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◊ Driving application: analog to digital conversion of signals 

◊ Physical quantities of interest:  temperature,  illumination, humidity,  

   chemical concentration, pollutant, etc. being sensed for digital conversion 

◊ Feature: Smoothness due to natural physical laws 

f (t) GOAL:  high-quality reproduction of a  

smooth signal by using samples from 

a fixed precision quantizer 

Example: digital recording of voice signal with a microphone 

Sampling with low-precision quantizers 
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◊ For a fixed target distortion, what is the trade-off between quantizer-precision, bit  

   rate, and sample-density?  

◊ For what classes of signals these trade-offs will be established? 

Parameters in sampling of signals 
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Main result 1: bit-conservation principle 
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Figure: Bit-conservation trade-off in pictures 

[Ishwar, Kumar, & Ramchandran’03]: 

For bounded (deterministic or stochastic) bandlimited signals, 

Can trade off sample density for quantizer-precision without any loss in the 

optimal distortion-rate performance 

Similar asymptotic trade-off can be established for smooth non-bandlimited signals 

u(t) with a decay that satisfies ∫ω |ωU(ω)|dω < ∞ 4 Animesh Kumar, EE, IIT Bombay 



◊ Target distortion  =   D 

◊ 1-bit sample density  =  O ( 1 / D ) 

◊ Bit-rate per Nyquist  =  O ( |log D|) 

[Ishwar, Kumar, & Ramchandran’03]: For bounded bandlimited signals (and stationary 

bandlimited process in the almost sure sense), 

Main result 2: distortion and bit-rate tradeoffs 

[Kumar, Ishwar, & Ramchandran’04]: For bounded smooth non-bandlimited signals 

distortion-rate upper bounds can be computed, e.g., for signals with exponentially 

decaying spectra, 

◊ Target distortion  =  D 

◊ 1-bit sample density    =  O(|log D|/D) (per unit time) 

◊ Bit-rate per unit time =  O ( |log D|2) 
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◊ Introduction and contributions 

◊ Sampling of deterministic bandlimited signals 

◊ Extensions to stationary bandlimited signals 

◊ Extensions to deterministic smooth non-bandlimited signals 

◊ Conclusions 

Organization 
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◊  1-D real and bounded:  | f (t)| < 1 (normalized) 

◊  Temporally  bandlimited: temporal  Nyquist period, T NQ = 1 

◊  Finite energy in L2 sense 

◊ Bernstein’s inequality: | f (t) | ≤  W || f || =  

–1 

|F()| 

W =  –  
 

f (t) 

1 

Nyquist interval = T NQ= π / W = 1 

1 

0 
2 3 

t 

Deterministic bandlimited signal model 
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◊ Maximum pointwise reconstruction error:  D = supt | f (t) – frec(t)| 

Deterministic fields: 

D 

-D 
t 

error(t) 

Stochastic fields: 

Distortion criteria 

◊ Almost sure bound on reconstruction error:  D = supt |Y(t) – Yrec(t)| 

This distortion can be extended to other error criteria, e.g., normalized Lp errors 
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f (t) 

0 2 1 
t 

f (t) =        f (l) sinc (t – l)  


l

Quantization error:  | f (l) – Qk( f (l))| ≤ 2– k 

Distortion:  D = supt |f (t) – frec(t)|
 

Field reconstruction:  frec(t)  =          Qk ( f (l)) sinc(t – l)  
  l



 



◊ In practice, the samples f (l) will be  

   quantized (say using) k-bit uniform  

   scalar quantizer Qk(.) 

Nyquist sampling and reconstruction 

◊  [Nyquist theorem] The signal f (t) can be  

     reconstructed from samples taken at  

     points {lTNQ} where l is an integer 

f (t) =        f (l) sinc (t – l)  


l

is unbounded 
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◊  Samples are uniformly spaced slightly  

    closer than the Nyquist points (T < 1) 

Stability: C = supt        |h(t  lT)| <  

f (t) 

0 2T T 
t 

f (t) =        f (lT) h(t – lT)  


l




l

Quantization error:  | f (lT) – Qk( f (lT))| ≤ 2– k 

Error decay profile:  D ≤ C 2– k 

Field reconstruction:  frec(t)  =       Qk ( f (lT)) h(t – lT)  
  l



 



◊ Samples are quantized using a k-bit  

    uniform scalar quantizer Qk(.) 

– +d 

1 
H(ω) 

h(t)   ↔ 

Nyquist sampling and stability 
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Bit-rate:  k bits/Nyquist-period (baseline 

precision) 

Distortion:  D = supt | f (t) – frec(t)|  

D = C 2–k 

D 

k Bit-budget  

d
is

to
rt

io
n

 
 

Comments on reconstruction distortion 

Implications:  (i) To decrease distortion k must be increased, and (ii) expensive and 

power draining quantizer will be required 

◊  Can these (order) optimal distortion-rate tradeoffs be obtained with a sampling  

    method tailored towards low(est) precision quantizers? 

Optimality:  The exponential distortion-rate 

 is optimal (in an order sense)  

[Daubechies et al.’2006] 
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◊  A known dither signal forces a zero-crossing in  

    every Nyquist interval 

◊  2k one-bit quantizers spaced  = T/2k apart 

    => k-bit spatial resolution 

 

◊  k bits per Nyquist interval are required to  

    index the location of the first zero-crossing 

1-bit dithered sampling [Cvetkovic & Daubechies’00] 

◊  By design, the slope of dither function is  

    bounded 

◊  Recall that f (t)  ≤ , by Bernstein’s inequality 
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Sample spacing:   = T / 2k 

Bounded slope of the bandlimited signal and the dither imply that  

if fdith, est(t0) = – d(t0), 

f (t)+d(t) 1-bit A/D, 2k samples/T 

t T 0 
zero crossings 

t0 

1-bit dithered sampling: sample accuracy 

| f (t0) – fdith, est(t0)|  = ≤  || f (t) + d (t)||  /2 

                              =  (( + ) T /2) 2– k 
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If | f (tl ) + d(tl )| < (( + ) T /2) 2–k  and 

the distortion decay is:   D ≤ C′ 2–k 

     fdith, rec(t) =          d(tl ) gl(t – tl ), then  


l

1-bit dithered sampling: distortion analysis 

Stability: C′ = supt       |gl(t – tl )| <  


l

f (t) 

0 2T T 
t 

t1 t0 t2 

f (t)  =          f (tl ) gl(t – tl )  


l

[Cvetkovic & Daubechies’00] 
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f (t)  f (t)+d(t) 

k-bit A/D, 1 sample per Nyquist 1-bit A/D,  2k samples per Nyquist 

k-bit Nyquist sampling 1-bit dithered oversampling 

Two extreme scenarios 

Question: Can we trade-off between the number of samples/Nyquist and the 

quantizer-precision for a given (k, D)  pair? 
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◊ 1 level 

◊ Smooth dither: d(t) 

◊ s(t) = f (t) + d(t) 

◊ zero crossing in (0, T) 

◊ time-instant of crossing 

◊ 2b–1 levels 

◊ Smooth dither: db(t) 

◊ s(t) = f (t) + db(t) 

◊ level crossing in (0, T / 2(b – 1)) 

◊ (time-instant, level)  of crossing 

Sampling 
f (t) 

+  

db(nτ) 

Level 
crossing 
locator 

s(nτ) (time-instant ,  level)   f (nτ) 

τ = T 2– k  

b bits (k–b+1) bits 

Same distortion-rate characteristics as in the 1-bit dithered sampling case 

b-bit dithered oversampling [Kumar-Ishwar-Ramchandran’03] 
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k = 3,  b = 2,  2b – 1 = 3 levels: {0, +½, –½},  2k–b+1  =  4 samples 

Thus the sample for [0, T]  

is recorded as (3,  ½ ) 

1 

T 
0 

f (t) + db(t) 

T / 2(b – 1) 

–1 

–1/2 

1/2 

1 2  3  4  1 2  3  4  3  

An example of b-bit dithered sampling 

3 1 2 

> ½  > ½  > ½  past value 

> ½  < ½  current value 
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Bit-conservation principle [Kumar-Ishwar-Ramchandran’03] 

``Conservation of bits’’ principle: Let k be the number of bits available per Nyquist 

interval. For each 1 ≤ b < k there exists a sampling scheme with 2k-b+1, b-bit 

samples per Nyquist-interval that achieves a distortion of the order of O(2–k) 

Note: 

D  ~ O(1 / poly(RNyquist)) for 1-bit - conversion versus 

D  ~ O(1 / exp(RNyquist)) for Nyquist sampling and b-bit dithered sampling 
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Nyquist sampling exhausts the bit  
budget in recording amplitude event 

1-bit dithered sampling exhausts the 
bit budget in recording time event 

b-bit dithered sampling is  
a tradeoff between these  

two extremes 

Interpretation 
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Organization 

◊ Introduction and contributions 

◊ Sampling of deterministic bandlimited signals 

◊ Extensions to stationary bandlimited signals 

◊ Extensions to deterministic smooth non-bandlimited signals 

◊ Conclusions 
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◊  1-D, real valued, wide-sense stationary 

◊  Bounded amplitude sample paths (normalized to 1) 

◊  Temporally bandlimited autocorrelation function: Nyquist period  is TNQ  

      with TNQ = 1  

◊  Finite energy autocorrelation function 

Y(t) 

1 

Nyquist interval = TNQ = π / W 

1 

0 

–1 

SY () 

π –π 2 3 
 t 

Sample path 

Power spectrum 

Stochastic bandlimited signal model 
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◊  Deterministic results were for bounded bandlimited signals with finite energy 

◊  Almost all sample paths of WSS bandlimited process will not, in general,  

    have this property 

◊  Even if we dither a bounded WSS bandlimited process, we have to deal with  

    random zero-crossing (level-crossing) locations that have complicated and 

    non-linear dependency on the sampled process 

◊  Thus, results of deterministic case cannot be directly extended to the stochastic  

    case 

◊  Key Idea: Take an almost-sure proof approach and prove results for every sample  

    path of the stationary bandlimited signal 

Proof techniques for WSS bandlimited signals 
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Method: stochastic proof technique (1) 

1. Locate zero crossings (collect 

samples) 

2. Interpolate with kernels gl(t – tl) 

(requires stable interpolation 

results for the stochastic case) 

3. Utilize per sample accuracy, 

obtained by signal’s smoothness 

Deterministic case: 

The  first step can be repeated  

for the stochastic case. 

However, distortion analysis is  

required to complete the proof 
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◊ Extend non-uniform stable sampling result of Cvetkovic & Daubechies to WSS 

process by using Zakai sense bandlimited signal theory [Zakai’65] 

◊ Using [Zakai’65] and [Masry’76] , 

 

   Y(t) = Y(t) * h(t), 

almost surely for WSS bandlimited Y(t) 

Method: stochastic proof technique (2) 

- +d 

1 
H(ω) 

h(t) ↔ 

Key steps: 

◊ Since h(t) is smooth, above property can be used to establish smoothness of 

Y(t) 

◊ Bit-conservation principle can be extended in a similar fashion 

Details can be found in our journal submission (review pending) at www.arxiv.org 
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Organization 

◊ Introduction and contributions 

◊ Sampling of deterministic bandlimited signals 

◊ Extensions to stationary bandlimited signals 

◊ Extensions to deterministic smooth non-bandlimited signals 

◊ Conclusions 
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What about smooth non-bandlimited signals? 

U() 

0 W -W 

 

◊ Consider smooth non-bandlimited signals with ∫ω |ωU(ω)|dω < ∞ 

◊ Consider the case when u(t) is not prefiltered by a lowpass antialiasing filter 

•  For example, In a spatially distributed sampling set-up, anti-alias  

   pre-filtering is impossible and aliasing error is inevitable 

Combating against aliasing distortion: 

◊ With large W pretend that the field is bandlimited (for sampling/reconstruction) 

◊ Make W sufficiently large so that aliasing error is comparable to quantization error 
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◊  1-D, real, bounded:  |u(t)| < 1 (normalized) 

◊  Decaying spectrum after a certain (fixed) bandwidth, formally ∫ω |ωU(ω)|dω < ∞ 

◊  Finite energy in L2 sense 

Deterministic non-bandlimited signal model 
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Main results for non-bandlimited signals 

◊  Upper bounds on the distortion D, while accounting for the aliasing and  

     quantization errors terms, are established 

◊  Using these upper bounds and by selection of the reconstruction bandwidth W,  

     the distortion-rate tradeoff can be computed 

◊ Achievable trade-off law:  For high bit-rates, any distortion-rate pair (D, R(D)) is 

   achievable by a discrete trade-off between quantizer-precision and sample density 

   (similar to bit-conservation principle) 

[Kumar-Ishwar-Ramchandran’04] 
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0 ω 

e a|ω| e a|ω| 

U(ω) 

Non-bandlimited case: illustrative example 

◊  It can be shown that 

|u(t) – urec(t)| ≤  A 2–k  + B ∫>W |U()| d 

aliasing part quantization part 

For exponential spectral decay: 

◊ The aliasing term is ∫>W |U()| d  exp(– a/T) 

◊ The pseudo Nyquist interval T  is found by balancing error terms:  exp(– a/T) = 2–k  

◊ This balancing of errors is the key step in finding achievable reconstruction  

   distortion 

◊ Solving these equations we get, R(D) = O(|log D|2) or D = O(exp(– sqrt{R})) 

[Kumar-Ishwar-Ramchandran’04] 
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Organization 

◊ Introduction and contributions 

◊ Sampling of deterministic bandlimited signals 

◊ Extensions to stationary bandlimited signals 

◊ Extensions to deterministic smooth non-bandlimited signals 

◊ Conclusions 
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◊   There is a fundamental asymptotic trade-off between quantizer-precision and  

     sample-density (bit-conservation principle) 

◊   For BL-signals the following tradeoff equations were obtained irrespective of  

     the quantizer-precision: 

Summary: bandlimited signals 

◊ b-bit sample density    =    2k–b+1 (per Nyquist interval) 

◊ Distortion    =   O (2–k ) 

◊ Bit-budget per Nyquist =  k bits 
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◊ Non-bandlimited signals have spectrum dependent distortion-rate characteristics.  

◊ The reconstruction bandwidth should be chosen to balance aliasing and     

   quantization errors  

◊ Flexibility in trading off sample-density with quantizer-precision for similar  

   asymptotic  distortion 

Summary: smooth non-bandlimited signals 

For smooth non-bandlimited signal with exponential spectral decay: 

◊ Target distortion  =  D 

◊ Sample density    =   O (|log D|/D) (per unit time) 

◊ Bit-rate per unit time  =   O (|log D|2) 
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Future research 

f (t) 

W(t) 

◊ Practically, noise is ubiquitous in acquisition  

◊ Distortion-rate tradeoffs and the bit-conservation principle needs to be 

   revisited with sensing noise included in the analysis 
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