TV White Space Asssessment in India and its Potential for Rural Broadband Usage

Prof. Animesh Kumar

Electrical Engineering

Indian Institute of Technology Bombay, India

with Sudesh Singhal, Gaurang Naik, Naireeta Kansabanik, and Abhay Karandikar

10-11 Jan 2014: CEP : (Dynamic) Spectrum Management

Two scenarios in contrast

Images from Wikipedia: Mumbai (left); an Indian village (right)

Urban India or metro cities have optional access to broadband

Rural India, even though it contributes 50% to the GDP, has no access to broadband

This leads to or creates digital divide

11Jan2014

The digital-divide: what does it mean?

Hurdles in rural broadband

- **Optical fiber:** expensive deployment costs and low return on investment
- **Cellular:** diminishing ARPU, high licensing fees or entry cost, lower density of rural users or higher infrastructure cost
- Unlicensed WiFi solutions (2.4GHz): poor propagation characteristics and low coverage area (200m-500m)

Is there really no solution?

TV white spaces, a potential antidote

Analog TV channels are in \Diamond sub-GHz band, which has better propagation characteristics than existing unlicensed bands \Diamond Sparse television activity due to single broadcasting entity (Doordarshan)

Licensed but unused, good propagation characteristic, and low

infrastructure cost spectrum available due to primary's inactivity

TV white spaces and broadband: key questions

- ♦ What is the amount of TV white space in India?
- ♦ Is it possible to use TV white space for affordable or rural broadband?
- What technological solutions can facilitate the use of TV white spaces for broadband applications?

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints
 - ♦ The FCC rules
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

Terrestrial TV spectrum allocation in India

- Government's national broadcaster named Doordarshan holds all of the terrestrial TV broadcasting license
- The frequency allocation plan (NFAP) of UHF TV band and onwards is as follows:

Frequency band	Services
470-585	FIXED, MOBILE,
	BROADCASTING
585-698	FIXED, MOBILE,
	BROADCASTING,
	RADIO NAVIGATION, RADIO ASTRONOMY
698-806	FIXED, MOBILE,
	BROADCASTING,
	RADIO ASTRONOMY

TV transmitter plan of Doordarshan

On record, there are 1415 TV transmitters operating in India

- ♦ UHF Band-IV (470-590MHz)
 - Fifteen channels of 8 MHz each
 373 transmitters across all India
- ♦ VHF-I Band (54-68MHz)
 - **Two channels** of 7 MHz each
- ♦ VHF-III Band (174-230MHz)
 - **Eight channels** of 8MHz each

8 transmitters across all India

- 1034 transmitters across all India
- ♦ We focus on the UHF Band-IV, i.e., 470-590MHz spectrum band
- ♦ Use of microphones is very limited in India and will not be considered

Channel K

The 470-590MHz has 15 channels of bandwidth 8MHz each. These channels will be indexed by an integer K. The K^{th} channel starting from 470MHz will be called as the channel K

11Jan2014

The received power calculation method

The channel is the smallest entity for power calculations in TV white space estimation
 The primary transmitter emits a power of P_T on its channel K

For omnidirectional transmit antenna, at a distance r, in channel K, the received power will be less than P_T . In the dB (decibel) scale, the received power is written as $P_T - PL(r)$

The **path-loss** PL(r) depends on the terrain, the transmit antenna height, the receive antenna height, the frequency of operation, and other parameters

11Jan2014

Path-loss calculations: Okumura-Hata model

By the Okumura-Hata model, for omnidirectional transmit antenna, at a distance r, the path-loss is given by an affine function of $\log_{10}r$

 $PL(r) = A + B \log_{10} r$

where

 $A = 69.55 + 26.16 \log_{10} f_{\rm c} - 13.82 \log_{10} h_b - a(h_m)$ $B = 44.9 - 6.55 \log_{10} h_b$

 \diamond The function $a(h_m)$, termed the correction factor, varies depending on terrain (suburban, urban, rural) [Hata'1980]

O Hata model is known to approximate Indian path-loss well [Prasad-Ahmad'1997]

◊ As an alternative, ITU-R propagation models can also be used [ITU-R P.1546-1]

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints [Mishra-Sahai'2009]
 - ♦ The FCC rules
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

The protection viewpoint [Mishra-Sahai'2009]

Primary should be protected: minimum *SINR* at the primary receiver on the edge of

a "protected region" for the licensed user should be Δ (in dB scale)

The radius r_p is found using $P_T - PL(r_p) - N_0 = \Delta + \Psi$

where

 $N_0 =$ the noise power (floor)

 $\Psi \ = \text{fading margin in dB}$

The separation $r_n - r_p$ is found using

 $P_S - PL(r_n - r_p) = \Psi$

where

 P_{S} = the transmit power of secondary

The pollution viewpoint [Mishra-Sahai'2009]

Primary is a (radio) pollutant : maximum interference tolerable by the secondary receiver on the edge of "separation region" shown before should be γ (in dB scale)

primary (channel K) Max interference tolerable by a secondary receiver on edge of separation region is assumed to be γ

$$P_T - PL(r_{\rm pol}) = N_0 + \gamma$$

 \diamond The parameters $\gamma,$ $\Delta,$ and Ψ are unspecified and they can varied in simulation studies for TV white space estimation

♦ The actual TV white space will be the geographical regions where primary is

protected and secondary is free from pollution

 $r_{\rm pol}$

11Jan2014

North-zone data not yet available

- So far, with significant efforts,
 we have been able to obtain the
 data for all zones except North
 in India
- The results will **omit** the North zone for this reason

All these calculations require propagation models and we use existing models

discussed in the Indian context [Prasad-Ahmad'1997, Hata'1980]

TV white space assessment: protection view

 $\Psi =$ fading margin 0.1dB-1dB

11Jan2014

TV white space assessment: pollution view

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints [Mishra-Sahai'2009]
 - ♦ The FCC rules [FCC'Nov2008]
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

FCC rules for white space calculations

The FCC specifies a formula for transmit power using electric field:

 $P(dBm) = E(dBu) - 130.8 + 20 \log_{10} (1230/(f_H + f_L))$

All these calculations require propagation models and we use existing models discussed in the Indian context [Prasad-Ahmad'1997, Hata'1980]

TV white space assessment: FCC rules

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints [Mishra-Sahai'2009]
 - ♦ The FCC rules [FCC'Nov2008]
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

Scope of our TV white space estimation

- ♦ The parameters vary as follows: $\gamma = 5$ dB-15dB, $\Psi = 0.1$ dB-1dB and $E(r_b)$ was fixed at 41dBu for the FCC rule calculations
- The height above average terrain for the secondary is considered to be
 30m
- For the three methods outlined in this section, average number of primary channels available as TV white space (per unit area) is computed
- Similarly, a histogram of minimum number of channels available as TV white space is computed
- We will also examine whether Doordarshan can maintain existing TV coverage with a smaller band than 470-590MHz

Channels available per unit area (out of 15)

Method	Parameters	West	East	South	North- east	India
Pollution Viewpoint	$\gamma = 5 \text{ dB}$	14.0	14.2	14.7	14.8	14.2
	$\gamma = 10 \text{ dB}$	14.7	14.6	14.7	14.9	14.7
	$\gamma = 15 \text{ dB}$	14.8	14.8	14.9	14.9	14.8
Protection viewpoint	$\Psi = 1 \text{ dB}$	14.9	14.8	14.9	14.9	14.9
	$\Psi = 0.1 \text{ dB}$	14.9	14.8	14.9	14.9	14.9
FCC regulations	$E_{rb} = 41 \text{ dBu}$	14.8	14.7	14.6	14.8	14.7

At least 14 (out of 15) channels are available per unit area

11Jan2014

Number of "white" TV channels with area

Method	Parameters	10-channels free	12-channels free	15-channels free
Pollution Viewpoint	$\gamma = 5 \text{ dB}$	100%	100%	37%
	$\gamma = 10 \text{ dB}$	100%	100%	71%
	$\gamma = 15 \text{ dB}$	100%	100%	85%
Protection viewpoint	$\Psi = 1 \text{ dB}$	100%	100%	88%
	$\Psi = 0.1 \text{ dB}$	100%	100%	86%
FCC regulations	$E_{rb} = 41 \text{ dBu}$	100%	100%	73%

12 (out of 15) channels are available as "unused" at any point

11Jan2014

Key observations

- Per unit area, a minimum of 14 out of 15 channels is always available as TV white space!
- At any place, a minimum of **12 out of 15** channels are almost always available as TV white space channel
- ♦ These results hold for various values of $\gamma = 5$ dB-15dB, $\Psi = 0.1$ dB-1dB and $E(r_{\rm b})$ was fixed at 41dBu for the FCC rule calculations

Most of the UHF-Band spectrum at most of the places in India is available as TV white space

Comparisons with international scenario

Country	TV white space available
Germany	48%
UK	58%
Denmark	61%
Switzerland	63%
Japan	41.7%
India	80%

This calculation is pessimistic, since the TV white space availability in other countries also examined the entire TV band and not just the 470-590MHz band

A hypothetical channel allocation algorithm

- Using interference avoidance by spatial reuse of frequencies, an algorithm can be used to find the smallest number of channels needed for existing TV coverage in India
- We find that **typically 3** and in the worst-case **4 channels** are sufficient to provide existing TV coverage spread over 15 UHF channels!

11 out of 15 channels (>70%) can be freed by reassignment of TV channel frequencies in India

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints [Mishra-Sahai'2009]
 - ♦ The FCC rules [FCC'Nov2008]
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

Measurements carried out by our group

- Mumbai
- Pune
- ♦ Ajmer

Spectrum scan in the 470-806MHz band

Figure : Received Signal Strength v/s Frequency

$\label{eq:utilization} Utilization of the \ 470\mathchar`e 470\m$

Figure : Availability of TV White Space

Quantitative Analysis in Mumbai

- Measurements carried out at 42
 locations
- Two channels transmitted by
 Doordarshan (DD) terrestrial TV
 tower (DD-1 and DD-2)
- Channel 1 (182MHz) and Channel
 2 (224MHz) Both in VHF Band
- The bands 470-585MHz, 585-698
 MHz, and 698-806MHz are presently unutilized.

11Jan2014

Quantitative Analysis in Pune

- Measurements carried out at 30 locations
- Two channels (DD-1 and DD 2) being transmitted at
 175MHz and 535MHz
 respectively
- Only one channel used in the 470-585MHz band
- The bands 585-698 MHz and 698-806 MHz are presently unutilized.

Quantitative Analysis in Ajmer

- Measurements carried out around TV tower at 7 locations
- Two channels (DD-1 and DD-2)
 being transmitted at 168MHz
 and 550MHz respectively
- Only one channel in 470 585MHz band
- The bands 585-698MHz and
 698-806MHz are presently
 unutilized.

Utilization of the 470-585MHz band

Figure : Availability of TV White Space

11Jan2014

Utilization of the 470-585MHz band

Figure : Received Signal Strength v/s Frequency

11Jan2014

Organization

- How much TV white space is there in India?
 - The protection/pollution viewpoints [Mishra-Sahai'2009]
 - ♦ The FCC rules [FCC'Nov2008]
 - Our obtained TV white space estimates
 - Some TV-band utilization measurements
- Ongoing study of mesh-network for affordable/rural broadband coverage

Key problem in broadband coverage

- Broadband coverage in rural areas is desirable but it is difficult due to cost and low return on investment
- Recently, Government of India has announced a National optical fiber network (NOFN) to link all sub-urban towns with optical connectivity

It is a challenge to provide
an affordable broadband
to sparsely populated rural
areas due to backhaul
considerations

Animesh Kumar - CEP - 10-11Jan2014

- (Dynamic) Spectrum Management

Middle-mile mesh-network in TV white spaces

Analysis to be done/test-beds to be deployed

- ♦ Throughput analysis with bandwidth for the mesh-network has to be done
- ♦ Interference management has to be figured out. In particular,
 - ♦ Co-channel interference or coexistence, power limits
 - ♦ Adjacent channel coexistence, frequency of operation
 - Spectral mask, out of band performance
- ♦ On-site test-beds to experimentally verify everything mentioned above

Conclusions in brief

- ♦ Lots of TV white space in India in the 470-590MHz band
- While it is in inception, we believe that a suitably designed mesh-network in the TV band will significantly address the lack of rural broadband coverage in India.

Acknowledgments

- ♦ Research supported by the Ford Foundation
- Support from and consultation with Dr. Ashok Chandra