURE 3.1: (a) Schematic of the proposed TiO2 source/drain Z-RAM cell. (b) TiO2

and Si band line up. ∆EC ≈ 0.05 eV and ∆EV ≈ 2 eV [126].

In this chapter, we propose a TiO2 based Z-RAM cell (Fig. 3.1) in which Si is

replaced by high bandgap TiO2 (Eg = 3.1 eV [127]) in the source and drain in an

n-channel PD-SOI MOSFET. TiO2 is a n-type semiconductor due to different types

of defects like oxygen vacancies and titanium interstitials [128]. Depending on the

deposition technique, the carrier concentration in TiO2 varies over 1017 − 1020cm−3

[129, 130]. In the recent past, excellent surface passivation of Si surface using TiO2 with

surface recombination velocities of 2.8 cm/s and 8.3 cm/s for n-type and p-type wafers

have been demonstrated [131]. Silicon solar cells using TiO2 as electron selective

contact have been demonstrated with a power conversion efficiency of 22.1% [132].
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This implies that high effective carrier lifetime in excess of 100 µs can be obtained in

Si bounded by TiO2.

Large valance band offset between TiO2 and Si (∆EV ≈ 2 eV [126]) is utilized

for storing larger number of excess holes at the body for a longer time than is possible

with an all-Si Z-RAM cell. An improvement in retention time as well as sense margin

at both T = 300 K and T = 358 K are reported for the proposed Z-RAM cell through

well calibrated TCAD simulations. The extracted retention time for the proposed TiO2

source/drain Z-RAM cell is 3.5 s and 160ms at T = 300K and 358K respectively and

for all-Si Z-RAM cell, it is 1.5 ms and 150 µs at T = 300 K and 358 K respectively.

3.2 Device Design

Fig. 3.1(a) shows the schematic of the proposed TiO2 S/D Z-RAM cell. TCAD simulations

were carried out to study the operation and retention characteristics of the device. For

calibration of the simulation models, an all-Si n-channel PD-SOI MOSFET, described

in reference [133] was simulated. The device structural details are given in Table 3.1.

TABLE 3.1: PD-SOI MOSFET parameters used in TCAD simulations, used for
calibration of simulation models.

Parameter (Unit) Value
Buried oxide thickness (nm) 400
Device layer thickness (nm) 150
Gate oxide thickness (nm) 4.5

S/D doping (cm−3) 1020

Body doping (cm−3) 2× 1017

Gate length (nm) 150
Gate metal work function (eV) 4.4

The match between the simulated IDS-VGS characteristics and experimental data

are shown in Fig. 3.2.

To calibrate the simulation models for the TiO2-Si diode, simulation was carried

out on n-TiO2 - p-Si heterostructure diode and the diode I-V characteristics (Fig. 3.3)

was matched with the experimental data from reference [126].

The parameters used [127, 129, 134, 135] for TCAD simulations of n-TiO2 - p-Si

heterostructure diode are listed in Table 3.2. Same device dimensions and parameters
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FIGURE 3.2: Comparison of simulated drain current (IDS) vs. gate voltage (VGS)
characteristics of an all Si n-channel PD-SOI MOSFET with published result [133],

demonstrating the calibration of the simulation models used.

FIGURE 3.3: Comparison of simulated diode characteristics for n-TiO2 - p-Si
heterostructure diode with published result [126], demonstrating the calibration of the

simulation models used.

listed in Table 3.1 and Table 3.2 were used while simulating the TiO2 source/drain Z-

RAM cell. In our simulations, we have assumed the carrier lifetime in Si to be 1µs, and

the programming time was taken as 1ns.

3.2.1 Model Calibration

In the study of TiO2 source/drain Z-RAM, TCAD Sentaurus simulator [122] is used. To

capture the real device phenomena, proper device models are chosen while simulating
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TABLE 3.2: TiO2 parameters used in TCAD simulation shown in Fig. 3.3.

Parameters of TiO2 Value References
Band-gap Eg (eV) 3.1 [127]

Electron affinity (eV) 4.1 [135]
Dielectric constant 91 [134]

NC (cm−3) 3.1× 1021 [134]
NV (cm−3) 3.3× 1021 [134]

Doping concentration (cm−3) 1019 (n-type) [129]
Electron mobility (cm2/V.s) 0.1 [127]

Electron effective mass 10m0 [135]

the Z-RAM cell. Different models used are described in brief in the below section.

Electrostatic potential: Immobile ionized impurities and mobile electrons/holes

play key roles in any semiconductor devices. Depending on the charge distributions

inside a device, the electrostatic potential varies. The dependence of electrostatic potential

on charge distribution inside a device can be given by the Poisson’s equation, which is:

∇(ε∇φ+ P ) = −q(p− n+ND −NA)− ρtrap (3.1)

Where:

ε is the electrical permittivity of the material in F.m−1,

φ is the electrostatic potential in V ,

n and p are the electron and hole densities in cm−3,

ND and NA are the concentration of ionized donors and acceptors cm−3,

q is the elementary electronic charge in C,

P is the ferroelectric polarization in C.m−2 and ρtrap is the interface trap charge density

in cm−2.eV −1.

Hydrodynamic transport model: When device dimensions shrink below 100

nm, the traditional drift-diffusion transport model can not properly capture the real

device phenomena like impact ionization, velocity overshoot, etc. It overestimates the

impact ionization rate and can not predict the velocity overshoot phenomena properly.

Since for lower dimensions, the hydrodynamic model with carrier temperature and the

lattice temperature as the driving forces accurately predict the device phenomena, this

model is used in the device simulation.
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Semiconductor band structure: The most fundamental property of a semiconductor

material is its band structure. Realistic band structures can only be fully captured in full-

band Monte Carlo simulations. The band structure is simplified to several quantities:

the conduction and valence band edge energies, electrons, and holes effective mass.

The intrinsic carrier concentration in silicon is determined by the band-gap narrowing

model. In this simulation, the “OldSlotboom” model is selected, which is based on

measurements of in n-p-n transistors. Since there is a parasitic BJT inside the transistor,

it plays an important role in device characteristics.

Doping and temperature dependent SRH recombination model: Recombination

through deep defect levels in the energy bandgap is usually labelled as SRH recombination.

SRH lifetimes depend on doping and temperature. Doping dependent SRH lifetime is

modelled using Scharfetter relation.

τdop(NA) = τmin +
(τmax − τmin)

1 + (NA/Nref )γ
(3.2)

Where, Nref = 1016 cm−3 and γ = 1. In our device design, we have assumed, NA

= 1017 cm−3, τmax = 1 µs, and τmin = 0.

Doping and temperature dependent mobility model: In the device simulation,

we have used doping and temperature dependent mobility models so that the most

accurate electron and hole mobilities can be predicted. Both phonon scattering and

impurity scattering determine the mobility . For undoped materials, constant mobility

model (lattice temperature mobility model) is used. For doped materials, impurities are

the main cause of carrier scattering. This leads to a degradation of mobility.

Impact ionization model: Since impact ionization plays an important role in Z-

RAM programming, impact ionization phenomena is included through the avalanche

generation model. Since hydrodynamic simulation is performed, the driving force here

is temperature instead of the electric field.

Non-local band to band tunnelling model: Since band to band tunnelling plays

an important role in Z-RAM operation, a non-local band to band tunnelling model is
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included in the device simulation. In the non-local BTBT model, electron effective

mass for Si and TiO2 were taken as 0.65m0 [136] and 10m0 [135] respectively.

Thermionic emission model: As there are both valence and conduction band

offsets between Si and TiO2, the thermionic model is also included to account for the

transport of electrons across the conduction bands of the two sides of the junction.

Interface Trap Density: For proper calibration of the Si-TiO2 diode current-

voltage (I-V) characteristics, a Gaussian distribution of interface trap density with a

maximum value of 1010eV −1cm−2, energetically located at 50meV below the conduction

band edge and with a standard deviation of 50 meV is included at the interface between

TiO2 and Si (Fig. 3.4).

FIGURE 3.4: Gaussian distribution of interface trap density (Dit) with a maximum
value of 1010 eV −1cm−2, energetically located at 50 meV (mean position) below the

conduction band and with a standard deviation of 50 meV .

The Table 3.3 shows the calibrated values against the default values of

different parameters used in the TCAD simulations.

3.3 Simulation Results

Fig. 3.5 shows the electrostatic potential of TiO2 S/D Z-RAM cell (y = 100 nm i.e.,

50 nm above the body-BOX interface. See Fig. 3.1 for the definition of the coordinate



Chapter 3. TCAD Implementation of PD-SOI Based Z-RAM 40

T
A

B
L

E
3.3:

D
efaultand

C
alibrated

values
ofParam

eters
U

sed
in

the
T

C
A

D
Sim

ulations
ofPD

-SO
In-channelTiO

2
source/drain

M
O

SFE
T.

Param
eters

D
efaultValue

C
alibrated

Value
Si

TiO
2

Si
TiO

2

SR
H

R
ecom

.
τ
m
a
x

&
τ
m
in

10
µs,0

fore
3
µs,0

forh
10
µs,0

fore
3
µs,0

forh
1
µs,0

fore
1
µs,0

forh
1
µs,0

fore
1
µs,0

forh
A

ugerR
ecom

.
(cm

6/s)
A

&
B

6.7e −
3
2

,7.2e −
3
2

e
2.4e −

3
1

,4.5e −
3
3

h
6.7e −

3
2

,7.2e −
3
2

e
2.4e −

3
1

,4.5e −
3
3

h
6.7e −

3
2

,7.2e −
3
2

2.4e −
3
1

,4.5e −
3
3

6.7e −
3
2

,7.2e −
3
2

2.4e −
3
1

,4.5e −
3
3

M
obility

(cm
2/V

.s)
µ
em

a
x

&
µ
h
m
a
x

1417,470
1417,470

1417,470
0.1,0.1

B
T

B
T

A
(cm

−
1s
−
1V
−
2)&

B
(V
.cm

−
1eV

−
1
.5)

8.9e
2
0

,2.1e
7

8.9e
2
0

,2.1e
7

8.9e
1
9

,2.1e
7

8.9e
1
9

,2.1e
7

Tunnelling
m

ass
m
∗e

&
m
∗h

0.5m
0 ,0.5m

0
0.5m

0 ,0.5m
0

0.65m
0 ,0.5m

0
10m

0 ,10m
0

Im
pactIonization

n
1

f&
p

1
f

1,1
1,1

0.95,0.95
0.95,0.95

Surface
R

ecom
.

S
0

fore
&

h
100,100

50,50



Chapter 3. TCAD Implementation of PD-SOI Based Z-RAM 41

system.) under read ‘1’ biasing condition and it has been compared with the all-Si Z-

RAM cell. Due to the large valance band offset between TiO2 and Si as shown in Fig.

3.1(b), the hole barrier at the body of TiO2 S/D cell will be higher by 2 eV as compared

to that of all-Si cell as can be seen from Fig. 3.5.

FIGURE 3.5: Comparison of the simulated potential between TiO2 S/D cell and all-Si
cell under read ‘1’ condition.

The barrier height for holes at the valence band for both the transistors can be given

by equation 3.3 and 3.4.

EB Si−Si = kBT ln

(
NA−body

ni−Si

)
+kBT ln

(
ND−source

ni−Si

)
(3.3)

EB TiO2−Si = ∆EV + kBT ln

(
NA−body

ni−Si

)
+kBT ln

(
ND−source

ni−T iO2

)
−∆Ei (3.4)

Where:

∆Ei =
Eg−TiO2

−Eg−Si

2
−∆EC ,

NA−body is the body doping concentration in cm−3,

ni−Si is the intrinsic carrier concentration of silicon in cm−3,

ND−source is the source/drain doping concentration in cm−3,

ni−T iO2 is the intrinsic carrier concentration in TiO2 in cm−3,

∆EC and ∆EV are conduction and valence band offsets respectively in eV ,

Eg−T iO2 and Eg−Si correspond to the energy band gap of TiO2 and Si respectively in

eV .

Due to large barrier height for excess generated holes at the body, floating body

effects are more prominent in TiO2 source/drain cell as compared to the all-Si cell.

The biasing scheme for both the TiO2 source/drain and all-Si cells are the same

and it is shown in Fig. 3.6. The impact ionization mechanism was used for writing state



Chapter 3. TCAD Implementation of PD-SOI Based Z-RAM 42

FIGURE 3.6: Biasing scheme for both TiO2 source/drain and all-Si Z-RAM cell. Time
in the x-axis is shown for reference.

‘1’. Forward biasing of the drain-body junction is used for erasing or to write state ‘0’.

For reading ‘1’ or ‘0’, a comparatively low drain bias is applied at the drain terminal to

avoid impact ionization.

FIGURE 3.7: Comparison of the excess hole concentration between TiO2 S/D cell and
all-Si cell at time t = 25 ns i.e., 4 ns after the read ‘1’ operation starts (time reference
is shown in Fig. 3.6). Qh is the excess hole density in the body, obtained by integrating

the hole concentration in the body.

Excess hole concentration (cm−3) at 50 nm above the body - BOX interface is

plotted during the read ‘1’ operation i.e., at t = 25 ns as shown in Fig. 3.7 for both the

cells. The extracted excess hole density (integral of the hole concentration in the body

in cm−2) of TiO2 S/D cell (5.7×1011cm−2) is more than two orders of magnitude higher

than that of the all-Si cell (1.7 × 109cm−2). Since the stored holes at the body cannot
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escape easily for TiO2 source/drain cell due to large valence band offset between TiO2

and Si, floating body effects will be more prominent here and more number of excess

holes will accumulate at the body and stay there for a comparatively longer time than

all-Si cell.

FIGURE 3.8: Electrostatic potential at the body of the TiO2 S/D cell during read ‘1’
and read ‘0’.

Due to the higher hole density of TiO2 source/drain cell, the difference in threshold

voltage between state ‘1’ and state ‘0’ will be higher. Hence, the sense margin of the

TiO2 S/D cell is anticipated to be higher. Fig. 3.8 shows the electrostatic potential of

the TiO2 S/D cell during read ‘1’ and read ‘0’. Between the two states, there is a 0.55V

of potential difference at the body which leads to two different threshold voltages for

state ‘1’ and state ‘0’.

FIGURE 3.9: Comparison of the transient characteristics of TiO2 S/D cell and all-Si
Z-RAM cell at T = 300K.



Chapter 3. TCAD Implementation of PD-SOI Based Z-RAM 44

Fig. 3.9 shows the comparison of retention characteristics for both the memory

cells at T = 300K. As shown in the figure, there is an improvement in sense margin by

7µA/µm at T = 300K for TiO2 S/D cell.

FIGURE 3.10: Comparison of the change in sense margin as a function of time between
TiO2 source/drain cell and all-Si cell at T = 300K.

Fig. 3.10 shows the change in sense margin with time at T = 300K for both the

cells. The extracted retention time for TiO2 S/D cell and all-Si cell are 3.5 s and 1.5 ms

respectively.

We have also calculated the retention times and sense margins for both the Z-

RAM cells at 358K as shown in 3.11 and 3.12. SRH recombination rate increases with

temperature leading to a faster decay of read ‘1’ current (I1). As a consequence, the

retention time for both the memory cells decrease. But even at 358 K, the retention

time is 160 ms for the TiO2 S/D cell which is 2.5X that of the ITRS specification.

FIGURE 3.11: Comparison of the transient characteristics of TiO2 S/D cell and all-Si
Z-RAM cell at T = 358K.
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FIGURE 3.12: Comparison of the change in sense margin as a function of time between
TiO2 source/drain cell and all-Si cell at T = 358K.

The proposed cell has a retention time of 1066X that of the all Si cell at 358K. For

TiO2 cell, as the barrier for excess holes at the body is large, the excess holes can not

escape easily even at higher temperature, leading to the improved performance of this

cell compared to the all-Si cell.

3.4 Conclusion

Due to the large valance band offset between TiO2 and Si, TiO2 S/D Z-RAM cell

showed higher sense margin and longer retention time. The retention time predicted

using TCAD simulations are seen to be better than the specifications for all-Si Z-RAM

cell. In the context of the recent advancements in deposition of TiO2 and excellent

passivation of Si surface using TiO2, the proposed device architecture is very much

realizable for dynamic memory applications.





Chapter 4

TCAD Implementation of TiO2 S/D
FD-SOI Based Zero Capacitor
Random Access Memory (Z-RAM)

4.1 Introduction

In the previous chapter, we have demonstrated a TiO2 source/drain PD-SOI MOSFET

based first generation of Z-RAM cell where impact ionization based programming

method is used. There are certain drawbacks in PD-SOI MOSFET based first generation

of Z-RAM cell which is programmed by impact ionization. A high drain bias is applied

during programming to cause impact ionization at the drain body junction. This high

drain bias can be a concern. Due to several cycles of erase/program, it can degrade

the gate oxide quality through hot carrier injection, which leads to the generation of

interface states at the Si-SiO2 interface, and eventually to premature oxide breakdown.

More the density of the interface states at the Si-SiO2 interface more will be the degradation

of the retention time due to higher recombination. Furthermore, programming time

is an important factor in deciding the speed of a DRAM cell. To achieve a faster

programming, the impact ionization rate should be increased. To increase the impact

ionization rate, a higher drain voltage needs to be applied at the drain terminal which

leads to higher power consumption. Furthermore, in PD-SOI MOSFET based Z-RAM

cells, the threshold voltage difference between state ‘1’ and state ‘0’ (∆VTH) can be

approximated by ∆VB × (CD/COX) [137], where the body potential variation (∆VB)

is proportional to the change in hole density at the body between state ‘1’ and state ‘0’.

47
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From the ∆VTH and CD relation, we can say that to increase the sense margin, we need

to increase the CD. CD can be increased by reducing the body thickness (tSi). We can

not reduce the body thickness of a PD-SOI MOSFET otherwise it will lose it’s “partially

depleted” property. So scaling is also a big challenge for PD-SOI based Z-RAM cells.

These problems are solved up to a certain extent in the second generation of Z-

RAM cells [54, 55] where the parasitic BJT inside an n-channel FD-SOI MOSFET is

used to write state ‘1’. In this case, source (N+) acts as an emitter, body (P ) as a base

and drain (N+) as a collector of the parasitic BJT inside the MOSFET. This parasitic

BJT is turned on by increasing body potential through the accumulation of holes which

is initiated by impact ionization at the drain-channel junction. Once the BJT is turned

on, more electrons will enter the channel and impact ionization rate increases and this

is a regenerative process that eventually leads to latch-up of current. The increase in the

current can be used for reading logic state ‘1’. As per our device design, the retention

time is defined as the time when the read state ‘1’ current (I1) reaches 2 µA/µm. The

retention time specification is one of the most important figure of merit for a DRAM

cell and it should be a minimum of 64 ms at T = 358 K as per ITRS [17]. All-Si

Z-RAM cells [64, 65] does not meet the ITRS specification of retention time. The

reasons being the leakage of excess holes from the floating body to source/drain due to

low barrier height for holes and Shockley-Read-Hall (SRH) recombination in the body.

To overcome this problem, few hetero-structure based Z-RAM cells [66–69] have been

reported. Write ‘0’ time is an important parameter for hetero-structure based Z-RAM

cell as with the increase in valence band offset, write ‘0’ time increases [67]. Write ‘0’

process and the time required for the same are not elaborated in the literature.

FIGURE 4.1: (a) Schematic of the proposed TiO2 source/drain FD-SOI Z-RAM cell.
(b) TiO2 and Si band line up. ∆EC ≈ 0.05 eV and ∆EV ≈ 2 eV [126].

In this chapter, we propose a TiO2 based Z-RAM cell (Fig. 4.1) in which Si is

replaced by high bandgap TiO2 (Eg = 3.1 eV ) in the source and drain in an n-channel

FD-SOI MOSFET.
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Parasitic BJT based programming method has been used for the proposed memory

cell. We have demonstrated low voltage programming and have shown that, during

programming, hole storage is initiated by band to band tunnelling and subsequently it

is taken over by impact ionization. We have extracted the retention time for 30 nm

channel length device for both T = 300 K and T = 358 K through well-calibrated

TCAD simulations using Sentaurus Device simulator [122]. We report retention times

of 2 s and 70 ms at T = 300 K and T = 358 K respectively for the proposed design.

We have also optimized the write ‘0’ time to 6 µs for the proposed Z-RAM cell.

4.2 Device Design & TCAD Model Calibration

The device structural details are given in Table 4.1. Unlike logic transistors, the device

layer thickness and gate oxide thickness are taken comparatively higher to increase the

volume of charge storage and to make sure that gate oxide leakage is as low as possible.

TABLE 4.1: Transistor parameters used in TCAD simulations.

Parameter (Unit) Value
Buried oxide thickness (nm) 50
Device layer thickness (nm) 50
Gate oxide thickness (nm) 4.5

S/D doping (cm−3) 1019

Body doping (cm−3) 1017

Gate length (nm) 30
Gate metal work function (eV) 4.4

In general, logic transistors are designed to achieve good electrostatics. Good

electrostatics is achieved by having a thin gate oxide (1 nm) and thin body thickness

(generally < 30 nm for thin body SOI and < 10 nm for ultra-thin body SOI). However,

this design strategy is not suitable from a Z-RAM point of view. Logic transistors can

allow gate leakage to some extent. But gate leakage in Z-RAM cell has to be minimal

to prevent the leakage of the charge stored in the transistor body (or in the capacitor in

conventional 1T-1C DRAM). This criterion leads to the design constraint of relatively

thicker gate oxide (4− 5 nm). This constraint of thicker Tox in the Z-RAM transistor is

similar to the conventional DRAM technology as per ITRS guidelines.

Again, in the Z-RAM cell, the excess charge is stored inside the transistor body.

Thus, scaling of the body thickness (Tbody) also seriously impacts its charge storage
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FIGURE 4.2: Design constraints of the transistor parameter for zero capacitor random
access memory (Z-RAM) cell.

capability. Hence, the Z-RAM transistor should be optimized to have the maximum

body thickness possible. These design guidelines make Z-RAM transistors susceptible

to poor electrostatics. Fig. 4.2 above shows the optimization strategy of the Z-RAM

transistor parameters. Further, as the parasitic BJT based programming is used for

the proposed Z-RAM cell, the transistor operates in the accumulation region. Once

the excess hole generation is initiated by BTBT, the barrier for electrons from source to

body reduces due to these excess holes at the body and this leads to an increase in impact

ionization rate. As this is a positive feedback process, the drain current latches up after

some time. If we denote the impact ionization factor M as forward gain and source

electron injection efficiency β as feedback factor then the latch-up condition is satisfied

when Mβ ≈ 1. At the start of the programming, β is quite small, thus Mβ << 1.

The time required for the transistor to go into latch-up mode depends on the transistor

parameters and the operating voltages. As an example, if the gate oxide thickness is too

small then the gate will have good control over the transistor body, which will prevent

the source to inject more electrons in the channel. This will increase the latch-up time

of the Z-RAM transistor. Similarly having a thicker body also helps in reducing the

latch-up time as a greater number of excess holes can be stored. With a thin body and

thin gate oxide, the latch-up time can be reduced by increasing the drain bias but that

will increase the power dissipation. So, the transistor parameter optimization strategy

is different for the Z-RAM cell which is unlike the logic transistor.

We used 1017 cm−3 body doping for the FD-SOI MOSFET. As the excess holes
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generation during programming is initiated by band to band tunnelling, band to band

tunnelling is an important factor for the proposed memory cell. Band to band tunnelling

has to be high at the initial phase of the programming. We know that the tunnelling

probability of an n+ − p+ junction > tunnelling probability of an n+ − p junction >

tunnelling probability of an n+ − p− junction where, p+, p and p− represent highly,

moderately and low doped p-type Si [138]. If the body is made very low doped the

programming will not start at such low bias. That is why the body of the proposed

memory cell is moderately doped.

Hydrodynamic simulations are carried out to study the promise of the proposed

TiO2 source/drain FD-SOI MOSFET based Z-RAM cell. The simulation models and

calibrated parameters (Table 3.3) are already shown in chapter 3. The TiO2 parameters

used in the TCAD simulations are listed in Table 3.2.

FIGURE 4.3: (a) Comparison of simulated diode characteristic for n-TiO2 - p-Si
heterostructure diode with published result [126] at T = 300 K, demonstrating the
calibration of the simulation models used. I-V characteristics are shown for T = 250
K, 300K, 350K and 400K respectively and the simulation is extended upto 1.5 V in
reverse direction to check the current conduction mechanism at high reverse bias. (b)
Current density is plotted as a function of inverse temperature for two different reverse

biases (0.2 V and 1.5 V ).

For the validation of our simulation, TiO2 - Si heterostructure diode I-V characteristic

is matched with the experimental data from [126] at T = 300 K as can be seen in

Fig. 3.3 from chapter 3. To understand the temperature effects on the high reverse

bias, the simulation is extended up to 1.5 V in the reverse direction and the diode I-V

characteristics are simulated for four different temperatures starting from T = 250 K

to 400 K with a gap of 50 K as shown in Fig. 4.3(a). The Arrhenius plot (Fig. 4.3(b))is

also shown where the current density is plotted as a function of inverse temperature for

two different reverse biases 0.2 V and 1.5 V . It can be seen that the current is varying
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as a function of temperature for a reverse bias of 0.2 V . The extracted activation energy

ranges from 0.47 - 0.59 eV which is almost half the mid-gap energy of Si. This indicates

that current at low reverse bias is dominated by SRH generation-recombination. On the

other hand, for a reverse bias of 1.5 V , the current density is almost independent of

temperature with activation energy of 0.0057 eV . This confirms that the current at high

reverse bias is dominated by tunnelling because tunnelling has a weak dependence on

temperature. So, as reverse bias increases, the current conduction mechanism switches

from SRH generation-recombination to tunnelling.

4.3 Device Operating Principle

Fig. 4.1(a) shows the schematic of the proposed TiO2 source/drain Z-RAM cell. In

parasitic BJT based Z-RAM, the state ‘1’/state ‘0’ are recognized by turning on/off of

the parasitic BJT in the transistor. The device physics of the programming operation

is investigated by carrying out transient simulations. Simulations are carried out with

and without BTBT to elucidate the role of this mechanism in programming. The gate

voltage (VGS) is fixed at −0.8 V and simulations were carried out at drain voltages

(VDS) of 0.5 V to 0.8 V . The results of the transient simulations with BTBT are shown

in Fig. 4.4(a). It is seen that the drain current latches up for VDS ≥ 0.6 V, with the time

to latch-up decreasing with the increase in VDS .

FIGURE 4.4: (a) Latch-up characteristics of the 30 nm channel length device under
different values of VDS and VGS = −0.8V . It is evident from this figure that the device
latches up for VDS ≥ 0.6 V and VGS = −0.8 V . (b) Energy band diagram along the
source-channel-drain (1 nm below the gate oxide - body interface) with and without

band to band tunnelling of the TiO2 source/drain cell taken at t = 1 s.

Fig. 4.4(b) shows the band diagram over a cut line along source - channel - drain,

1 nm below the gate dielectric - silicon interface, when the simulations were carried out
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with and without BTBT. It is seen that when BTBT is not turned on in the simulations,

the valence band of the channel region aligns with the conduction band of the drain,

suggesting the possibility of tunneling across the channel to drain junction.

Fig. 4.5(a) shows the impact ionization rate with and without BTBT. The impact

ionization rate is seen to be much higher when BTBT is turned on. Fig. 4.5(b) shows

the temporal evolution of the BTBT rate for VDS = 0.8 V and VGS = −0.8 V . Initially

the BTBT rate is high. However with time, the BTBT rate decreases.

FIGURE 4.5: (a) Impact ionization rate at the drain junction with and without BTBT
(taken at t = 1 s). (b) BTBT rate taken at different time at the drain-channel junction

(1 nm below the gate oxide-body interface).

FIGURE 4.6: (a) Hole density (20 nm below the gate oxide-body interface) as a
function of time at VGS = −0.8 V and VDS = 0.8 V with and without BTBT. (b)
Impact ionization rate at the drain-channel junction taken at different time instances.

Fig. 4.6(a) shows the temporal evolution of the hole density integrated over the cut

line with and without BTBT. Fig. 4.6(b) shows the temporal evolution of the impact

ionization rate. From these figures, the following can be inferred. As the programming

bias in such low values is applied to the device, the valence band of the channel region is

aligned to the conduction band of the drain, leading to electron tunnelling from channel
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to the drain. This increases the hole concentration in the channel region, leading to

a lowering of the bands in the channel. This leads to higher electron injection to the

channel from the source. This leads to an increase in impact ionization rate, which in

turn increases the hole concentration in the channel region. In the meanwhile, the BTBT

rate decreases as the channel valence band to drain conduction band overlap decreases.

There are several experimental demonstration of sub-band gap impact ionization

[139–142] and low voltage BTBT [51–53] in silicon devices. Anil et al. reported impact

ionization in n-channel MOSFETs for drain voltage as low a 0.6 V [139], and Das

et al. reported impact ionization in n-i-p-i-n diodes at 0.2 V [141]. Huaung et al.

demonstrated silicon tunnel FETs operating at low voltages [51].

4.4 Z-RAM Biasing

There are four operations in a Z-RAM cell. These are write ‘1’ (programming), write

‘0’ (erasing), read, and hold. The source and substrate are grounded for all operations.

The biasing scheme for the proposed TiO2 source/drain Z-RAM cell is shown in Fig.

4.7.

FIGURE 4.7: Biasing scheme for the proposed TiO2 source/drain Z-RAM cell.
‘W’,‘R’ and ‘H’ stands for ‘Write’,‘Read’ and ‘Hold’.
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4.4.1 Programming

The parasitic BJT based programming method [54, 55] is used for the proposed memory

cell. Initially, just before programming, the device operates in the accumulation mode

with VGS = −0.8 V and VDS = 0.8 V . Excess hole storage at the body is initiated by

BTBT and later on, it is taken over by impact ionization as discussed in the previous

section. At the onset of programming, to increase the body potential, VGS is lifted up

from −0.8 V to 0 V as shown in Fig. 4.7. Once the BJT is turned on, impact ionization

rate increases and current starts increasing due to the regenerative nature of this process.

4.4.2 Erasing

To write ‘0’, we need to remove or erase the excess holes from the floating body. There

are two ways by which the excess holes at the body can be removed: (i) by forward

biasing the drain to body junction [143], and (ii) by gate coupling [54]. In our design,

the gate coupling method is used for erasing or writing state ‘0’. The biasing scheme

for write ‘0’ is VGS = 0.8 V and VDS = 10 mV .

4.4.3 Read

FIGURE 4.8: (a) Comparison of the excess hole concentration (cm−3) at the body (at
y = 20 nm i.e., 20 nm below the body-gate oxide interface) of the proposed memory
cell during read ‘1’ and read ‘0’ operation. Qh is the excess hole density (cm−2) at the
body and it has been calculated by integrating the corresponding hole concentration
curve. (b) Comparison of electrostatic potential at the body (at y = 20 nm i.e., 20 nm
below the body-gate oxide interface) of the proposed memory cell during read ‘1’ and
read ‘0’ operation. There is a difference in body potential by 420 mV between the two

states.

For read ‘1’ or ‘0’, a comparatively low drain bias is applied so that, impact

ionization is avoided. As the excess holes generated during write ‘1’ operation will still
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be present in the body, the body potential would be higher than the steady-state value.

This reduces the threshold voltage leading to a higher drain current than the steady-

state value. The biasing scheme for read operation is VGS = −0.8 V and VDS = 0.5 V .

Excess hole concentration (cm−3) is plotted along the body (y = 20 nm) during read

state‘1’ and read state ‘0’ as shown in Fig. 4.8(a). We have integrated the respective

hole concentration curves to calculate the excess hole density (cm−2) and it is seen

that the excess hole density during read state ‘1’ (9.6 × 1011 cm−2) is more than eight

orders of magnitude higher than that of the excess hole density during read state ‘0’

(1.1 × 103 cm−2). Due to higher hole density at the body, the electrostatic potential

at the body (y = 20 nm) during read state ‘1’ will be higher (by 420 mV ) than the

electrostatic potential during read state ‘0’ as shown in Fig. 4.8(b). Due to a change in

the electrostatic potential, there will be a difference in threshold voltage between state

‘1’ and state ‘0’. Hence, the sense margin of the proposed TiO2 source/drain cell is

anticipated to be much higher.

4.5 Transient Analysis

To get the retention characteristics, transient simulations are performed for the proposed

Z-RAM cell.

4.5.1 Optimization of Drain Bias For Reading Operation

VDS is optimized for read operation by keeping VGS fixed at −0.8 V as shown in Fig.

4.9.

As can be seen from Fig. 4.9, For a drain bias VDS ≤ 0.5 V , the read state ‘1’

current dies down very quickly. So, here we have chosen VDS = 0.5 V as the optimized

value for the read operation.

4.5.2 Optimization of Write ‘0’ Time

Due to a large valence band offset (∆EV ≈ 2 eV ) between TiO2 and Si, the stored holes

during programming cannot be removed easily. So, writing state ‘0’ will take a longer

time than writing state ‘1’. We have optimized the writing state ‘0’ time (tw0) as shown

in Fig. 4.10.
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FIGURE 4.9: Optimization of VDS for reading operation. VGS is kept fixed at−0.8 V .

FIGURE 4.10: Drain current transients in the sequence of operation with the given
biasing scheme under different write ‘0’ time (tw0): Write ‘1’: VGS = 0V , VDS =

0.8V . Hold: VGS = −0.8V , VDS = 0V Read: VGS = −0.8V , VDS = 0.5V .

As shown in the figure, for tw0 < 6 µs, state ‘0’ read current latches up. So, the

minimum write state ‘0’ time is taken as tW0 = 6 µs. It is seen that write ‘0’ time

increases dramatically when ∆EV > 0.3 eV [67] as shown in Fig. 4.11 below. This is

because, once the valance band offset between body-source/drain increases, the stored

holes at the body can’t escape. SRH recombination then becomes the only mechanism

of charge removal from the body.

So, it takes longer time to remove those charges from the body and write ‘0’ time

increases. SRH recombination rate (R) can be given as,

R =
np− ni2

τp0(n+ n′) + τn0(p+ p′)
(4.1)
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Where,

n
′
= nie

ET−Ei
kBT

p
′
= nie

Ei−ET
kBT

n and p are the electron and hole concentrations in cm−3,

ni is the intrinsic carrier concentration in cm−3,

τp0 and τn0 are the hole minority carrier lifetime and electron minority carrier lifetime

respectively, and

ET is the trap energy level.

FIGURE 4.11: Writing ‘0’ time dependence of valence band offset (∆EV ). ∆EV = 0
eV means normal floating body cell (FBC). The writing time increase dramatically for

band-gap engineered source/drain FBC when ∆EV > 0.3 eV [67].

If excess charge at the body is denoted by ∆Q, and change in the body potential

due to that excess of charge is denoted by ∆VB, then, ∆VB = ∆Q/ CSi, where, CSi
is the silicon body capacitance. But once we reduce the device dimensions and go

in the lower technology nodes, the excess charge at the body (∆Q) comes under an

increased influence of source/drain potential which results in drain induced barrier

lowering (DIBL) [144]. Due to DIBL, a greater number of electrons enter the body

from the source. As a result, electron concentration at the body increases. Since the

SRH recombination rate is directly proportional to the product of the electron and hole

concentrations, the SRH recombination rate increases at the body due to the increased

effect of DIBL as we go to lower technology nodes. So, the excess charge (∆Q) at

the body reduces faster due to an increase in the SRH recombination rate as we go to

lower technology nodes. As a result, write ‘0’ time also goes down as we go to lower

technology nodes.
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As shown in the Fig. 4.10, there is a sense margin of 2 mA/µm at T = 300 K for

the proposed TiO2 source/drain Z-RAM cell.

4.5.3 Retention Characteristics

Fig. 4.12(a) shows the retention characteristics for the proposed Z-RAM cell for both

T = 300 K and T = 358 K. In our memory design, the retention time (RT) is defined

by the time by which the state ‘1’ current (I1) reaches 2µA/µm from it’s initial value.

As seen in the figure, the extracted retention time for the proposed Z-RAM cell is 2 s

and 70 ms at T = 300 K and T = 358 K respectively.

FIGURE 4.12: (a) Variation of read ‘1’ current as a function of time at both T = 300
K and T = 358 K respectively. (b) Multiple reading operation of the proposed cell
at T = 300 K. This shows the non-destructive read-out mechanism in the proposed

Z-RAM cell.

The read ‘0’ currents are seen to be nearly constant at both the temperatures.

However, Shockley-Read-Hall recombination rate increases with temperature leading

to a faster decay of I1 at T = 358 K. As a consequence, the retention time of the

memory cell at T = 358 K decreases. But even at T = 358 K, the retention time is 70

ms for our proposed memory cell which is 1.1 times the ITRS specification of 64 ms.

In a conventional DRAM cell, after every read operation, the capacitor has to be

charged again. One of the advantages of Z-RAM cells is that the read operation is

non-destructive for several read cycles. Fig. 4.12(b) shows the multiple non-destructive

reading operation for both state ‘1’ and state ‘0’. Results from literature reports are

summarised in Table 4.2 for comparison.
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As per our simulations, the proposed structure would result in lower programming

voltage and better retention characteristics than other hetero-structure based Z-RAM

cells reported in the literature.

For a scaled device down to sub-30 nm, random dopant fluctuations (RDF) is the

main source of variability [145] in threshold voltage and this can also create a fluctuation

in the retention time of the Z-RAM cell. But appropriate channel engineering may also

help to reduce the random dopant fluctuation effects. It has already been demonstrated

in the literature, that the introduction of a low-doped epitaxial layer in the device channel

significantly suppresses the threshold voltage fluctuation [145] .

4.5.4 Disturbance Analysis

We have carried out disturbance analysis due to the influence of the neighbouring cells.

Fig. 4.13 shows the TiO2 S/D Z-RAM cell array where the drain and gate of every

single cell are connected to the bit line and word line respectively.

FIGURE 4.13: TiO2 S/D Z-RAM cell array and disturbances among neighbouring
cells.

Bit line disturb and word line disturb are the two types of disturbances from the

neighbouring cells that can affect the performance of a selected cell. We have selected

one Z-RAM cell and did the disturbance analysis due to the neighbouring cells as shown

in Fig. 4.13. In Table 4.3, we have also compared the retention time of a disturbed cell

of the TiO2 S/D Z-RAM cell array with the same from an all-Si Z-RAM cell array at

T = 300 K and 358 K.

The disturbance analysis is done individually when the selected cell is either in

Hold ‘1’ or Hold ‘0’ state. The disturbing cells (BL disturb and WL disturb) are kept in
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TABLE 4.3: Simulated retention time of the disturbed cell is represented as a
percentage of the undisturbed cell retention time for T = 300 K and 358 K. Green
color represents greater than or equal to 90%, yellow color represents greater than 50%

but less than 90% and red color represents less than 50%.

Retention Time %
TiO2 S/D Cell All-Si CellDevice

Condition
Disturb
Source

Disturb
Operation 300 K 358 K 300 K 358 K
Program 93.7 92 74 69

Erase 85 83.5 41 35BL
Read 94.1 93 71 70

Hold 1

WL P/E/R 96 95.2 82 77
Program 98.1 97 65 63

Erase 95 94.5 74 71BL
Read 96.8 95.1 48 47

Hold 0

WL P/E/R 94.7 94.3 49 49

any one of the program, erase, or read conditions. This implies, if the disturbing cells

are in the programmed state, the corresponding programming voltages are applied at the

WL and the BL respectively.

It can be seen from Table 4.3 that, except for bit line ‘erase’ disturbance, the

retention time of the disturbed cell is more than 90% of the undisturbed cell for TiO2

S/D Z-RAM cell array. It is also seen that, for all-Si Z-RAM cell array, the retention

time of the disturbed cell for most of the disturbances is less than 90% and for some

cases, it is even less than 50% of the undisturbed cell. It clearly shows the superiority

of the TiO2 S/D Z-RAM cell array as compared to the all-Si Z-RAM cell array.

The main reason for the better retention characteristic of the TiO2 S/D Z-RAM

cell as compared to the all-Si Z-RAM cell is the large valence band offset between

TiO2 and Si (∆EV ≈ 2 eV ). This is due to the fact that the charge dynamics inside

the body region does not change much in TiO2 S/D Z-RAM cell as a result of high

valence band offset between TiO2 and Si. The retention time here mainly depends on

the SRH recombination inside the body region unlike in an all-Si Z-RAM cell where

the retention time depends on both SRH recombination at the body as well as over-the-

barrier leakage between body and source/drain. Charge loss is more prominent for an

all-Si Z-RAM cell as compared to TiO2 S/D Z-RAM cell.
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4.6 Possible Fabrication Process Steps

The proposed device may be fabricated using the scheme shown in Fig. 4.14. The

process flow is similar to Intel’s replacement gate process for 45 nm technology node

[146].

FIGURE 4.14: Proposed fabrication process flow of the TiO2 S/D Z-RAM Cell.

First, an SOI wafer with desired specifications is taken. Then depending on the

doping requirement of the p-type transistor body, ion implantation is done. To activate

the dopant atoms annealing is done next. Then SiO2 is grown using thermal oxidation

process. As poly-Si is better than metal for self-aligned gate due to its high melting

temperature, poly-Si is deposited on top of thermally grown SiO2 which is followed by

gate patterning using lithography. After lithography, Si is etched out from the selective

areas by the anisotropic etching process. Once etching is done, TiO2 is deposited by

the atomic layer deposition process to form source/drain . To planarize the top surface,

the CMP process is done which is followed by controlled etching of TiO2 to make

source, body, and drain of the same thickness. Then SiO2 is deposited throughout and

again CMP is done planarize the top surface. Dummy poly-Si gate stack is removed

by etching and the final gate stack is deposited which is followed by the CMP process.

Then source/drain contact holes are formed using lithography and etching. Finally,

source/drain contacts are made.
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4.7 Conclusion

A TiO2 S/D Z-RAM cell on FD-SOI device architecture with low programming voltages,

better retention characteristics, and better sense margin than heterojunction based Z-

RAM reported in the literature, is proposed. Using well-calibrated TCAD simulations,

the performance of the proposed structure are extracted and compared to literature data.

The retention time predicted for a 30 nm channel length device is seen to be better

than the ITRS specification. Also, low voltage programming has been demonstrated

for the proposed cell. In the context of the recent advancements in the deposition of

ultra-thin TiO2 and excellent passivation of Si surface using TiO2, the proposed device

architecture is very realizable for low power dynamic memory applications.



Chapter 5

TCAD Implementation of Bulk finFET
Based Artificial Neuron For Spiking
Neural Networks

5.1 Introduction

The main goal of neuromorphic computing or artificial neural network is to mimic

the functionalities of a human brain. Spiking neural network (SNN) [92] is the new

generation of artificial neural networks which is more energy-efficient than other neural

networks as well as a traditional computer. An artificial neuron and an artificial synapse

are the two fundamental building blocks of a spiking neural network. Here, we mainly

focus on the realization of an electronic neuron for spiking neural networks. For the

realization of an electronic neuron, it is essential to understand the basic functionalities

of a biological neuron. In the next section, we discuss the operating principle of a

biological neuron. Later, we demonstrate through well-calibrated TCAD [122] simulations,

a highly scalable bulk FinFET based analog implementation of the integrate block of a

LIF neuron. The charge integration mechanism is shown at the body of the proposed

device through the addition of a buried n+ layer. We also demonstrate that the proposed

neuron is seen to have a spiking frequency in the MHz range which is 5 order of

magnitude higher than that of a biological neuron (f0 = 10 Hz) and the lowest energy

consumption for the integrate block till date i.e., 6.3× 10−15 J /spike.

65
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5.2 Operating Principle of a Biological Neuron

A neuron is the fundamental unit of human brain (Fig. 5.1(a)). Human brain consists

of 1011 number [147] of neurons. To understand how brain functions, it is essential

to know the working principle of a neuron. Each neuron consists of three parts (Fig.

5.1(b)) namely the cell body or soma, axon, and dendrite.

FIGURE 5.1: (a) Human brain consists of billions of neurons. (b) Each neuron consists
of three parts and they are cell body, axon, and dendrite. (Images are taken from [148]).

Like other cell bodies, a neuron’s soma contains a nucleus and specialized organelles.

It’s enclosed by a membrane that protects it and allows it to interact with its immediate

surroundings. An axon is a long, tail-like structure that joins the cell body at a specialized

junction called the axon hillock. Many axons are insulated with a fatty substance

called myelin. Myelin helps axons to conduct an electrical signal. Neurons generally

have one main axon. Dendrites are fibrous roots that branch out from the cell body.

Like antennae, dendrites receive and process signals from the axons of other neurons.

Neurons can have more than one set of dendrites, known as dendritic trees. The number

of dendrites generally depends on their role. For instance, Purkinje cells are a special

type of neuron found in the cerebellum. These cells have highly developed dendritic

trees which allow them to receive thousands of signals. Neurons send signals using

action potentials. An action potential is a shift in the neuron’s electric potential caused

by the flow of ions in and out of the neural membrane.
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Each neuron is connected to 104 number [149] of other neurons. The connection

between two neurons is called a synapse (Fig. 5.2). So the total number of synapses

in a human brain is 1015. Information is transferred from one neuron to another in the

form of a current spike via a synapse. These 1011 neurons together with 1015 synapses

form a spiking neural network (SNN).

FIGURE 5.2: Pre-synaptic and post-synaptic neurons are shown inside black and blue
dotted rectangle respectively. Each post-synaptic neuron is connected to many other
pre-synaptic neurons as can be seen. The connection between two neurons is called

synapse. (Neuron images are taken from [148]).

Fig. 5.3 shows the schematic diagram of a SNN. As shown in the diagram, several

weighted input signals from the pre-synaptic neurons are coming to the post-synaptic

LIF neuron through the synapse. These signals are summed up at the post-synaptic LIF

neuron. Fig. 5.4(a) shows the simplest circuit model [103] of a LIF neuron. Iin(t) is the

summed-up input current at the LIF neuron at any given time. This Iin(t) increases the

potential of the LIF neuron with time and this is modelled by a leaky capacitor i.e., a

capacitor in parallel with a resistor. At certain Iin(t) = Ith, the capacitor voltage (Vc(t))

reaches a threshold (Vc(t) = Vth). At, Vc(t) ≥ Vth, Vc(t) resets itself to resting potential

and a spike is generated as shown in Fig. 5.4(b). With the increase in Iin(t), Vc(t)

reaches Vth faster and spike frequency increases. Fig. 5.4(c) shows the output spike

frequency (f0) vs. input current curve. This is a signature characteristic of a biological

neuron and this is to be mimicked artificially.
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FIGURE 5.3: Schematic representation of a spiking neural network (SNN) with several
pre-synaptic neurons and one post synaptic LIF neuron. Weighted signals are coming
from pre-synaptic neurons through synapse and integrated in the LIF neuron. The

algorithm for SNN is taken from reference [150].

FIGURE 5.4: (a) Simplest model [103] of the LIF neuron with first order R-C circuit.
(b) V (t) will never exceed Vth as long as Iin(t) < Ith. Hence, there will not be any
spike. But when Iin(t) crosses Ith, the LIF neuron fires and creates a spike the moment
V (t) ≥ Vth and immediately resets itself to resting potential after that. (c) As long as
Iin(t) < Ith, spiking frequency (f0) is zero. But with the increase in Iin(t) after Ith,
f0 increases. This output spiking frequency (f0) versus input curve is the signature of

a biological neuron and it is to be mimicked artificially.

5.3 Bulk FinFET Based LIF Neuron

The schematics of the proposed device are shown in Fig. 5.5. The device would

implement the integration function of the neuron to produce the current spikes. It is
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assumed that appropriate circuits for the summing of the weighted outputs of the pre-

synaptic neurons are added by a summing amplifier circuit as can be seen in Fig. 5.9.

FIGURE 5.5: (a) Simulated bulk FinFET with n+ buried layer. (b) 2D structure along
c1. (c) 2D structure along c2. Gaussian doping profile with a peak concentration of
1021 cm−3 is used at source/drain and the channel is uniformly doped. Doping gradient
along source/drain to channel is kept at 2 nm/decade. The +ve (-ve) sign indicates n-

type (p-type) doping.

5.3.1 Device Design and TCAD Validation

The simulation models used are calibrated by matching (as can be seen in Fig. 5.6)

the experimental IDS − VGS characteristics taken from the gate-all-around nano-sheet

FET device as described in the reference [151]. The device design parameters used to

simulate the proposed device are listed in Table 5.1.

TABLE 5.1: Bulk FinFET parameters used in TCAD simulation.

Parameter Value
Gate length (Lg) (nm) 100
Fin height (HFin) (nm) 100
Fin width (WFin) (nm) 30

Buried n+ layer thickness (Tn+) (nm) 25
Gate oxide thickness (Tox) (nm) 2

Channel p-doping (cm−3) 5× 1018

Buried n+ layer doping (cm−3) 5× 1019

Source/Drain n+-doping (cm−3) 1021

Gate metal work-function (eV ) 4.6

Table 5.2 shows the calibrated values of different parameters used in the TCAD

simulation against the default values.
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FIGURE 5.6: Comparison of simulated IDS − VGS characteristics with experimental
data [151], demonstrating the calibration of the simulation models used.

TABLE 5.2: Default and Calibrated parameters used in TCAD simulations.

Parameters Default Value Calibrated value
SRH Recombination

τmax and τmin
10 µs, 0 for e
3 µs, 0 for h

1 µs, 0 for e
1 µs, 0 for h

Mobility (cm2/V − s)
µemax and µemin

1417, 470 1417, 470

Band to Band Tunnelling
A (cm−1s−1V −2) and B (V cm−1eV −1.5)

8.9e20, 2.1e7 8.9e19, 2.1e7

Tunnelling Mass
me
∗ and mh

∗ 0.5m0, 0.5m0 0.5m0, 0.5m0

Impact Ionization
Avalanche Factors: for e and h

1, 1 0.95, 0.95

Velocity Saturation
V sat0 (for e and h)

1.07e7, 8.37e6 2.1e7, 8.37e6

The proposed device can be fabricated using the typical process flow reported in

[152].

5.3.1.1 Functionality of Buried n+ Layer

The purpose of the buried n+ layer in this device is to create a barrier (Fig. 5.7(b)) for

the excess majority carriers to confine them within the p-doped body region. When a

comparatively large drain bias is applied, electron-hole-pairs are generated by impact

ionization at the drain-body junction. Electrons are swept away to the drain and the

excess holes come to the body region.
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FIGURE 5.7: (a) Simulated contour plot of excess hole density at the body along c1.
Corresponding biases are VDS = 2 V and VGS = −1 V . (b) Energy band diagram
along Y Y ′. Buried n+ layer, creates a barrier for excess majority carriers at the body.

Fig. 5.7(a) shows the contour plot of excess hole density at the body which clearly

shows that the holes are being stored at the body.

5.3.1.2 Signature of Hole Storage

FIGURE 5.8: Kink arises in the output characteristics of the proposed device. This is a
signature of hole storage at the body of the transistor.

Floating body effects [43–45] induced by impact ionization (II) at the drain-body

junction causes the excess hole integration overtime at the body and this results in kink

in the output characteristics of the proposed device as shown in Fig. 5.8.
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5.3.2 Working Principle of Bulk FinFET Based LIF Neuron

FIGURE 5.9: Simulated LIF neuron. Signals (I1, I2, . . . IN ) from the pre-synaptic
neurons are coming to the post-synaptic LIF neuron through synapses with synaptic
weightsW1,W2,W3, . . .WN . As the proposed bulk FinFET based device takes voltage
as input, the current is converted to a proportional voltage. Vin(t) = −Iin(t)Rf , where
Iin(t) is the summed-up current from the pre-synaptic neurons. Iout starts increasing
at some Vin(t) ≥ Vth and VDS = VIntegrate = 3 V . As soon as Iout reaches Ith, the

reset circuit resets VDS to VReset for t = (tErase + tRS) s.

Fig. 5.9 shows the simulated LIF neuron with input voltage (Vin) and output current

(Iout). As shown in Fig. 5.9, increasing Iin(t) causes Vin(t) to increase. As the proposed

bulk FinFET based device takes voltage as input, the current has first to be converted to

a proportional voltage. As can be seen in Fig. 5.9, I1, I2, . . . IN are the inputs from the

pre-synaptic neurons and these signals pass through the synapses with synaptic weights

W1, W2, W3, . . .WN . This summed up current (Iin(t)) is then converted to a voltage

using an inverting amplifier. The output of this inverting amplifier is the input (Vin(t))

of the LIF neuron.

VDS is controlled by the reset circuit. Fig. 5.10 shows the schematics of the biasing

scheme and output drain current for the LIF functionality. For charge integration by

impact ionization, a high drain bias (VDS = VIntegrate) is applied for tInt seconds and

Vin is kept above Vth. Iout starts increasing due to positive feedback effect by excess

hole storage at the body region and as soon as it reaches Ith, VDS is reset by the reset

circuit for (tErase+ tRS) seconds and a spike is generated. The same integrate and reset

cycle repeat again to make each LIF cycle identical. Fig. 5.11 shows the energy band

diagram of the proposed device along source-channel-drain at t = t1 and t4, i.e., for

initial and reset conditions when there is no charge integration taking place, and Fig.

5.12 shows the energy band diagram at t = t2 and t3. It describes the barrier lowering
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FIGURE 5.10: Schematics of the biasing mechanism for LIF functionality and
corresponding output current Iout.

FIGURE 5.11: Energy band diagram of the proposed device along source-channel-
drain at t = t1 and t4 i.e., for initial and reset conditions.

by charge integration mechanism which takes place due to impact ionization and charge

leak by diffusion process from the body to source and SRH recombination at the body.

It is important to note is that, while resetting, the drain-body junction can not be forward

biased for long because this can also program the device as discussed in [59]. That is

why a negative drain bias is applied for a small time then it is set to zero bias for a larger

time. This drain pulse is generated by the reset circuit i.e., the drain bias is controlled

by the reset circuit. The pulse width is set depending on the excess charge dynamics

inside the device.
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FIGURE 5.12: Energy band diagram of the proposed device along source-channel-
drain at t = t2 and t3 which describes charge integration and leak phenomena.

5.3.3 Results and Discussion

There is a parasitic n+ - p - n+ BJT associated with the proposed n-channel bulk

FinFET where source (n+) acts as an emitter, body (p) as a base and drain (n+) as a

collector. When a comparatively large drain bias (VDS) is applied along with a negative

gate bias (VGS), the transistor operates in accumulation mode and impact ionization (II)

takes place at the drain-body junction due to the presence of a large electric field. The

direction of the electric field is from drain to body. Electron-hole-pairs are generated

at the depletion region of the drain-body junction. Electrons are swept away to the

drain side and the holes come to the body. These excess holes at the body region

increase the body potential or the base potential of the parasitic BJT. As a result, there

is a barrier lowering for electrons from source to body or emitter to base. Hence a

greater number of electrons enter into the body and take part in the impact ionization

process at the drain-body junction causing an increase in impact ionization rate. More

impact ionization means more electron-hole-pair generation and a greater number of

hole accumulation at the body. This is a positive feedback process. Within a very short

time, the base potential increases to a level which forward biases the base (body) –

emitter (source) junction and turn the parasitic BJT on. We see a steep rise in drain

current and eventually, the drain current latches up as shown in Fig. 5.13.

The impact ionization rate, hole density, and electrostatic potential along the source-

channel-drain for different times are simulated as shown in Fig. 5.14.
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FIGURE 5.13: Transient simulation shows the IDS - Time characteristics under
different Vin. The Ith is set at 0.35 µA/µm.

FIGURE 5.14: (a) Impact ionization (II) rate is plotted along source-channel-drain for
different time. Inset is the zoomed figure. (b) Hole density is plotted along source-
channel-drain for different time. (c) Variation of electrostatic potential along source-

channel-drain for different time. The time reference is the same as in Fig. 5.13.

As shown in Fig. 5.14, due to the positive feedback process, impact ionization rate

at the drain-body junction, hole density at the body, and the electrostatic potential at the

body increases with time and saturates at some point.

Fig. 5.13 shows the temporal evolution of drain current overtime under different

VGS when VDS is fixed at 3 V . It can be clearly seen that, with the increase in |VGS|,
the drain current reaches Ith faster. So, the triggering time depends on the input voltage

of the proposed bulk FinFET based artificial neuron. The input voltage can be given as

follows.

Vin(t) = VGS(t) = −Iin(t)×Rf = Rf .WNIN (5.1)
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From Fig. 5.13, and Fig. 5.14(a) and (b), it can be seen that, with the increase in

the input voltage (Vin(t)), the triggering time decreases and the drain current reaches

threshold level in less time. Hence, the frequency of spike generation increases. More

the signals from the pre-synaptic neurons, less the time it requires to reach the threshold

level and more the frequency of spike generation. Here the gate bias is negative (Vin(t)=

VGS(t) = Iin(t). Rf ) which means the transistor operates in accumulation mode. A high

number of holes are present at the body-gate oxide interface. These accumulation layer

holes repel the excess holes at the body which are generated by impact ionization at the

drain-body junction. As a result, the excess holes will accumulate away from the gate

dielectric-body interface and SRH recombination is reduced and the retention time of

excess holes is increased. This is unlike the case when a positive gate bias is applied

and the transistor operates in inversion mode. Under inversion mode, a large number of

electrons are present at the inversion layer which attracts these excess holes present at

the body, and SRH recombination takes place.

For the proposed bulk-FinFET based artificial neuron, Ith is set at 0.35 µA/µm.

Vth corresponding to Ith is 0.6 V . As long as |Vin| = |VGS| ≤ Vth = 0.6 V (Fig.

5.15(a)), drain current (Iout) saturates (Fig. 5.15(b)) before it reaches Ith = 0.35 µA/µm

and no spike is generated.

FIGURE 5.15: (a-b) Output drain current does not make any spike as long as Vin ≤
Vth = 0.6 V . Drain current is taken for Vin = 0.5 and 0.6 V and it saturate before

reaching Ith.
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FIGURE 5.16: (a-b) Biasing scheme for neuron firing and reset of the proposed neuron.
For Vin = 0.8 V , when IDS reaches Ith = 0.35µA/µm, VDS is reset by the reset circuit

and a spike is generated.

But when Vin = |VGS| > Vth = 0.6 V as shown in Fig. 5.16(a), as soon as

the drain current reaches Ith = 0.35 µA/µm, VDS is reset to −1.5 V and a spike is

generated (Fig. 5.16(b)). VDS is kept at−1.5 V for 8 ns and then changed to VDS = 0 V

for 500 ns to remove all the excess holes present at the body, then VDS is set back to 3

V again (Fig. 5.16(a)) and from the same initial point the current starts after each reset

which essentially makes each LIF cycle identical. As shown in the Fig. 5.16(b), a spike

is generated after every 520 ns for the given biasing condition. Spiking frequency (f0)

is plotted against input voltage (Vin) in Fig. 5.17. As in biology, input signals from the

pre-synaptic neurons control the spiking frequency, in the proposed bulk FinFET based

electronic neuron, the spiking frequency is controlled by the input signal |VGS|. The

achieved spiking frequency for the proposed LIF neuron is in the range of MHz which

enables attractive hardware acceleration [153] for neuromorphic computing.

Maximum energy/spike of the integrate block for the proposed LIF neuron is

calculated using the following equation:

Espike = Vspike × Ith × tspike (5.2)

It gives Espike = 3 V × 0.35 µA/µm× 6 ns = 6.3× 10−15 J which is the lowest

as compared to any other nano scale device based integrate block of artificial neurons
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FIGURE 5.17: Spiking frequency (f0) versus input (|VGS |) shows that, for Vin ≤
Vth = 0.6 V , the frequency is zero while for Vin ≥ Vth, f0 increases with input bias.

reported in the literature [117, 119, 120].

5.3.4 Benchmarking

Integrate and reset are the two circuit blocks of a LIF neuron. Integrate block is replaced

by the nano scale devices [119, 120] with an overall improvement in the area of at least

10X compared to CMOS circuit based neurons [108, 110]. The reset block is a circuit

design challenge from an energy point of view. Sub-threshold design and operation can

be one of the ways to improve the reset circuit which has been discussed extensively in

[154].

TABLE 5.3: Comparison of the energy/spike and area of the nano-Scale devices for
the integration function in neurons

References Experiment
/Simulation

Device
Type

Area
(µm2)

Energy/Spike
(Integrator)

Energy/Spike
(Reset circuit)

T. Tuma
et. al.[119] Experiment PCM 0.0132 5× 10−12 J —-

S. Lashkare
et. al.[117] Experiment

PCMO
RRAM 25 4.8× 10−12 J —-

S. Dutta
et. al.[120] Experiment

SOI
MOSFET 0.4 13× 10−12 J 41× 10−12 J

This Work
Device

Simulation
Bulk

FinFET 0.04 6.3× 10−15 J —-
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In the comparison Table 5.3, the proposed bulk FinFET based neuron is compared

with the three other nano-scale device-based neurons namely, phase change memory

(PCM) [119], Pr0.7Ca0.3MnO3 (PCMO) RRAM [117], and PD-SOI MOSFET [120].

In phase change memory-based neuron, the integrate and fire functionality is realized

using chalcogenide-based phase-change memory. The reset circuit is not fabricated

along with the PCM based integrator block but is designed and implemented using off-

the-shelf circuit components as described in the supplimentary information of reference

[119]. In PCMO RRAM-based neuron, the integrate and fire functionality is realized

by changing the resistance (high resistance state low resistance state) of the PCMO

material with the application of proper bias. In this case also the reset operation is

performed through an external circuitry as can be seen in reference [117]. In PD-SOI

MOSFET-based neuron, the integrator functionality is experimentally demonstrated

using a PD-SOI MOSFET. In this case the reset block is not experimentally demonstrated.

To check the reset functionality, a compact model of the PD-SOI MOSFET (derived

from the experimentally measured characteristics) along with a circuit model of a reset

circuit is simulated.

To the best of my knowledge, no single device-based neuron which demonstrates

all the neuronal functionalities (Integration, reset) is reported in the literature. The

reset circuit is always external. In this thesis, integration functionality of a neuron is

demonstrated using a bulk FinFET with a buried n+ layer. In Appendix-B, a possible

reset circuit is shown for the reset operation of the proposed bulk FinFET based neuron.

But there is a scope to design a better reset circuit in terms of area and energy efficiency.

In the comparison Table 5.3, we compare only the energy and area efficiency of the

nano scale devices replacing the leaky integration function of neuron (i.e. RRAM [117],

PCM [119], PD-SOI-MOSFET [120]) with the proposed bulk FinFET based neuron. It

can be clearly seen that, as compared to the other nano scale devices, the proposed

bulk FinFET based integrator is more energy efficient with the lowest energy/spike of

6.3 × 10−15 J which transfers the bottleneck from low energy integrator design to low

energy reset circuit design.

5.4 Conclusion

A highly scalable CMOS compatible n-channel bulk FinFET based ultra-low energy

integrate block of an artificial neuron is proposed and demonstrated by well-calibrated
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TCAD simulations. The proposed device consumes an energy of 6.3 fJ /spike which

is almost three orders of magnitude lower than other nano scale device based LIF

neurons reported. The proposed bulk FinFET based LIF neuron follows the signature

of a biological neuron, i.e., spike frequency increases with the input voltage with a

maximum frequency in the MHz range. Therefore, the proposed bulk FinFET based

LIF neuron can be a potential building block for spiking neural network.



Chapter 6

Summary, Conclusion and Future
Work

6.1 Thesis Summary

This chapter summarizes the important conclusions drawn from our work and lists out

some of the open areas to explore further which could not be covered in the scope of

this thesis.

In Chapter 2, we briefly introduced the hierarchy and classification of memory

in a computer. Our main focus is on dynamic random access memory (DRAM). The

challenges and limitations faced in traditional one transistor one capacitor DRAM are

discussed. Z-RAM is introduced as a possible replacement of conventional DRAM.

The drawbacks of an all-Si Z-RAM cell were discussed. To solve the problem of all-Si

Z-RAM cell, TiO2 source/drain Z-RAM cell is proposed. A brief introduction is given

on neuromorphic computing. We discussed about the limitations of traditional von-

Neumann architecture based computing system. To overcome the limitations of von-

Neumann architecture based computing system, neural network based neuromorphic

computing system is introduced briefly.

Since this thesis is based on the application of floating body effects, Chapter 2

provided a comprehensive overview of the floating body effects (FBE) which are seen

in SOI MOSFETs. Kink effect, parasitic BJT effect and hysteresis effect are the three

types of floating body effects which are seen in a SOI MOSFET and they are discussed

in a greater detail.

81
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In Chapter 3, an n-channel TiO2 source/drain PD-SOI MOSFET based Z-RAM is

introduced as a replacement of conventional DRAM. An improvement in both retention

time and sense margin is shown through well calibrated TCAD simulations.

Using the framework of Chapte 3, in Chapter 4, TCAD simulations for n-channel

TiO2 source/drain FD-SOI based Z-RAM were performed based on the calibrated model

parameters against measured data. Overcoming the limitations of PD-SOI based Z-

RAM, FD-SOI based Z-RAM cell is shown to be more power efficient with a better

sense margin and retention characteristics.

Since neuron is one of the two building blocks of a neural network, it is important

to realise the functionality of a neuron in an electronic system. A bulk FinFET with

buried n+ layer based electronic neuron is proposed and investigated in Chapter 5.

6.2 Conclusion

In conclusion we can say that, two major aspects of the modern computing system

are studied and investigated using well calibrated TCAD simulations. The first one

is dynamic random access memory (DRAM) which is the primary memory of any

computing system and the second one is the electronic neuron, a fundamental building

block of an artificial neural network which drives the concept of neuromorphic computing.

We have realized both the dynamic memory and electronics neuron by utilizing the

MOSFET’s floating body effects.

Overcoming the capacitor scalability problem of conventional DRAM cell, we

have proposed TiO2 source/drain based Z-RAM cell where instead of using physical

capacitor, transistor body is used as a storage node. We have also shown that the

proposed TiO2 source/drain based Z-RAM cell exhibits higher retention time and non-

destructive readability.

On the other hand, to make a potential building block for spiking neural networks,

a highly scalable CMOS compatible n-channel bulk FinFET based ultra-low energy

integrate block of an artificial neuron is proposed and demonstrated. The proposed

device consumes an energy of 6.3 fJ/spike which is almost three orders of magnitude

lower than other nano scale device based LIF neurons reported in the literature. The

proposed bulk FinFET based LIF neuron follows the signature of a biological neuron,
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i.e., spike frequency increases with the input voltage with a maximum frequency in the

MHz range.

In today’s data driven world, realization of Z-RAM cell overcoming the storage

capacitor scaling challenges in a conventional DRAM and realization of electronic

neuron using highly scalable bulk-FinFET will help further in advancing the digital

computation using artificial intelligence.

6.3 Future Work

The proposed n-channel TiO2 source/drain SOI MOSFET based Z-RAM cell is based

on TCAD study. Since there are variability issues for sub-20 nm technology nodes,

variability study can be done on the proposed device. This TCAD study of TiO2 Z-RAM

can be further illustrated and investigated by experimental demonstration with the same

technological parameters as used in simulations. This will lead to more concrete proof

of acceptability of the proposed device as a possible replacement of the conventional

DRAM cell.

In the second part of the thesis, a bulk FinFET based electronic neuron with lowest

energy per spike is proposed and investigated as one of the building blocks of a spiking

neural network which leads the way of neuromorphic computing. Since neuron and

synapse are the two building blocks of a spiking neural network, it is necessary to

realise a synapse along with the neuron. As scope for future work, an artificial electronic

synapse should be realised using bulk FinFET to completely describe a spiking neural

network. Besides that, experimental demonstrations are required for the bulk FinFET

based neuron and synapse.





Appendix A

Codes for Simulations

A.1 Structure Editor code for TiO2 S/D Z-RAM Cell:
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A.2 SDEVICE code for TiO2 S/D Z-RAM Cell:
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A.3 Structure Editor code for bulk FinFET with buried

n+ layer:
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A.4 SDEVICE code for bulk FinFET with buried n+

layer:
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Appendix B

Reset Circuit For Bulk FinFET Based
Neuron

Bulk FinFET together with the reset circuit will act as an electronic LIF neuron. Reset

circuit controls the drain bias. In biology, more the number of signals from the pre-

synaptic neurons, more quickly a spike is generated. Similarly, in the proposed device,

more the number of pre-synaptic signals, I1, I2, . . . IN coming through the synapses

with synaptic weights W1, W2, . . .WN , more will be the input bias (Vin(t)) as shown in

Fig. B.1 and faster will be the spike generation.

Integrate and reset are the two circuit blocks of a LIF neuron. Integrate circuit

block is replaced by the nano scale devices with an overall area improvement of at

least 10X compared to CMOS circuit-based neurons. The reset block is a circuit

design challenge from an energy point of view. Sub-threshold design and operation

is one of the ways to improve the reset circuit which has been discussed extensively

in reference [154]. So, here, we compare only the area and energy efficiency of the

nano-scale devices replacing the leaky integration function of neuron (i.e. PCM, PD-

SOI-MOSFET, RRAM) with the proposed bulk FinFET integrator and it is seen that, the

proposed bulk FinFET integrator is more energy efficient with the lowest energy/spike

of 6.3× 1015 J which transfers the bottleneck from low energy integrator design to low

energy reset circuit design. The main interest of this paper is not to design an efficient

reset circuit but to replace the area and energy inefficient CMOS circuit based integrate

block with a single nano scale device for both area and energy reduction. The purpose

of the reset circuit is to control the drain bias. As soon as the drain current reaches the

threshold, the drain bias is reset to −1.5 V for 8 ns and then 0 V for 500 ns by the reset
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circuit. The width of the drain pulses is determined by the excess charge dynamics of the

proposed device. Even though, the main focus of this paper is to design an energy and

area efficient integrate block with a single nano scale device, for a better understanding

of the proposed neuron we have designed a reset circuit as shown below.

FIGURE B.1: Integrate block (bulk FinFET with n+ buried layer) together with the
reset circuit makes a LIF neuron.

Explanation of the reset circuit: Let’s consider initially, En1 and En2 are “0” and

“0”. So, 3 V goes to the output of the 4 : 1 MUX and fed to VY which is the non-

inverting terminal of the I to V converter. The output of the 4 : 1 MUX is not directly

fed into the drain terminal of the integrate block because in that case, the output current

will be splitting into two components and the functionality of the integrate block may

be lost. As op-amp is a differential amplifier, VY = VX . So, the drain voltage will

be the same as the 4 : 1 MUX output. Drain current or the output current is coming

out from the integrate block and enters into the I to V converter. The output of the

I to V converter is then fed into the input of a voltage comparator to compare with

the threshold voltage. If it is greater than threshold voltage, the output of the voltage

comparator will be “1” or Vdd and if less than threshold voltage, then the output of the

voltage comparator will be “0”. Enable (En) signal of the two 2 : 1 MUX is the same

and are connected to the voltage comparator output. So, when output of the voltage

comparator becomes “1”/“0”, the En also becomes “1”/“0”. As VY = VY = 3 V,

due to positive feedback process, IOUT increases which increases the output voltage of

the I to V converter. After some time (tInt), it crosses the threshold voltage and the

comparator output becomes “1” or Vdd. Hence En becomes “1”. So, “1” comes from
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τ1 delay path and makes En2 = “1”. Now, En1 and En2 are “0” and “1” and −1.5 V

goes to the output of the 4 : 1 MUX and it is fed to the non-inverting terminal (VY ) of

the I to V converter. In this way the drain pulse is generated by the reset circuit.

Better reset circuit can be designed using subthreshold design technique as mentioned

above. The above circuit is shown for a better understanding of the functionality of the

proposed neuron.
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