High resolution sampling of smooth signals using low-precision quantizers^{*}

Animesh Kumar Assistant Professor IIT Bombay

^{*}joint work with Dr. Prakash Ishwar (Boston University) and Dr. Kannan Ramchandran (UC Berkeley)

Sampling with low-precision quantizers

Oriving application: analog to digital conversion of signals

- Physical quantities of interest: temperature, illumination, humidity,
 - chemical concentration, pollutant, etc. being sensed for digital conversion
- ♦ Feature: Smoothness due to natural physical laws

GOAL: high-quality reproduction of a smooth signal by using samples from a fixed precision quantizer

Example: digital recording of voice signal with a microphone

Parameters in sampling of signals

For a fixed target distortion, what is the trade-off between quantizer-precision, bit rate, and sample-density?

♦ For what **classes of signals** these trade-offs will be established?

Main result 1: bit-conservation principle

Figure: Bit-conservation trade-off in pictures

[Ishwar, Kumar, & Ramchandran'03]:

For bounded (deterministic or stochastic) bandlimited signals,

Can trade off sample **density** for quantizer-**precision** without any loss in the

optimal distortion-rate performance

Similar asymptotic trade-off can be established for smooth non-bandlimited signals u(t) with a decay that satisfies $\int_{\text{mimesh kumar, EE, IIT Bombay}} |Q(\omega)| d\omega \leq \infty$

Main result 2: distortion and bit-rate tradeoffs

[Ishwar, Kumar, & Ramchandran'03]: For bounded bandlimited signals (and stationary

bandlimited process in the almost sure sense),

٥	Target distortion	= D
٥	1-bit sample density	= O(1/D)
٥	Bit-rate per Nyquist	$= O((\log D/))$

[Kumar, Ishwar, & Ramchandran'04]: For bounded smooth non-bandlimited signals

distortion-rate upper bounds can be computed, e.g., for signals with exponentially decaying spectra,

٥	Target distortion	= D
٥	1-bit sample density	= $O(\log D /D)$ (per unit time)
٥	Bit-rate per unit time	$= O(\log D ^2)$

Animesh Kumar, EE, IIT Bombay

Organization

- Introduction and contributions
- Sampling of deterministic bandlimited signals
- Extensions to stationary bandlimited signals
- Extensions to deterministic smooth non-bandlimited signals
- Conclusions

Deterministic bandlimited signal model

- ♦ 1-D real and bounded: |f(t)| < 1 (normalized)
- ♦ Temporally bandlimited: temporal Nyquist period, $T_{NQ} = 1$
- Finite energy in L^2 sense
- ♦ Bernstein's inequality: $|f'(t)| \le W ||f||_{\infty} = \pi$

Distortion criteria

Deterministic fields:

♦ Maximum pointwise reconstruction error: $D = \sup_t / f(t) - f_{rec}(t) / f_{rec}(t)$

Stochastic fields:

♦ Almost sure bound on reconstruction error: $D = \sup_t /Y(t) - Y_{rec}(t)/$

This distortion can be extended to other error criteria, e.g., normalized L^p errors

Nyquist sampling and reconstruction

[Nyquist theorem] The signal f (t) can be reconstructed from samples taken at points {lT_{NQ}} where l is an integer

$$f(t) = \sum_{l=-\infty}^{\infty} f(l) \operatorname{sinc} (t-l)$$

In practice, the samples f (l) will be quantized (say using) k-bit uniform scalar quantizer Q_k(.)

Quantization error: $|f(l) - Q_k(f(l))| \le 2^{-k}$ Field reconstruction: $f_{rec}(t) = \sum_{l=-\infty}^{\infty} Q_k(f(l)) \operatorname{sinc}(t-l)$

Distortion: $D = \sup_{t, t} /f(t) - f_{rec}(t) / \text{ is unbounded}$

Nyquist sampling and stability

♦ Samples are uniformly spaced slightly closer than the Nyquist points (T < 1)

♦ Samples are quantized using a *k*-bit uniform scalar quantizer $Q_k(.)$

Quantization error: $|f(lT) - Q_k(f(lT))| \le 2^{-k}$ Field reconstruction: $f_{rec}(t) = \sum_{l=-\infty}^{\infty} Q_k(f(lT)) h(t - lT)$

Error decay profile: $D \le C 2^{-k}$ Animesh Kumar, EE, IIT Bombay

Comments on reconstruction distortion

Distortion: $D = \sup_{t} |f(t) - f_{rec}(t)|$ **Bit-rate:** k bits/Nyquist-period (baseline precision) **Optimality:** The exponential distortion-rate is optimal (in an order sense) [**Daubechies et al.'2006**]

Implications: (i) To decrease distortion k must be increased, and (ii) expensive and power draining quantizer will be required

Can these (order) optimal distortion-rate tradeoffs be obtained with a sampling method tailored towards low(est) precision quantizers?

1-bit dithered sampling [Cvetkovic & Daubechies'00]

- A known dither signal forces a zero-crossing in every Nyquist interval
- ◊ 2^k one-bit quantizers spaced τ = T/2^k apart
 => k-bit spatial resolution
- k bits per Nyquist interval are required to
 index the location of the **first** zero-crossing
- By design, the slope of dither function is bounded

♦ Recall that $f'(t) \le \pi$, by Bernstein's inequality

Animesh Kumar, EE, IIT Bombay

1-bit dithered sampling: sample accuracy

Sample spacing: $\tau = T / 2^k$

Bounded slope of the bandlimited signal and the dither imply that

 $if f_{\text{dith, est}}(t_0) = -d(t_0),$

$$|f(t_0) - f_{\text{dith, est}}(t_0)| = \leq ||f'(t) + d'(t)||_{\infty} \tau/2$$

 $= ((\pi + \Delta) T/2) 2^{-k}$ Animesh Kumar, EE, IIT Bombay

1-bit dithered sampling: distortion analysis

$$f(t)$$

$$f(t)$$

$$f(t)$$

$$f(t) = \sum_{l=-\infty}^{\infty} f(t_l) g_l(t-t_l)$$

$$f(t) = \sup_{l=-\infty} \sum_{l=-\infty}^{\infty} |g_l(t-t_l)| < \infty$$

If $|f(t_l) + d(t_l)| < ((\pi + \Delta) T/2) 2^{-k}$ and $f_{\text{dith, rec}}(t) = \sum_{l=-\infty}^{\infty} -d(t_l) g_l(t - t_l)$, then

the distortion decay is: $D \leq C' 2^{-k}$

[Cvetkovic & Daubechies'00]

Animesh Kumar, EE, IIT Bombay

Two extreme scenarios

Question: Can we trade-off between the number of samples/Nyquist and the quantizer-precision for a given (k, D) pair?

b-bit dithered oversampling [Kumar-Ishwar-Ramchandran'03]

- ♦ 1 level
- Smooth dither: d(t)
- s(t) = f(t) + d(t)
- zero crossing in (0, T)
- time-instant of crossing

- $2^{b}-1$ levels
- Smooth dither: $d_b(t)$
- $s(t) = f(t) + d_b(t)$
- level crossing in (0, $T/2^{(b-1)}$)
- ♦ (time-instant, level) of crossing

Same distortion-rate characteristics as in the 1-bit dithered sampling case

An example of *b*-bit dithered sampling

 $k = 3, b = 2, 2^{b} - 1 = 3$ levels: {0, +1/2, -1/2}, $2^{k-b+1} = 4$ samples

Bit-conservation principle [Kumar-Ishwar-Ramchandran'03]

``Conservation of bits'' principle: Let k be the number of bits available per Nyquist

interval. For each $1 \le b < k$ there exists a sampling scheme with 2^{k-b+1} , b-bit

samples per Nyquist-interval that achieves a distortion of the order of $O(2^{-k})$

Note:

 $D \sim O(1 / \text{poly}(R_{Nvauist}))$ for 1-bit Σ - Δ conversion versus

 $D \sim O(1 / \exp(R_{Nyquist}))$ for Nyquist sampling and *b*-bit dithered sampling Animesh Kumar, EE, IIT Bombay

Interpretation

Organization

- Introduction and contributions
- Sampling of deterministic bandlimited signals
- Extensions to stationary bandlimited signals
- Extensions to deterministic smooth non-bandlimited signals
- Conclusions

Stochastic bandlimited signal model

- ♦ 1-D, real valued, wide-sense stationary
- ♦ Bounded amplitude sample paths (normalized to 1)
- ♦ Temporally bandlimited autocorrelation function: Nyquist period is T_{NQ}

with $T_{NQ} = 1$

♦ Finite energy autocorrelation function

Proof techniques for WSS bandlimited signals

- Oterministic results were for bounded bandlimited signals with finite energy
- Almost all sample paths of WSS bandlimited process will not, in general, have this property
- Even if we dither a bounded WSS bandlimited process, we have to deal with random zero-crossing (level-crossing) locations that have complicated and non-linear dependency on the sampled process
- Thus, results of deterministic case cannot be directly extended to the stochastic case
- Key Idea: Take an almost-sure proof approach and prove results for every sample path of the stationary bandlimited signal

Method: stochastic proof technique (1)

Deterministic case:

- Locate zero crossings (collect samples)
- 2. Interpolate with kernels $g_l(t t_l)$ (requires stable interpolation results for the stochastic case)
- Utilize per sample accuracy, obtained by signal's smoothness

The first step can be repeatedfor the stochastic case.However, distortion analysis isrequired to complete the proof

Method: stochastic proof technique (2)

Key steps:

- Extend non-uniform stable sampling result of Cvetkovic & Daubechies to WSS process by using Zakai sense bandlimited signal theory [Zakai'65]
- ♦ Using [Zakai'65] and [Masry'76],

$$Y(t) = Y(t) * h(t), \qquad h(t) \leftrightarrow$$

almost surely for WSS bandlimited Y(t)

- Since h(t) is smooth, above property can be used to establish smoothness of
 Y(t)
- Solution Bit-conservation principle can be extended in a similar fashion

Details can be found in our journal submission (review pending) at www.arxiv.org

Animesh Kumar, EE, IIT Bombay

Organization

- Introduction and contributions
- Sampling of deterministic bandlimited signals
- Extensions to stationary bandlimited signals
- Extensions to deterministic smooth non-bandlimited signals
- Conclusions

What about smooth non-bandlimited signals?

♦ Consider smooth non-bandlimited signals with $\int_{\omega} |\omega U(\omega)| d\omega < \infty$

 \diamond Consider the case when u(t) is not prefiltered by a lowpass antialiasing filter

• For example, In a spatially distributed sampling set-up, anti-alias

pre-filtering is impossible and aliasing error is inevitable

Combating against aliasing distortion:

♦ With large W pretend that the field is bandlimited (for sampling/reconstruction)

Make W sufficiently large so that aliasing error is comparable to quantization error Animesh Kumar, EE, IIT Bombay

Deterministic non-bandlimited signal model

- ♦ 1-D, real, bounded: |u(t)| < 1 (normalized)
- ♦ Decaying spectrum after a certain (fixed) bandwidth, formally $\int_{\omega} |\omega U(\omega)| d\omega < \infty$
- Finite energy in L^2 sense

Main results for non-bandlimited signals

- Upper bounds on the distortion *D*, while accounting for the aliasing and quantization errors terms, are established
- Using these upper bounds and by selection of the reconstruction bandwidth W, the distortion-rate tradeoff can be computed
- Achievable trade-off law: For high bit-rates, any distortion-rate pair (D, R(D)) is achievable by a discrete trade-off between quantizer-precision and sample density (*similar to* bit-conservation principle)

[Kumar-Ishwar-Ramchandran'04]

Non-bandlimited case: illustrative example

It can be shown that

$$|u(t) - u_{\rm rec}(t)| \le A \ 2^{-k} + B \int_{\omega > W} |U(\omega)| \, d\omega$$
quantization part

quantization part

aliasing part

For exponential spectral decay:

♦ The aliasing term is $\int_{\omega>W} |U(\omega)| d\omega \propto \exp(-\pi a/T)$

♦ The pseudo Nyquist interval *T* is found by balancing error terms: $exp(-\pi a/T) = 2^{-k}$

- This balancing of errors is the key step in finding achievable reconstruction distortion
- ♦ Solving these equations we get, $R(D) = O(|\log D|^2)$ or $D = O(\exp(-\operatorname{sqrt}\{\beta R\}))$

Organization

- Introduction and contributions
- Sampling of deterministic bandlimited signals
- Extensions to stationary bandlimited signals
- Extensions to deterministic smooth non-bandlimited signals
- Conclusions

Summary: bandlimited signals

- There is a fundamental asymptotic trade-off between quantizer-precision and sample-density (bit-conservation principle)
- For BL-signals the following tradeoff equations were obtained irrespective of the quantizer-precision:

٥	b-bit sample density	=	2^{k-b+1} (per Nyquist interval)
٥	Distortion	=	$O(2^{-k})$
٥	Bit-budget per Nyquist	=	k bits

Summary: smooth non-bandlimited signals

- ♦ Non-bandlimited signals have spectrum dependent distortion-rate characteristics.
- The reconstruction bandwidth should be chosen to balance aliasing and quantization errors
- Selection Flexibility in trading off sample-density with quantizer-precision for similar asymptotic distortion

For smooth non-bandlimited signal with exponential spectral decay:

- Target distortion = D
- Sample density = $O(|\log D|/D)$ (per unit time)
- Solution Bit-rate per unit time = $O(|\log D|^2)$

Future research

- ♦ Practically, noise is ubiquitous in acquisition
- Oistortion-rate tradeoffs and the bit-conservation principle needs to be revisited with sensing noise included in the analysis

Publications on distributed sampling

- "High-resolution distributed sampling of bandlimited fields with low-precision sensors,"
 A. Kumar, P. Ishwar, and K. Ramchandran, Submitted to the IEEE Transactions on Information Theory.
- "Dithered A/D conversion of smooth non-bandlimited signals," A. Kumar, P. Ishwar, and
 K. Ramchandran, Accepted for publication in the IEEE Transactions on Signal Processing.
- "On distributed sampling of bandlimited and non-bandlimited sensor fields," A. Kumar, P. Ishwar, and K. Ramchandran, *Invited paper*, ICASSP, Montreal, Canada, May 2004.
- "On distributed sampling of smooth non-bandlimited fields," A. Kumar, P. Ishwar, and K. Ramchandran, IPSN 2004, Berkeley, CA, April 2004.
- "On distributed sampling in dense sensor networks: a bit-conservation principle," P. Ishwar, A. Kumar, and K. Ramchandran, *Invited Paper*, 41st Annual Allerton Conference on Communication, Control, and Computing, UIUC, IL 2003.
- "Distributed sampling in dense sensor networks: a "bit-conservation" principle," P. Ishwar, A. Kumar, and K. Ramchandran, IPSN 2003, Palo Alto, CA, April 2003.

Animesh Kumar, EE, IIT Bombay