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Sampling with low-precision quantizers

¢ Driving application: analog to digital conversion of signals
¢ Physical quantities of interest: temperature, illumination, humidity,
chemical concentration, pollutant, etc. being sensed for digital conversion

¢ Feature: Smoothness due to natural physical laws

\
GOAL: high-quality reproduction of a

[
f(0)
\ m/\ smooth signal by using samples from

ff
\ /

a fixed precision quantizer

Example: digital recording of voice signal with a microphone

Animesh Kumar, EE, IIT Bombay



Parameters in sampling of signals

%

sampling quantizer e

density precision (bits) bits/time
Sampler —> Quantizer Processor —>
1:rec (t)

1:rec (t)
Interpolator %\\f\

w Distortion

¢ For a fixed target distortion, what is the trade-off between quantizer-precision, bit

rate, and sample-density?

¢ For what classes of signals these trade-offs will be established?
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Main result 1: bit-conservation principle

k-bit A/D, one in time T b-bit A/D, 2k0*1in time T 1-bit A/D, 2Kin time T
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Figure: Bit-conservation trade-off in pictures

[Ishwar, Kumar, & Ramchandran’03]:

For bounded (deterministic or stochastic) bandlimited signals,

Can trade off sample density for quantizer-precision without any loss in the

optimal distortion-rate performance

Similar asymptotic trade-off can be established for smooth non-bandlimited signals

u(t) with a decay that satisfies _[@irlchsl#(g%)lgg%ﬁﬁombay




Main result 2: distortion and bit-rate tradeoffs

[Ishwar, Kumar, & Ramchandran’03]: For bounded bandlimited signals (and stationary

bandlimited process in the almost sure sense),

¢  Target distortion =D
0  1-bitsampledensity = 0O(1/D)
0  Bit-rate per Nyquist = O (|log DJ)

[Kumar, Ishwar, & Ramchandran’04]: For bounded smooth non-bandlimited signals
distortion-rate upper bounds can be computed, e.g., for signals with exponentially

decaying spectra,

¢  Target distortion =D
0  1-bitsample density = O(|log D|/D) (per unit time)
0  Bit-rate per unittime = O (|log DJ?)
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Organization

Introduction and contributions
Sampling of deterministic bandlimited signals

0

0

¢ Extensions to stationary bandlimited signals

¢ Extensions to deterministic smooth non-bandlimited signals
0

Conclusions
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Deterministic bandlimited signal model

0 1-Dreal and bounded: | f (t)| < 1 (normalized)

¢ Temporally bandlimited: temporal Nyquist period, T yo=1

0 Finite energy in L2 sense

0 Bernstein’s inequality: | f'(t) | < W |||, ==

Nyquist interval =T o= /W =1

| IF()
[\
— T W=nr
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Distortion criteria

Deterministic fields:

0 Maximum pointwise reconstruction error: D =sup, | f (t) — f...(t)|

D

Stochastic fields:

0 Almost sure bound on reconstruction error: D =sup, [Y(t) = Y (D)

This distortion can be extended to other error criteria, e.g., normalized L? errors
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Nyquist sampling and reconstruction

f ()

0 1 2

f(t):i f (1) sinc (t—1)

0 [Nyquist theorem] The signal f (t) can be
reconstructed from samples taken at

points {ITyo} where | is an integer

0

f(t)=) f()sinc(t-1)

[=—0

0 In practice, the samples f (I) will be
quantized (say using) k-bit uniform

scalar quantizer Q,(.)

Quantization error: | f(I) = Q. (f (I))| <2k

Field reconstruction: f () = i Q, (T () sinc(t—1)

Distortion:

= sup“f&)ba foc(D)] is unbounded o
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Nyquist sampling and stability

f (t) ¢ Samples are uniformly spaced slightly

closer than the Nyquist points (T < 1)

| |H©)

0 T o7 L
§ h(t) < \

(=), fqT)h(t=IT) o

|=—o0

Stability: C = sup, Z Ih(t —IT)| <o | ¢ Samples are quantized using a k-bit
| = o

uniform scalar quantizer Q,(.)

Quantization error: | f (IT) - Q,(f(IT))| <2k

Field reconstruction: f () = Z Q(T(IT)) h(t—1T)
=

Error decay profile: D <C 2-K
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Comments on reconstruction distortion

N
>

D=C 2"

O distortion 2

K Bit-budget >

Distortion: D = sup, | f (t) — f..(t)]

Bit-rate: k bits/Nyquist-period (baseline
precision)
Optimality: The exponential distortion-rate

is optimal (in an order sense)

[Daubechies et al.’2006]

Implications: (i) To decrease distortion k must be increased, and (ii) expensive and

power draining quantizer will be required

¢ Can these (order) optimal distortion-rate tradeoffs be obtained with a sampling

method tailored towards low(est) precision quantizers?
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1-bit dithered sampling [Cvetkovic & Daubechies’00]

A
-
1y d(t}z\/\
AICAT

f (t)+d(t)
. /\ 9a
i

N

Zero-crossing An

¢ A known dither signal forces a zero-crossing in

every Nyquist interval

0 2K one-bit quantizers spaced 7= T/2K apart

=> K-bit spatial resolution

0 K bits per Nyquist interval are required to

index the location of the first zero-crossing

0 By design, the slope of dither function is
bounded

0 Recall that f'(t) <m, by Bernstein’s inequality
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1-bit dithered sampling: sample accuracy

f (t)+d(t) 1-bit A/D, 2K samples/T

ettt TTTTTTTT

TTT

zero crossmgs

Sample spacing: 7 =T/ 2k

Bounded slope of the bandlimited signal and the dither imply that

if T, est(fo) = — d(ty),

| T (L) — Taitn, est(fo)] == [[T7() + d"(D)]l,, z/2

= (R+A)T/2)2-
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1-bit dithered sampling: distortion analysis

f (t)

0 t, T & 2T t,

t

o0

fM) =D, ft)gt-t)

|=—o0

Stability: C'= sup, ), |g,(t—1t,)] <
|=—0

I () +d(t,)] < ((m+A) T/2) 2% and

00

finec® = 2 —d(t) gt—1,), then

|=—o0

the distortion decayis: D < (C’'2K [Cvetkovic & Daubechies’00]
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Two extreme scenarios

k-bit A/D, 1 sample per Nyquist 1-bit A/D, 2% samples per Nyquist
K-bit Nyquist sampling 1-bit dithered oversampling

Question: Can we trade-off between the number of samples/Nyquist and the

quantizer-precision for a given (k, D) pair?
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b'bit dithered Oversampling [Kumar-Ishwar-Ramchandran’03]

1 level

s(t) =1 (t) + d(t)

S OO

Smooth dither: d(t)

zero crossing in (0, T)

time-instant of crossing

S O

21 levels
Smooth dither: d,(t)

s(t) = f (t) + dy(t)
level crossing in (0, T / 20 -1)

(time-instant, level) of crossing

Same distortion-rate characteristics as in the 1-bit dithered sampling case

dy(n7)
f(t f(n l s(n
—’() Sampling ( T)@ ( T) >
T=T2°K

Level
crossing
locator

(k—b+1) bits b bits
(time-instant, level)

>

>
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An example of b-bit dithered sampling

k=3, b=2, 26—1=3levels: {0, +, -2}, 2k0*1 = 4 samples

1

1/2

0-Q

-1/2

1

past value

current value

> 15

(D

—_— Sl = >

@ @ Thus the sample for [0, T]

o1, <y is recorded as (3, %2)
2 2
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Bit-conservation pri Nnci ple [Kumar-Ishwar-Ramchandran’03]

“Conservation of bits” principle: Let K be the number of bits available per Nyquist
interval. For each 1 < b < K there exists a sampling scheme with 2k0*1 b-pit

samples per Nyquist-interval that achieves a distortion of the order of O(Z‘k)

e~ .

g L0196 @Ky

z |

©

%— \ . k-2, 3)

: o (k-1,2)
g O O (IS, O)

guantizer precision

Note:
D ~ O(1/ poly(Ryyquist)) for 1-bit Z-A conversion versus

D ~ O(1/exp(Ryyquist)) for Nyquist sampling and b-bit dithered sampling
Animesh Kumar, EE, IIT Bombay
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Interpretation

Nyquist sampling exhausts the bit——

budget in recording amplitude event
\ % Mg

b-bit dithered sampling is /
a tradeoff between these 1-bit dithered sampling exhausts the
two extremes bit budget in recording time event
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Organization

Introduction and contributions
Sampling of deterministic bandlimited signals

0

0

¢ Extensions to stationary bandlimited signals

¢ Extensions to deterministic smooth non-bandlimited signals
0

Conclusions
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Stochastic bandlimited signal model

¢ 1-D, real valued, wide-sense stationary

¢ Bounded amplitude sample paths (normalized to 1)

¢ Temporally bandlimited autocorrelation function: Nyquist period is Tyq

with T\o =1

¢ Finite energy autocorrelation function

Sample path

Nyquist interval = Tyo =n /W

| sy (@)
[\

Power spectrum

Animesh Kumar, EE, IIT Bombay
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Proof techniques for WSS bandlimited signals

¢ Deterministic results were for bounded bandlimited signals with finite energy

¢ Almost all sample paths of WSS bandlimited process will not, in general,
have this property

¢ Even if we dither a bounded WSS bandlimited process, we have to deal with
random zero-crossing (level-crossing) locations that have complicated and
non-linear dependency on the sampled process

¢ Thus, results of deterministic case cannot be directly extended to the stochastic
case

0 Key Idea: Take an almost-sure proof approach and prove results for every sample

path of the stationary bandlimited signal
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Method: stochastic proof technique (1)

Deterministic case:

1.

Locate zero crossings (collect
samples)

Interpolate with kernels g,(t —t,)
(requires stable interpolation
results for the stochastic case)
Utilize per sample accuracy,

obtained by signal’s smoothness

\

>

~/

The first step can be repeated
for the stochastic case.
However, distortion analysis is

required to complete the proof
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Method: stochastic proof technique (2)

Key steps:
¢ Extend non-uniform stable sampling result of Cvetkovic & Daubechies to WSS

process by using Zakai sense bandlimited signal theory [Zakai’65]

¢ Using [Zakai’65] and [Masry’76] , H(w)
@

Y (1) = Y(t) * h(v), h(t) <
almost surely for WSS bandlimited Y(t)

-TC n+d

0  Since h(t) is smooth, above property can be used to establish smoothness of
Y(1)

¢ Bit-conservation principle can be extended in a similar fashion

Details can be found in our journal submission (review pending) at www.arxiv.org
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Introduction and contributions
Sampling of deterministic bandlimited signals
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¢ Extensions to stationary bandlimited signals

¢ Extensions to deterministic smooth non-bandlimited signals
0

Conclusions
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What about smooth non-bandlimited signals?

, U(o)
W0 W

0 Consider smooth non-bandlimited signals with Iw loU(w)|do <o
0 Consider the case when u(t) is not prefiltered by a lowpass antialiasing filter
* For example, In a spatially distributed sampling set-up, anti-alias

pre-filtering is impossible and aliasing error is inevitable

Combating against aliasing distortion:

0 With large W pretend that the field is bandlimited (for sampling/reconstruction)

0 Make W sufficiently large so that aliasing error is comparable to quantization error
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Deterministic non-bandlimited signal model

0 1-D, real, bounded: |u(t)] <1 (normalized)

0 Decaying spectrum after a certain (fixed) bandwidth, formally I@ loU(o)|do < wo

0 Finite energy in L2 sense

, U(o)

L W 0 W
Pseudo-Nyquist interval =T =n /W

A
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Main results for non-bandlimited signals

¢ Upper bounds on the distortion D, while accounting for the aliasing and
guantization errors terms, are established
0 Using these upper bounds and by selection of the reconstruction bandwidth W,
the distortion-rate tradeoff can be computed
0 Achievable trade-off law: For high bit-rates, any distortion-rate pair (D, R(D)) is
achievable by a discrete trade-off between quantizer-precision and sample density

(similar to bit-conservation principle)

[Kumar-Ishwar-Ramchandran’04]
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Non-bandlimited case: illustrative example

¢ It can be shown that

t U(w)

(D) — U] < A2% +B ]y [U(0)] do

i

guantization part

aliasing part [Kumar-Ishwar-Ramchandran’04]

For exponential spectral decay:

0 The aliasing term is -.-co>W |U(w)| dow oc exp(— ma/T)

0 The pseudo Nyquist interval T is found by balancing error terms: exp(— na/T) = 2K
0 This balancing of errors is the key step in finding achievable reconstruction
distortion

0 Solving these equations we get, R(D) = O(|log DJ?) or D = O(exp(— sqrt{BR}))
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Organization

¢ Introduction and contributions

¢ Sampling of deterministic bandlimited signals

¢ Extensions to stationary bandlimited signals

¢ Extensions to deterministic smooth non-bandlimited signals

¢ Conclusions
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Summary: bandlimited signals

¢ There is a fundamental asymptotic trade-off between quantizer-precision and
sample-density (bit-conservation principle)
¢ For BL-signals the following tradeoff equations were obtained irrespective of

the quantizer-precision:

0  b-bit sample density = 2kb*+1(per Nyquist interval)
0  Distortion = 0 (2%
0  Bit-budget per Nyquist = Kk bits
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Summary: smooth non-bandlimited signals

¢ Non-bandlimited signals have spectrum dependent distortion-rate characteristics.

¢ The reconstruction bandwidth should be chosen to balance aliasing and

guantization errors

¢ Flexibility in trading off sample-density with quantizer-precision for similar

asymptotic distortion

For smooth non-bandlimited signal with exponential spectral decay:
¢  Target distortion =D

¢ Sample density = O (|log D|/D) (per unit time)

O (|log DJ?)

¢  Bit-rate per unit time
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Future research

¢ Practically, noise is ubiquitous in acquisition
¢ Distortion-rate tradeoffs and the bit-conservation principle needs to be

revisited with sensing noise included in the analysis
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