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◊ The knowledge of channel encoding scheme seems essential to recover 

the source or message 

◊ Consider a listener, with access to “noisy” bits or symbols, who wants 

to ascertain the channel code used 
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This model has applications in security, or cognitive radios (where a 

secondary may want to know primary’s message), or in link adaptation in 

some wireless technologies 

Applications of this model 

eavesdropper, secondary,  
link adapter, ...  
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Zooming in to the “right” problem 
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◊ Observe Y1, Y2, …, YN and find out the channel code (map) 

◊ This problem has been explained to be NP-hard [Valembois’01] 

◊ With some extra information on the channel code, this problem will be 

addressed by us 

◊ We will address the problem in a hypothesis testing setup 
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The code-detection problem: assumptions 
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◊ Message words are equally likely, that is, codewords are equally likely  

◊ Block length n is the same for the two codes 

◊ In a large deviation setting, vectors (Y1, Y2, …, YN) of (binary,  

   synchronous) observations are available to detect the channel code 

◊ Noise is IID Bernoulli(p), and indep of the hypothesis and  messages 

code 1 

+ 

Ei 

Yi 

Vi 
U1, i 

code 2 
U2, i 

Wi 

Message words Ui are mapped 

to codewords Vi (or Wi) by two 

different binary linear block 

codes with parameters [n, k1, d1] 

and [n, k2, d2] 



Related work 
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◊ Single “low-weight” parity check equations have been used for: (i) 

convolutional code detection [Moosavi-Larsson’11] and (ii) distinguishing 

noise from codewords [Chabot’07] 

◊ Estimation of channel code from noise-affected bits has been studied 

for various settings [Valembois’01] [Cluzeau’06] [Dingel-Hagenauer’07] 
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Our key contributions 

07/012014 7 Animesh Kumar, EE, IIT Bombay 

◊ We use the likelihood ratio test for this problem and show that 

the Chernoff information, that is the optimal error-probability 

exponent, for the code-detection problem is (strictly) positive if 

the two hypothesis are different 

 

◊ Likelihood computation, though it leads to min. error probability 

test, can be difficult. Banking upon the (presence of) efficient BCJR 

or GDL based decoding, methods to compute the likelihood ratio 

for code-detection problem are detailed 



Outline 
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◊ Introduction 

◊ Chernoff information bound for the code-detection problem 

◊ Algorithms for computing likelihood ratio efficiently for code-

detection 

◊ Concluding remarks and future work 



Likelihood computation 
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◊ The likelihood ratio test will involve the comparison of f (Y, H1) against 

f (Y, H2) where H1 and H2 are the two hypotheses 

◊ The main difference between classical decoding and code-detection is 

that the likelihood depends on the entire codeword constellation 

◊ This likelihood f (Y, H1) is quite challenging 

to compute and is the key stumbling block in 

further analysis 



Chernoff information 
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◊ We have a hypotheses testing problem where two distributions, P and 

Q, corresponding to code 1 and code 2 have to be distinguished where 

◊ Then the optimal exponent of detection error-probability is given by 

the Chernoff information [Cover-Thomas]. That is, 

code 1 code 2 



Lower bound on Chernoff information 
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Chernoff information is difficult to compute since individual terms in P 

and Q are NP-hard to compute. A lower bound on C(P,Q) can be used for 

analysis [Sason’13] 

where dTV(P,Q) is (half of) L1 distance between P and Q 



Likelihood and cosets of the block code 
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◊ For binary linear block codes, the likelihood only depends on which 

coset the vector Y belongs to. This is because 
 

   {wt(Y+vi), vi in Code 1} = {wt(Y+vi+c), c fixed in code 1, vi in code 1} 

◊ That is, the coset-leaders in standard-array used for decoding can be 

used to ascertain likelihood for the entire row 



Bounds on (py – qy) 
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If y is a codeword in code 1 and code 2, then py can be computed and is 

equal to p0. Similarly, if the same y is a codeword in code 2, then qy is q0  

And |py – qy| is given by |p0 – q0| 

 

If y is a codeword in code 1 and not in code 2, then py can be computed 

and is equal to p0. The same y is not a codeword in code 2, then qy is 

bounded using q0 as follows 

[Ancheta’81] [Sullivan’67] 



Main result 
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p0 – q0 p0 – qyH 

 = max{q0 – pyH , pyL – q0 , 0}  = max{pyL – qyH, qyL – pyH , 0} 

Theorem: Assume p0 – q0  0. The dTV(P, Q) and consequently Chernoff 

information has a strictly positive lower-bound for code-detection 

where m is the dimension of code 1 intersection with code 2 

Bounds on |py – qy|for cases where y belongs in code 1 or code 2 or both 



Outline 
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◊ Introduction 

◊ Chernoff information bound for the code-detection problem 

◊ Algorithms for computing likelihood ratio efficiently for code-

detection 

◊ Concluding remarks and future work 



Fast algorithms for likelihood calculation 
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When the two channel codes “code 1” and “code 2” can be 

(efficiently) decoded using (i) the GDL [Aji-McEliece’00] or the (ii) 

BCJR algorithm [Bahl-Cocke-Jelinek-Raviv’74], then the likelihoods  

f (Y, H1) against f (Y, H2) can be found efficiently using some 

intermediate steps in the two algorithms 



Algorithm based on the GDL 
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Using Baye’s rule, it can be shown that 

If code 1 has a junction tree, this can 

be computed efficiently using GDL 

The desired likelihood can be obtained using 



Algorithm based on the BCJR algorithm 
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◊ Let Si be the state random variable at depth i 

◊ The BCJR algorithm calculates Prob(Si = m, Y) in an intermediate step 

during decoding 

◊ By adding Prob(Si = m, Y) over states m, f (Y, H1) can be obtained 



Recap 
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◊ Single “low-weight” parity check equations have been used for: (i) 

convolutional code detection [Moosavi-Larsson’11] and (ii) distinguishing 

noise from codewords [Chabot’07] 
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Simulations for the average error-probability 
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Plot of average error probability versus N for inner-product method 

[Chabot’07],   parity-check method [Moosavi-Larsson’11]  and our method 

for H1: Hamming(15,11) and H2: BCH(15,7) hypotheses 

p = 0.1 



Simulations for the average error-probability 
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More simulations where two hypotheses are H1: Hamming(31,26) and 

H2: BCH(31,16) 

p = 0.1 



Simulations for the Chernoff information 
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Plot of Chernoff information for the inner-product method [Chabot’07],   

parity-check method [Moosavi-Larsson’11] , our lower bound, and 

likelihood ratio method for H1: Hamming(15,11) and H2: BCH(15,7) 



Outline 
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◊ Introduction 

◊ Chernoff information bound for the code-detection problem 

◊ Algorithms for computing likelihood ratio efficiently for code-

detection 

◊ Concluding remarks and future work 



Conclusions 
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◊ The likelihood test’s error-exponent: we showed that the 

Chernoff information for the code-detection problem is strictly 

positive for two hypotheses consisting of binary linear block codes 

 

◊ Likelihood calculation: banking upon the existence of efficient 

GDL or BCJR decoding algorithms, efficient methods to compute 

the likelihood ratio test was shown 



Future work 
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Code-detection problem  

◊ where two hypotheses consist of linear block codes with 

unequal block lengths 

◊ more than two hypotheses 

◊ where codes which are not linear or do not have a block 

structure 

◊ when the two hypotheses consist of LDPC codes (where 

decoding is efficient) 

◊ … 


