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Spatial sampling is everywhere

27 Feb 2015 Animesh Kumar, EE, IIT Bombay

… …… …

Emission monitoring with sensors Sampling along a path with vehicle

Coverage region for TV transmitters Randomly sprayed smart-dust/paint
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Field sampling with an array of (fixed) sensors

27 Feb 2015 Animesh Kumar, EE, IIT Bombay

◊ Remote sensing of a physical (spatial) field using an array of wireless 

sensors

◊ Key issues: aliasing, quantization, noise

◊ Signal structure: smoothness, bandlimitedness, physics based 

evolution 

… … … …
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Field sampling with an array of (fixed) sensors
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◊ We would like to address two-dimensional fields as well

◊ Key issues: multidimensional aliasing, quantization, noise

◊ Signal structure: smooth, bandlimited, physics based
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Spatial sampling using vehicles
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◊ Sampling with moving vehicles can be used as well!

◊ Key issues: nonuniform vehicle speeds, imprecise location, noise 

quantization, temporal variation

◊ Signal structure: bandlimited, smooth
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Spatial sampling with “unknown” location
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◊ Sampling with fixed array of 

randomly deployed sensors:

◊ Key issues: nonuniform

unknown locations, 

quantization, noise, temporal 

variation

◊ Signal structure: bandlimited, 

smooth
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◊ Spatial field cannot be prefiltered due to distributed nature of sampling

◊ Field samples have to be directly acquired (and scalar quantized)

Sampling versus spatial (distributed) sampling
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bits per 
second

+

W(t)

g(x)

lowpass
filter

acquisition
with quantizer

Interpolator

grec (x)
bits per meter

transport+

W(x)

7



27 Feb 2015 Animesh Kumar, EE, IIT Bombay

Acquiring high-precision field snapshots

g(x)

acquisition
with quantizer

Interpolator

grec (x)
bits per meter

transport+

W(x)

◊ Bandlimited or smooth nonbandlimited fields will be considered

◊ A higher sampling rate (than “essential” Nyquist rate) will combat aliasing 

and noise – oversampling

◊ Distortion would decrease with quantizer precision – precision

◊ Sampling location models will include deterministic (and known) locations 

and statistical (and unknown) locations

◊ Transport will not be addressed
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◊ Three part tutorial which deals with

o Sampling with a fixed grid of sensors without measurement noise –

tradeoff between quantization and oversampling for smooth fields

o Sampling with fixed grid of sensors with measurement noise –

tradeoff between oversampling, quantization, and distortion

o Sampling with unknown but statistically distributed sample locations 

– tradeoff between oversampling and distortion

The tutorial roadmap

g(x)

acquisition
with quantizer

Interpolator

grec (x)
bits per meter

transport+

W(x)
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Sampling with a fixed grid of sensors 

without measurement noise –

tradeoff between quantization and 

oversampling
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◊ 1-D real and bounded:  | g(x, t)| < 1 (normalized)

◊ Fixed temporal snapshot, i.e., consider g(x) ≡ g(x, t0) 

◊ Spatially bandlimited: spatial Nyquist period, XNQ = 1

◊ Finite energy in L2 sense (over x)

◊ Bernstein’s inequality: | g(x) | ≤ ωm || g || = 

–1

|G()|

ωm = – 


g(x)

1

Nyquist interval = XNQ= π / ωm = 1

1

0
2 3

x

Deterministic bandlimited field model
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◊ 1-D, real, bounded:  |u(x, t)| < 1 (normalized)

◊ Fixed temporal snapshot, i.e., consider u(x) ≡ u (x, t0)

◊ Decaying spectrum after a certain (fixed) bandwidth, formally ∫ω |ωU(ω)|dω < ∞

◊ Finite energy in L2 sense (over x)

Deterministic non-bandlimited field model

–1

u(x)

X

Pseudo-Nyquist interval = X = (π / ωm)

1

0
2X 3X

x

U()

0 ωm–ωm
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◊ Maximum pointwise reconstruction error:  D = supx | g(x) – grec(x)|

D

-D
x

error(x)

Distortion criteria

This distortion can be extended to other error criteria, e.g., normalized Lp errors
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◊ Nyquist-style sampling for smooth fields

◊ Sampling with single-bit sensors

◊ Bit-conservation principle

◊ Comments on 
◊ sampling of multi-dimensional field, and

◊ increase in aliasing (with time) in physical fields

Part 1: Organization
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◊ Nyquist-style sampling for smooth fields

◊ Sampling with single-bit sensors
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The Shannon-Whittaker-Kotelnikov

interpolation formula

Shannon interpolation formula and stability

For g(x) bandlimited with ωm = π it follows that

The kernel sinc(x) is square integrable

but not absolutely integrable,. This 

leads to instability in reconstruction

27 Feb 2015 16Animesh Kumar, EE, IIT Bombay

g(x)

0 1
x

2

degrees of 

freedom

g(x) = g(i) sinc (x – i)


i

|εi|  ε and ĝ(x) = {g(i)+εi}  do not imply |g(x) – ĝ(x)|  O(ε)


i

sin π(x – i)

π(x – i)



g(x)

0 21
x

g(x) = g(i) sinc (x – i)


i

Quantization error: | g(i) – Qk(g(i))| ≤ 2– k

Distortion: D = supx |g(x) – grec(x)|

Field reconstruction: grec(x) = Qk (g(i)) sinc(x – i)

◊ In practice, the samples g(i) will be 

quantized (say using) k-bit uniform 

scalar quantizer Qk(.)

Nyquist sampling and reconstruction

◊ [Shannon’s theorem] The signal g(x) can 

be reconstructed from samples taken at 

points {iXNQ} where i is an integer

g(x) = g(i) sinc (x – i)


i

is unbounded
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◊ Samples are uniformly spaced slightly 

closer than the Nyquist points (ρ < 1)

Stability: C = supx | φ(x  iρ)| < 

g(x)

0 2ρρ
t

g(x) = g(iρ) φ(x – iρ)


i




i

Quantization error: | g(iρ) – Qk(g(iρ))| ≤ 2– k

Error decay profile: D ≤ C 2– k

Field reconstruction: grec(x) = Qk (g(iρ)) φ(x – iρ)

◊ Samples are quantized using a k-bit 

uniform scalar quantizer Qk(.)

– +δ

1
Φ(ω)

φ(x)   ↔

Bandlimited fields: stable Nyquist sampling
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◊ Samples are uniformly taken, at every 

X = π/W meters (slightly closer for stability)

Stability: C = supx | φX(x  iρX)| < 

u(x)

0 2ρXρX
x

u(x) != u(iρX) φX(x – iρX)


i




i

Quantization error: | u(iρX) – Qk(u(iρX))| ≤ 2– k

Distortion profile is more involved due to aliasing effects!

Signal reconstruction: urec(x) = Qk (u(iρX)) φX(x – iρX)

◊ k-bit uniform scalar quantizer Qk(.)

- ωm ωm(1+δ/π)

1
ΦX(ω)

φX(x)   ↔

Nonbandlimited fields: pseudo-Nyquist (PN) sampling
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PN sampling distortion

Proposition: For non-bandlimited signals u(x), in the PN sampling setup it 

can be shown that [Kumar, Ishwar, Ramchandran’2010]

|u(x) – urec(x)| ≤  A 2–k + B ∫>ωm |U()| d

aliasing partquantization part

Insights and interpretations:

◊ Under the signal model, the aliasing term ∫>ωm |U()| d decreases to zero as 

W increases. Recall that X = π /ωm

◊ As k increases, aliasing part dominates. As ωm increases, quantization dominates

◊ The best strategy is to scale (ωm, k) together to infinity for sending distortion to zero

27 Feb 2015 Animesh Kumar, EE, IIT Bombay 20



Bit-rate: k bits/Nyquist-period or k

bits/Pseudo-Nyquist period

Distortion: D = supx | g(x) – grec(x)| or

D = supx | u(x) – urec(x)|

Nyquist-style sampling distortions

21Animesh Kumar, EE, IIT Bombay

D = C 2–ρR

D

R Bit-budget

d
is

to
rt
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D = C1 2–α√R

D

R Bit-budget

d
is

to
rt
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n

For non-bandlimited fields:

The distortion depends on spectral 

decay. For example, if |U()| < c1

exp(–a|ω|), then D < C1 2–α√R

For bandlimited fields:

D = C 2–k = C 2– ρR 

|u(x) – urec(x)| ≤  A 2–k + B ∫>ωm |U()| d

27 Feb 2015



Comments on the Nyquist-style distortions

Implications:

◊ To decrease the distortion R and hence k must be increased, and expensive and 

power draining quantizers will be required

◊ Optimality: The exponential distortion-rate for bandlimited fields is optimal (in an 

order sense) [Daubechies et al.’2006]

◊ Can these (order) optimal distortion-rate tradeoffs be obtained with a sampling 

method tailored towards low(est) precision quantizers?
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◊ Nyquist-style sampling for smooth fields

◊ Sampling with single-bit sensors

◊ Bit-conservation principle

◊ Comments on 
◊ sampling of multi-dimensional field, and

◊ increase in aliasing (with time) in physical fields

Part 1: Organization
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g(x)
1

–1

ρ 2ρ 3ρ
0

◊ A known dither field forces a zero-crossing in 

every (Pseudo) Nyquist interval

◊ 2k one-bit quantizers spaced  = ρ/2k apart   

=> k-bit spatial resolution 

◊ k bits per Nyquist interval are required to index 

the location of the first zero-crossing

◊ By design, the slope of dither field is bounded

◊ Recall that g(x) is finite because field is 

bandlimited

◊ Similar technique works for non-bandlimited 

fields with ρ scaled to ρX

1-bit dithered sampling [Cvetkovic & Daubechies’00]
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–1

0

d(x)1

ρ 2ρ 3ρ

zero-crossing

g(x)+d(x)

0

ρ

2ρ

3ρ
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Sample spacing:  = ρ/2k

Bounded slope of the smooth field and the dither imply that 

if gdith, est(x0) = – d(x0), then for bandlimited fields

g(x)+d(x) 1-bit A/D, 2k samples/ρ

xρ0
zero crossings

x0

1-bit dithered sampling: sample accuracy

| g(x0) – gdith, est(x0)|  ≤ || g(x) + d(x)||  /2

=  (( + )ρ/2) 2– k
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If | g(xi) + d(xi)| < (( + )ρ/2) 2–k and

the distortion decay is: D ≤ C′ 2–k

gdith, rec(x) =  d(xi) ψi(x – xi), then 


i

1-bit dithered sampling distortion: bandlimited fields

Stability: C′ = supx |ψi(x – xi)| < 


i

g(x)

0 2ρρ
t

x1x0 x2

g(x) = g(xi ) ψi(x – xi)


i

[Cvetkovic & Daubechies’00]
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Corresponding result for nonbandlimited fields
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Proposition: For non-bandlimited signals u(x), in the 1-bit dithered 

sampling setup it can be shown that [Kumar, Ishwar, Ramchandran’2010]

|u(x) – udith,rec(x)| ≤  A 2–k + B ∫>ωm |U()| d + B' 2–k/ωm

aliasing partquantization part negligible term

Example: (exponentially decaying spectrum) The distortion depends on spectral 

decay. For example, if |U()| < c1 exp(–a|ω|), then D < C2 2–α√R



g(x) g(x)+d(x)

k-bit A/D, 1 sample per Nyquist 1-bit A/D,  2k samples per Nyquist

k-bit Nyquist sampling 1-bit dithered oversampling

Two extreme scenarios

Question: Can we trade-off between the number of samples/Nyquist and the 

quantizer-precision for a given (R, D) pair?

28Animesh Kumar, EE, IIT Bombay27 Feb 2015

Similar results are observed for smooth non-bandlimited fields



◊ Nyquist-style sampling for smooth fields

◊ Sampling with single-bit sensors

◊ Bit-conservation principle

◊ Comments on 
◊ sampling of multi-dimensional field, and

◊ increase in aliasing (with time) in physical fields

Part 1: Organization
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◊ 1 level

◊ Smooth dither: d(x)

◊ gd (x) = g(x) + d(x)

◊ zero crossing in (0, ρ)

◊ time-instant of crossing

◊ 2b–1 levels

◊ Smooth dither: db(x)

◊ gd(x) = g(x) + db(x)

◊ level crossing in (0, ρ/2(b – 1))

◊ (location, level)  of crossing

Sampling

g(x)

+

db(nτ)

Level
crossing
locator

gd(nτ) (location,  level)g(nτ)

τ = ρ 2– k

b bits(k–b+1) bits

Same distortion-rate characteristics as in the 1-bit dithered sampling case

b-bit dithered oversampling [Kumar-Ishwar-Ramchandran’03]
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Nyquist sampling exhausts the bit 
budget in recording amplitude event

1-bit dithered sampling exhausts the 
bit budget in recording spatial event

b-bit dithered sampling is 
a tradeoff between these 

two extremes

Interpretation

31Animesh Kumar, EE, IIT Bombay27 Feb 2015



Bit-conservation principle [Kumar-Ishwar-Ramchandran’03]

``Conservation of bits’’ principle: Let k be the number of bits available per Nyquist 

interval. For each 1 ≤ b < k there exists a sampling scheme with 2k-b+1, b-bit 

samples per Nyquist-interval that achieves a distortion of the order of O(2–k)

Note:

D  ~ O(1 / poly(RNyquist)) for 1-bit - conversion versus

D  ~ O(1 / exp(RNyquist)) for Nyquist sampling and b-bit dithered sampling

(1, k)

0

quantizer precision

lo
g 

(s
am

p
le
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en

si
ty

)

(2, k–1)

(k–2, 3)

(k–1, 2)

(k, 0)
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For non-bandlimited fields, 

since our results are not known 

to be optimal, it results in a 

oversampling/quantization 

trade-off law



◊ Nyquist-style sampling for smooth fields

◊ Sampling with single-bit sensors

◊ Bit-conservation principle

◊ Comments on 
◊ sampling of multi-dimensional field, and

◊ increase in aliasing (with time) in physical fields

Part 1: Organization
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Two-dimensional field model

27 Feb 2015 Animesh Kumar, EE, IIT Bombay 34

◊ 2-D, real, bounded:  |u(x, s)| < 1 (normalized)

◊ Fixed temporal snapshot, i.e., consider u(x, s) ≡ u (x, s, t0)

◊ Decaying spectrum after a certain (fixed) bandwidth, formally ∫ω |ωU(ω,ν)|dω < ∞

◊ Finite energy in L2 sense (over x, s)
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What about two-dimensional fields?

27 Feb 2015 Animesh Kumar, EE, IIT Bombay

Main Result: For non-bandlimited fields u(x, s)  u(x, s, t0), with k information-bits 

in every PN interval (rectangle), it can be shown that there is a reconstruction 

urec(x, s) [Athawale-Kumar’2012]

|u(x, s) – urec(x, s)| ≤  A 2–k + B ∫>ωm or ν>νm |U(,ν)| d dν

aliasing partquantization part

This result requires that field is bounded and one sensor with k-bits/sample or 2k

sensors with 1-bit/sample are available
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Acquisition of evolving physical fields
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◊ Many spatial phenomena result in a smooth 

field due to underlying physical laws 

(temperature, humidity, pollution)

◊ A Nyquist-style sampling approach is natural 

for such field’s acquisition

At any time t0, recall that sampling with aliasing results in 

|u(x, t0) – urec(x, t0)| ≤  A 2–k + B ∫>m |U(, t0)| d

Will this aliasing error term increase with time when a physical field evolves 

according to a partial differential equation based spatio-temporal law?

36



Constant coefficient PDE based evolution
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Our work addresses constant coefficient partial differential equation based 

evolution of physical field u(x, t), with enough initial conditions:

The spatial Fourier spectrum of u(x, t) is obtained using transform domain

At this point, it becomes a pole-analysis (RHP) problem as a function of frequency 

and can be solved using Agashe’s algorithm [Sharma-Kumar’2015]

37

a2 Utt(ω, t) + a1 Ut(ω, t) + (a0 – jb1ω + b2ω
2 )U(ω, t)  = 0

U(ω, 0) = U0(ω);    Ut(ω, 0) = U1(ω); 

a2 utt(x, t) + a1 ut(x, t) + a0u(x, t)  = b1 ux(x, t) + b2 uxx(x, t);    

u(x, 0) = u0(x);    ut(x, 0) = u1(x); 

For the second order PDE above, assuming  a2= 1 without loss of generality

a1  > 0, a0 > 0, b2  > (b1
2/a1

2)



◊ Target distortion = D

◊ 1-bit sample density =  O ( 1/D )

◊ Bit-rate per Nyquist = O ( |log D|)

[Ishwar, Kumar, and Ramchandran’11]: For bounded bandlimited signals (and stationary 

bandlimited process in the almost sure sense),

Summary of results

[Kumar, Ishwar, and Ramchandran’10]: For bounded smooth non-bandlimited signals 

distortion-rate upper bounds can be computed, e.g., for signals with exponentially 

decaying spectra,

◊ Target distortion =  D

◊ 1-bit sample density   = O(|log D|/D) (per unit time)

◊ Bit-rate per unit time = O ( |log D|2)
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Summary of results

39Animesh Kumar, EE, IIT Bombay27 Feb 2015

[Athawale and Kumar’2012] For bounded two dimensional smooth fields, upper 

bounds on distortion were computed for Nyquist-style sampling and single-

bit sensor assisted sampling

[Sharma and Kumar’2015] Evolution of aliasing-error term in sampling of non-

bandlimited fields was examined. A procedure, using techniques from control theory, 

was established to determine increase in the aliasing error term with time for linear 

constant coefficient PDEs

For the second order PDE above, assuming  a2= 1 without loss of generality

a1  > 0, a0 > 0, b2  > (b1
2/a1

2)
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Sampling with fixed grid of sensors 

with measurement noise – tradeoff 

between oversampling and 

distortion (precision-indifference)
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Sampling bandlimited field in Gaussian noise
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Consider an array of sensors sampling a 

bandlimited field in additive and 

independent Gaussian (measurement) 

noise. The noise variance is finite

g(x)
W(x)

S5S4S3S2S1 S5 S5 S5

+

W(x)

g(x)
1(y ≥ 0)

M(n)



Y(n)

In particular, acquisition with full precision samples and acquisition with single-bit 

samples will be compared for maximum (over x) mean-squared error

+

W(x)

g(x)



Y(n)
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Theoretical abstraction of the problems

These sampling problems can be abstracted into the following

g(x) + W(x) is a field to be sampled through precision-limited or 

single-bit quantizers (comparators)

We will assume that g(x) is bandlimited in a finite bandwidth and W(x)

is an additive independent Gaussian noise process

+

W(x)

g(x) 1(y ≥ 0)

M(n)



Y(n)
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Part 2: Organization
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◊ Introduction to the problem

◊ Field/signal model 

◊ Insights into main result using degrees of freedom 

◊ Analysis of proposed single-bit quantization scheme

◊ Extensions and future work
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◊ Analysis of proposed single-bit quantization scheme
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The Shannon-Whittaker-Kotelnikov

interpolation formula

Shannon interpolation formula and stability

For g(x) bandlimited with ωm = π it follows that

The kernel sinc(x) is square integrable

but not absolutely integrable,. This 

leads to instability in reconstruction
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g(x)

0 1
x

2

degrees of 

freedom

g(x) = g(i) sinc (x – i)


i

| εi|  ε and ĝ(x) = {g(i)+εi}  do not imply |g(x) – ĝ(x)|  O(ε)


i

sin π(x – i)

π(x – i)



Zakai-sense bandlimited signal model

BL = {g(x): |g(x)| ≤ 1 and g(x)(x) = g(x), for all t real}

A subset of Zakai class of bandlimited signals is our signal model

Define (x) as follows for  > 1 

and a = ( –1)/2

The kernel (x) is square and absolutely integrable, which aids in worst-case 

or pointwise error analysis

ω

π π

1

–π–π

()
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–1

|G()|

ωm = – 


g(x)

1

Nyquist interval = XNQ= π / ωm = 1

1

0
2 3

x

L2(R) bandlimited  Zakai bandlimited

g(x)(x) = FT– 1[G()()] = FT– 1[G()] = g(x), for all x real

Then g(x) belongs to Zakai class of bandlimited signals since
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◊ 1-D real, continuous, and |g(x)| < 1

◊ Nyquist period, XNQ = 1

◊ Finite energy in L2 sense ω

π π

1

–π–π

()



◊ 1-D, real valued, wide-sense stationary signals with amplitude sample 

paths bounded by 1. 

◊ Autocorrelation function is finite-energy bandlimited with TNQ = 1

Y(x)

1

Nyquist interval = XNQ = π / ωm

1

0

–1

SY ()

π–π2 3
x

Sample path

Power spectrum

Stationary bandlimited  Zakai bandlimited

◊ See [Zakai’65] and [Masry’76] ,

Y(x) = Y(x)(x),

almost surely for WSS bandlimited Y(x)
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Properties of Zakai sense bandlimited signals

◊ Any result that applies to bounded-amplitude Zakai sense bandlimited

signals will also apply to bounded-amplitude finite energy bandlimited

signals as well as bounded stationary bandlimited signals

◊ Since (x) is smooth and absolutely integrable, g(x) = g(x)(x) can be 

used to establish smoothness of g(x)

◊ Zakai sense bandlimited signals admit a sampling theorem with a stability 

factor  < 1. We have
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Noise model and mean-squared distortion 

Distortion considered for statistical signals is maximum mean-squared error

The noise W(x) is assumed to be an independent Gaussian process. That is, 

W(x1), W(x2), …, W(xn) are independent and identically distributed N(0, 2)

For example, W(x1), W(x2), W(x3) are 

independent for any x1, x2, x3

W(x2)

W(x1)

W(x3)
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◊ Introduction to the problem

◊ Field/signal model 

◊ Insights into main result using degrees of freedom 

◊ Analysis of proposed single-bit quantization scheme

◊ Extensions and future work

Part 2: Organization

27 Feb 2015 51Animesh Kumar, EE, IIT Bombay



Estimation of a constant from one reading

There will be a mean-squared error  ≥ 2 regardless of the procedure 

adopted (see Cramer-Rao lower bound)

Consider the problem of estimating a bounded constant (one degree of 

freedom) in one reading with additive Gaussian noise

c +

W1

Y1
That is estimate c from  Y1 = c + W1

Oversampling is needed to reduce the mean-squared error
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Estimation of a constant with oversampling

c

+

+

+

W1

W2

WN

…

Y1

Y2

YN
◊ It is known that the best mean-squared 

error estimate is the avg of Y1, Y2, …, YN

◊ And mean-squared error between  (Y1 + … 

YN)/N and c is O(1/N)

◊ Now consider the problem of estimating a 

bounded constant (one degree of freedom)   

in additive independent (i.i.d.) Gaussian 

noise

Y1 = c + W1, …, YN = c + WN

Unquantized samples, oversampling by N, and mean-squared error is O(1/N)
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Estimation and quantization (nonlinearity)

◊ These variables are i.i.d. 

Bernoulli(F(c)), where F(x) is the 

cumulative distribution function of W

◊ It is known that the average of M1, M2, 

…, MN converges with variance

O(1/N) to F(c)

Now consider the same problem in the presence of single-bit quantization

M1 = 1(c + W1 ≥ 0), M2 = 1(c + W2 ≥ 0), 

…, MN = 1(c + WN ≥ 0)
+

+

+

W1

W2

WN

…

Y1

Y2

YN

1(y ≥ 0)

1(y ≥ 0)

1(y ≥ 0)

…

M1

M2

MN

c

Quantized samples, oversampling by N, and mean-squared error in F(c) is O(1/N)
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The delta-method
F(m)

m

bounded interval in 
which c belongs

0– 1 1c

An estimate for c is desired, but an 

estimate for F(c) is present with small 

variance of O(1/N)

O(1/N) variance 
around F(c)

F –1(m)

m0

– 1

1

c

F(c)If F–1(m) has a finite slope, then 

F–1[(M1 + … + MN)/N] converges to 

F–1[F(c)] = c with a variance of O(1/N)

Thus “precision indifference” holds while estimating one degree of freedom 
in Gaussian noise
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Noisy samples and bandlimited signals

◊ Samples are uniformly spaced slightly 

closer than the Nyquist points ( > 1)

◊ Thus, there is one degree of freedom 

every Nyquist interval in g(x)

g(x)

0 1/ 
x

◊ If we oversample g(x) + W(x) by a factor of N, there are N noisy reading for 

each degree of freedom on an average

◊ Thus we expect optimal distortion to be O(1/N) with perfect samples!

2/
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BL = {g(x): |g(x)| ≤ 1 and g(x)(x) = g(x), for all x real}

The Zakai class of bandlimited signals will be the signal model

The results will apply to finite energy bandlimited signals as well as stationary 

bandlimited signals

Key result that will be shown next

A distortion of O(1/N) is achievable with single-bit quantized samples!

This improves the previously known bound of O(1/N2/3) [Masry 1981]

+

W(x)

g(x)

 = 1/(N)
Y(n)

+

W(x)

g(x) 1(y ≥ 0)

M(n)

 = 1/(N)

Y(n)
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Related work

◊ [Masry’1981] Single-bit quantization of smooth signals, with additive noise 

as a dither. His analysis results in an mean-squared bound of O(1/N2/3)

◊ [Wang-Ishwar’2009] and [Masry-Ishwar’2009] Acquisition of a finite-support 

field in bounded noise. Mean-squared error bounds were established

27 Feb 2015 58Animesh Kumar, EE, IIT Bombay



◊ Introduction to the problem

◊ Field/signal model 

◊ Insights into main result using degrees of freedom 

◊ Analysis of proposed single-bit quantization scheme

◊ Extensions and future work

Part 2: Organization
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Interpolation of quantized samples

+

W(x)

g(x) 1(y ≥ 0)

M(n)

 = 1/(N)

Y(n)

HN (x) =  (M(n) – ½)(x – n)


n

Define an interpolation from the quantized single-bit samples M(n)

Note that E[M(x)]  = F(g(x))

 (M(n) – ½)(x – n)


n

 (F(g(n)) – ½)(x – n)


n

(F(g(x)) – ½)(x)

LLN
Smooth-

ness
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Interpolation of quantized samples

+

W(x)

g(x) 1(y ≥ 0)

M(n)

 = 1/(N)

Y(n)

HN (x) =  (M(n) – ½)(x – n)


n

Remember that
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Proposition: Let l(x) = (F(g(x)) – ½) and HN(x) be as defined above. Then,

where C2 does not depend on g(x)



Invertibility of the limit

l(x)

g(x)(x) = g(x)
l(x)(x)

BL

For the set BL the signal l(x)(x) is invertible and g(x) can be obtained 

uniquely from it (in a pointwise or L sense). The proof follows using 

Banach’s contraction theorem

L2(R) version of this problem has been considered by Landau and 

Miranker’1961. It cannot be used directly since statistical noise is not in L2
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Banach’s contraction theorem

Ingredients: Banach’s contraction theorem needs a closed set P, a map T, a 

distance metric dist(p1, p2) and contraction for any p1(x), p2(x) in P

dist(T[p1], T[p2]) ≤  dist(p1, p2) with 0 <  < 1

Result: Then T[p(x)] = p(x) has a unique solution p*(x) in P.

P P

T[p(x)]

p1(x)

p2(x)

T[p1(x)]

T[p2(x)]

P

T[p(x)]

p*(x)

p1*(x)

P T[p*(x)]

T[p1*(x)]
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Banach’s contraction theorem (contd.)

Fact:  pi(x) = T[pi-1(x)] sets up a recursive procedure to approach p*(x)

And p*(x) = p0(x) + [p1(x) – p0(x)] + [p2(x) – p1(x)] + [p3(x) – p2(x)] + …

= p0(x) + [p1(x) – p0(x)] + T[p1(x) – p0(x)] + T2[p1(x) – p0(x)] + …

P P

T[p(x)]

p1(x)

p*(x)

T[p1(x)]

p*(x)
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Bandlimited space and projection

Recall, for g(x) bandlimited with ωm = π it is known that

The kernel sinc(x) := sin(πx)/ πx is square integrable and its shifts span the 

set of square integrable bandlimited signals
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For any square integrable signal y(x)

This convolution is a projection, in the squared error norm, on the space of 

signals bandlimited to ωm  = π

g(x) = g(l)


i

sin π(x – i)

π(x – i)



Landau and Miranker’s contraction formula

Consider L2-BL = {g(x): G(ω) with support on [–π, π]}

The technique works since L2-BL is a closed subset and there is a value of 

for which the recursion formula is a contraction (Banach’s contraction 

mapping theorem)

For this class of signal, the following fixed-point and recursion formula leads 

to g(x) from h(x) = [F(g(x)) – ½]  sinc(x)

Recursion formula 
(Picard iteration)

gi+1(x) =  h(x) + (gi(x) –  li(x))sinc(x)

g(x) =  h(x) + (g(x) –  l(x))sinc(x) Fixed-point equation

Landau & Miranker [1961]  
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Landau and Miranker’s recursion in pictures

g(x)

l(x)

h(x) = l(x)sinc(x)

g0(x)
l0(x)

g1(x)

gi(x)

g2(x)
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g1(x) =  h(x) + (g0(x) –  l0(x))sinc(x)

g0(x) =  h(x)

g2(x) =  h(x) + (g1(x) –  l1(x))sinc(x)



Ingredients of contraction for our problem

Define Clip[c] = sgn(c) if |c| > 1 and Clip[c] = c, otherwise

The distance metric is the maximum pointwise difference (L error)

It turns out that there is a value of  such that T is a contraction on BLbdd

So g(x) can be obtained from l(x) by using T and recursion on BLbdd

T[g(x)] = Clip[ l(x)(x) + [g(x) –  l(x)](x)](x)

Let BLbdd be the set defined as

BLbdd = {p(x): |p(x)| ≤ Cϕ and p(x)[ρ(x/ρ)] = p(x), for all t real}

where ρ(x/ρ) has slightly larger bandwidth than (x)

gi+1(x) = Clip[ l(x)(x) + [gi(x) –  li(x)](x)](x)

Set g0(x) = 0 and 
Recursion 
formula

Fixed-point 
equation
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Final step of the proof

T[Gi+1(x)] = Clip{ HN(x)(x) + [Gi(x) –  (F(Gi(x)) – 1/2)(x) ]}(x)

But HN(x) an approximation of l(x) = F(g(x)) – ½) is available! However, 

contraction is stable to perturbations

The modified recursive map is

Theorem: Let G0(x) =  0. Let Ĝ1-bit(x) be the limit of Gi(x). Then, the above 

recursion results in

which establishes the precision-indifference principle for bandlimited signals 

in additive independent Gaussian noise
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Picture for the final step of proof

HN(x) an approximation of l(x) = F(g(x)) – ½) is available. Contraction is 

stable to perturbations

G1(x) =  HN(x)

g1(x) =  h(x)

G2(x) = T[G1(x)]

g2(x) = T[g1(x)]

dist1 dist2

By contraction property, … dist3 ≤  dist2 ≤ 2 dist1

Thus, by triangle inequality, the maximum error can be shown to be sum of 

all disti’s, or dist1/(1-)
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◊ Introduction to the problem

◊ Field/signal model 

◊ Insights into main result using degrees of freedom 

◊ Analysis of proposed single-bit quantization scheme

◊ Extensions and future work

Part 2: Organization
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Precision indifference for polynomial fields

27 Feb 2015 Animesh Kumar, EE, IIT Bombay

In review: sampling of polynomial signals on a finite support [Bhatt-Kumar’ 

(under review)]

72

Main Result: There exists an estimate V1-bit(x) for the polynomial field v(x)

such that

which establishes the precision-indifference principle for polynomial fields 

in additive independent Gaussian noise

Field model: Consider the class of bounded polynomials with support on [-

1, 1] and with a finite maximum degree. The field is observed with single-

bit sensors having additive independent Gaussian noise in measurement



Summary

◊ Optimal distortion is expected to be 

= O(1/N)

◊ Distortion achievable with single-bit quantized readings 

=  O(1/N)

For bounded-amplitude bandlimited fields sampled in the presence of 

(additive) independent Gaussian process with oversampling N and mean-

squared distortion
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Future work

◊ Our estimate is not minimum risk. Fast algorithms for finding Maximum 

likelihood estimates, which will also be accurate up to O(1/N), will be 

useful

◊ Extension of these results to more classes of fields (FRI, finite-support, 

orthogonal spaces, non-bandlimited fields)
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Sampling with unknown but 

statistically distributed sample 

locations – tradeoff between 

oversampling and distortion

75



Spatial sampling with “unknown” location

27 Feb 2015 Animesh Kumar, EE, IIT Bombay

◊ Sampling with fixed array of 

randomly deployed sensors:

◊ Key issues: nonuniform

unknown locations, 

quantization, noise, temporal 

variation

◊ Signal structure: bandlimited, 

smooth

76



Part 3: Organization

◊ Sampling model, field model, and distortion

◊ Field estimation without any knowledge of sampling location

◊ Field estimation when order of samples is known

◊ Field estimation with order of samples known in the presence 
of measurement noise

◊ Future work
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◊ Field estimation with order of samples known in the presence 
of measurement noise
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Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a 

region, we consider random deployment of sensor for sampling the field

Sampling model

g(x)

x

0 X

sensors

– – –

– – –

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution 

is known
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Consider the acquisition problem, where a smooth field in a finite interval has to 

be sampled or estimated

Example: acquisition of spatial fields with sensors

Spatial acquisition problem of interest

g(x)

x

0 X
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Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a 

region, we consider random deployment of sensor for sampling the field

Sampling model

g(x)

x

0 X

sensors

– – –

– – –

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution 

is known
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Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a 

region, we consider random deployment of sensor for sampling the field

Sampling model

g(x)

t

0 T

sensors

– – –

– – –

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution 

is known
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Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a 

region, we consider random deployment of sensor for sampling the field

Sampling model

g(x)

x

0 X

sensors

– – –

– – –

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution 

is known
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Field model with/without measurement noise

g(x)

x

0 X

sensors

– – –

– – –

For the same model on random deployment of sensors for sampling the field with 

unknown sensor locations

◊ When the sensor measurements are not affected by noise

◊ When the sensor measurements are affected by additive noise with 

finite variance

8427 Feb 2015 Animesh Kumar, EE, IIT Bombay



Field and sensor-locations models

g(x)

x

0 X

sensors

Sensor locations are unknown but their statistical distribution is known. For this 

work, U1
n = (U1, U2, …, Un) are i.i.d. Unif[0,X]

U3 U4 U2U1
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– – –

– – –

We assume that a periodic extension of the field g(x) is bandlimited, that is, g(x) is 

given by a finite number of Fourier series coefficients, (WLOG)  |g(x)| ≤ 1, and X = 1



Observations made and distortion criterion

g(x)

x

0 1

sensors

GT = (g(U1), g(U2), …, g(Un)) is collected without the knowledge of (U1, U2, …, 

Un)

U3 U4 U2U1

– – –

– – –

We wish to estimate g(x) and measure the performance of estimate against the 

average mean-squared error, i.e., if Ĝ(x) is the estimate then
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Main results

◊ A bandlimited field cannot be uniquely determined with (perfect) samples obtained

at statistically distributed locations, even if the number of samples is infinite

◊ If the order (left to right) of sample locations is known, a consistent estimate Ĝ(x)

for the field of interest can be obtained

o Distortion and weak convergence results are established for this estimate

Ĝ(x)

o Distortion results are also established for an estimate of g(x) in the case when

field is affected by additive independent noise with finite variance
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◊ Recovery of (narrowband) discrete-time bandlimited signals from samples taken at

unknown locations [Marziliano and Vetterli’2000]

◊ Recovery of a bandlimited signal from a finite number of ordered nonuniform

samples at unknown sampling locations [Browning’2007].

◊ Estimation of periodic bandlimited signals in the presence of random sampling

location under two models [Nordio, Chiasserini, and Viterbo’2008]

• Reconstruction of bandlimited signal affected by noise at random but known

locations

• Estimation of bandlimited signal from noisy samples on a location set obtained

by random perturbation of equi-spaced deterministic grid

Related work
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Part 3: Organization

◊ Sampling model, field model, and distortion

◊ Field estimation without any knowledge of sampling location

◊ Field estimation when order of samples is known

◊ Field estimation with order of samples known in the presence 
of measurement noise

◊ Future work
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It is impossible to infer g(x) from g(U1
)

g(x)

x

0 1

sensors

U3 U4 U2U1

– – –

– – –

Effectively, we are just collecting the empirical distribution or histogram of g(U1),

g(U2), …, g(Un) and, in the limit of large n, the task is to estimate g(x) from the

distribution of g(U)
1

g(U3)g(U1)g(U4) g(U2)

¼

½
¾

0

θ
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It is impossible to infer g(x) from g(U1
)

g(x)

x

0 1

sensors

U3 U4 U2U1

– – –

– – –

Consider the statistic

◊ Then Fg,n(θ), x in set of reals and g(U1), g(U2), …, g(Un) are statistically

equivalent

◊ By the Glivenko Cantelli theorem, Fg,n(θ) converges almost surely to

Prob(g(U) ≤ θ) for each θ in set of real numbers [van der Vaart’1998]
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g(x)

x

0 1

It is impossible to infer g(x) from U1


So what does Prob(g(U) ≤ θ), for x in set of real numbers, looks like?

θ

◊ Prob(g(U) ≤ θ) for each θ is the probability of U belonging in the level-set.

Thus, it is simply the length (measure) of level-set

◊ We will now illustrate that two different fields g1(x) ≠ g2(x) can still lead to

Prob(g1(U) ≤ θ) = Prob(g2(U) ≤ θ)

Level-Set: {u: g(u) ≤ θ}

9227 Feb 2015 Animesh Kumar, EE, IIT Bombay



Graphical proof of first result

◊ The length (measure) of the level-sets is the same in the two cases for every θ

◊ As a recap, we showed that the Glivenko Cantelli theorem’s limit, obtained from

a statistical equivalent of observed samples, is the same for two different

signals. Thus, the observed samples alone do not lead to a unique

reconstruction of the field

g1(x)

x

0 1

θ

Level-Set: {u: g(u) ≤ θ}

g2(x) = g1(–x)

x

0 1

θ

Level-Set: {u: g(u) ≤ θ}

g1(x) ≠ g2(x) does not imply Prob(g1(U) ≤ θ)  = Prob(g2(U) ≤ θ)
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Part 3: Organization

◊ Sampling model, field model, and distortion

◊ Field estimation without any knowledge of sampling location

◊ Field estimation when order of samples is known

◊ Field estimation with order of samples known in the presence 
of measurement noise

◊ Future work
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Working with ordered samples

◊ If the order (left to right) of sample locations is known, a consistent estimate Ĝ(x)

for the field of interest can be obtained

◊ Recall that

◊ Thus, due to bandlimitedness, there are (2b+1) parameters to be learned or

estimated

g(x)

x

0 1

sensors

U1:n Un:nUr:n

– – –

– – –
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Using field samples to get the Fourier series

From (2b+1) equi-spaced samples of the field, the (2b+1) Fourier series coefficients

(and hence the field) can be obtained as follows

where sb = 1/(2b+1) and b = exp(j2ksb) = exp(j2k/(2b+1)). In matrix notation and

upon inversion

g(x)

x

0 1

– – –

sb 2bsb
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Approximation of the field samples

In the absence of field values g(0), g(sb), …, g(2bsb), we use G = (g(U1:n), g(Unsb:n),

…, g(U2bsbn:n)), to define the Fourier series estimate and field estimate as follows

g(x)

x

0 1

sensors

U1:n Un:nUnq:n

– – –

– – –

x = q

It is known that Unq:n converges to p in many ways (in L2, in almost-sure sense, and in

weak-law) [David and Nagaraja’2003]

9727 Feb 2015 Animesh Kumar, EE, IIT Bombay

and



Consistency of our estimate

Define G = (g(U1:n), g(Unsb:n), …, g(U2bsbn:n)), and the Fourier series and field

estimates as

Key ideas:

◊ For r = [nq] + 1, Ur:n  q almost surely

◊ That is U[nsb]:n  sb almost surely, U[2nsb]:n  2sb almost surely, etc.

◊ By continuity of g(x), g(U[nsb]:n)  g(sb) almost surely, g(U[2nsb]:n)  g(2sb) almost

surely, etc.

◊ Finally, the estimates A and Ĝ(x) are bounded-coefficient finite linear combination

of g(U1:n), g(U[nsb]:n), …, g(U[2b nsb]:n)

9827 Feb 2015 Animesh Kumar, EE, IIT Bombay

and



Mean-squared error performance

Then the following mean-squared result holds for the estimate Ĝ(x)

Key ideas:

◊ The matrix b has entries with magnitude |(j)
k| = 1. The signal’s derivative g(x) is

bounded. As a result, linear approximations can be used to get the above bound

◊ Observe that the mean-squared error decreases as O(1/N)

If r  [nq] then the second 

moment of (Ur:n – q) satisfies

Keep in mind that
[David and Nagaraja’2003]
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Theorem 2:

and



Weak-convergence of the estimate Ĝ(x)

Then the following mean-squared result holds for the estimate Ĝ(x)

Key ideas:

◊ (U1:n , Usbn:n , …, U2bsbn:n) converges to a Gaussian vector

Once again

Fact: If 0< q1 < q2 < … < q(2b+1) < 1 and (ri/n – qi) = o(1/n) for each i. Then, 

where [KU]i,i = qi(1 – qi) for i ≤ i. [David and Nagaraja’2003]
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where, the variance KG(x) depends on KU, the derivative of g(x), and b

Theorem 2:

and



Weak-convergence of the estimate Ĝ(x)

Key ideas (contd.):

◊ Since g(x) is smooth, therefore G = g(U1:n), g(Usbn:n), …, g(U2bsbn:n) converges to a

Gaussian vector by the Delta method [van der Vaart’1998]

◊ Since the map from G = (g(U1:n), g(Usbn:n), …, g(U2bsbn:n)) to Ĝ(x) is linear,

therefore, Gaussian distribution is preserved
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where, the variance KG(x) depends on KU, the derivative of g(x), and b

Theorem 2:



Part 3: Organization

◊ Sampling model, field model, and distortion

◊ Field estimation without any knowledge of sampling location

◊ Field estimation when order of samples is known

◊ Field estimation with order of samples known in the presence 
of measurement noise

◊ Future work

10227 Feb 2015 Animesh Kumar, EE, IIT Bombay



Ordered field samples in additive indep noise

◊ If the order (left to right) of sample locations is known and field is affected by

independent measurement noise, a consistent estimate Ĝ(x) for the field of interest

can be obtained as follows

◊ Due to bandlimitedness, there are (2b+1) parameters to be learned or estimated

g(x)

x

0 1

sensors

U1:n Un:nUr:n

– – –

– – –
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Fourier series coefficient estimates

◊ It is assumed that b is known

◊ The ordered samples Y(U1:n), …, Y(Un:n) are available, but the values of U1:n, …,

Un:n are not known. The following estimate can be used
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Main result

Theorem: Let Fourier series coefficient estimates for g(x) be obtained as
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Then the average mean-squared error (distortion) between g(x) and its estimate G(x)

with Fourier series coefficients above is bounded by

where is the σ2 variance of the additive noise



Simulation results
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Fourier series coefficients are given by [0.9134, 0.6324, 1.0000, 0.6324, 0.9134]
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Future work

◊ Estimates are not minimum risk. Or, techniques for finding Maximum 

likelihood estimates will be useful

◊ It is unclear if O(1/N) distortions obtained are optimal

◊ Extension of these results to more classes of fields (FRI, finite-support, 

orthogonal spaces, non-bandlimited fields)

◊ What is the effect of quantization?
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Concluding remarks
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… …… …

Emission monitoring with sensors Sampling along a path with vehicle

Coverage region for TV transmitters Randomly sprayed smart-dust/paint



Concluding remarks

11027 Feb 2015 Animesh Kumar, EE, IIT Bombay

1. Adversary: No prefilter, quantization (poor precision), measurement noise

2. Friend: oversampling, low-cost of sensors

3. Wisdom: nonlinearity in quantization, field structure, parametric

understanding of fields, functional analysis

4. Net result: difficult problems, entertaining results (interplay of oversampling,

distortion, quantization precision, rate, field’s smoothness structure)
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