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Sampling of a field in finite-variance noise 

Consider an array of sensors sampling a bandlimited field in additive and 

independent noise process. The sampling is distributed and the noise 

variance is finite 

g(t) 
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Sampling and quantization with noisy ADCs 

T 

+  

–  

g(t) 

W(t) + 

Consider the sampling of bandlimited signal  with ADCs (comparators) 

which have  independent offset voltages 
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Sampling with noisy ADCs 

T + 

–  

g(t) + 

W(t) 

Consider the sampling of a bandlimited signal  in wideband noise, where 

bandwidth of noise >> 1/T 
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Theoretical abstraction of the problems 

These sampling problems can be abstracted into the following 

g(t) + W(t) is a signal or field to be sampled through precision-limited 

or single-bit quantizers (comparators) 

We will assume that g(t) is bandlimited in a finite bandwidth and W(t) is 

an additive independent Gaussian noise process 

+ 

W(t) 

g(t) 1(y ≥ 0) 

X(n) 

 

Y(n) 
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◊ Field/signal model  

◊ Insights into main result using degrees of freedom  

◊ Analysis of proposed single-bit quantization scheme 

◊ Conclusions 
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The bandlimited signal model 

BL = {g(t): |g(t)| ≤ 1 and g(t)(t) = g(t), for all t real} 

A subset of Zakai class of bandlimited signals is our signal model 

ω 

π π 

1 

Define (t) as follows for  > 1 

and a = ( –1)/2 

–π –π 

The kernel (t) is square and absolutely integrable, which aids in worst-case 

or pointwise error analysis 

() 
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◊  1-D real, continuous, and bounded:  | z(t)| < 1 (normalized) 

◊  Nyquist period, T NQ = 1 

◊  Finite energy in L2 sense 

–1 

|Z()| 

W =  –  
 

z(t) 

1 

Nyquist interval = T NQ= π / W = 1 

1 

0 
2 3 

t 

L2(R) bandlimited  Zakai bandlimited 

z(t)(t) = – 1[Z()()] = – 1[Z()] = z(t), for all t real 

Then f (t) belongs to Zakai class of bandlimited signals since 
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◊  1-D, real valued, wide-sense stationary signals with amplitude sample 

paths bounded by 1.  

◊ Autocorrelation function is finite-energy bandlimited with TNQ = 1 

Y(t) 

1 

Nyquist interval = TNQ = π / W 

1 

0 

–1 

SY () 

π –π 2 3 
 t 

Sample path 

Power spectrum 

Stationary bandlimited  Zakai bandlimited 

◊ See [Zakai’65] and [Masry’76] , 

                   Y(t) = Y(t)(t), 

almost surely for WSS bandlimited Y(t) 
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Properties of Zakai sense bandlimited signals 

◊ Any result that applies to bounded-amplitude Zakai sense bandlimited 

signals will also apply to bounded-amplitude finite energy bandlimited 

signals as well as bounded stationary bandlimited signals 

◊ Since (t) is smooth and absolutely integrable, g(t) = g(t)(t) can be 

used to establish smoothness of g(t) 

◊ Zakai sense bandlimited signals admit a sampling theorem with a stability 

factor  > 1. We have 

24Jun2013, at LCAV EPFL 10 Animesh Kumar, EE, IITB 



Noise model and mean-squared distortion  

Distortion considered for statistical signals is maximum mean-squared error 

The noise W(t) is assumed to be an independent Gaussian process. That is, 

W(t1), W(t2), …, W(tn) are independent and identically distributed N(0, 2)  

For example, W(t1), W(t2), W(t3) are 

independent for any t1, t2, t3 

W(t2) 

W(t1) 

W(t3) 
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Estimation of a constant from one reading 

There will be a mean-squared error  ≥ 2 regardless of the procedure 

adopted (see Cramer-Rao lower bound) 

Consider the problem of estimating a bounded constant (one degree of 

freedom) in one reading with additive Gaussian noise 

c + 

W1 

Y1 
That is estimate c from  Y1 = c + W1 

Oversampling is needed to reduce the mean-squared error 
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Estimation of a constant with oversampling 

c 

+ 

+ 

+ 

W1 

W2 

WN 

…
 

Y1 

Y2 

YN 
◊ It is known that the best mean-squared  

   error estimate is the avg of Y1, Y2, …, YN  

◊ And mean-squared error between  (Y1 + …  

   YN)/N and c is O(1/N) 

◊ Now consider the problem of estimating a  

   bounded constant (one degree of freedom)    

   in additive independent (i.i.d.) Gaussian  

   noise 

Y1 = c + W1, …, YN = c + WN 

Unquantized samples, oversampling by N, and mean-squared error is O(1/N) 
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Estimation and quantization (nonlinearity) 

◊ These variables are i.i.d.  

   Bernoulli(F(c)), where F(x) is the  

   cumulative distribution function of W 

◊ It is known that the average of X1, X2,  

   …, XN converges with variance O(1/N)   

   to F(c) 

Now consider the same problem in the presence of single-bit quantization 

X1 = 1(c + W1 ≥ 0), X2 = 1(c + W2 ≥ 0), 

…, XN = 1(c + WN ≥ 0) 
+ 

+ 

+ 

W1 

W2 

WN 

…
 

Y1 

Y2 

YN 

1(y ≥ 0) 

1(y ≥ 0) 

1(y ≥ 0) 

…
 

X1 

X2 

XN 

c 

Quantized samples, oversampling by N, and mean-squared error in F(c) is O(1/N) 
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The delta-method 
F(x) 

x 

bounded interval in  
which c belongs 

0 – 1 1 c 

An estimate for c is desired, but an 

estimate for F(c) is present with small 

variance of O(1/N) 

O(1/N) variance  
around F(c) 

F –1(x) 

x 0 

– 1 

1 

c 

F(c) If F–1(x) has a finite slope, then  

F–1[(X1 + … + XN)/N] converges to  

F–1[F(c)] = c with a variance of O(1/N) 

Thus “precision indifference” holds while estimating one degree of freedom 
in Gaussian noise 
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Noisy samples and bandlimited signals 

◊  Samples are uniformly spaced slightly  

    closer than the Nyquist points ( >1) 

◊ Thus, there is one degree of freedom  

   every Nyquist interval in g(t) 

g(t) 

0 1/ 
t 

◊ If we oversample g(t) + W(t) by a factor of N, there are N noisy reading for 

each degree of freedom on an average 

◊ Thus we expect optimal distortion to be O(1/N) with perfect samples! 

2/ 
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Key result that will be shown next 

A distortion of O(1/N) is achievable with single-bit quantized samples! 

This improves the previously known bound of O(1/N2/3) [Masry 1981] 

+ 

W(t) 

g(t) 

 = 1/(N) 
Y(n) 

+ 

W(t) 

g(t) 1(y ≥ 0) 

X(n) 

 = 1/(N) 

Y(n) 

BL = {g(t): |g(t)| ≤ 1 and g(t)(t) = g(t), for all t real} 

The Zakai class of bandlimited signals will be the signal model 

The results will apply to finite energy bandlimited signals as well as stationary 

bandlimited signals 
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Related work 

◊ [Masry’1981] Single-bit quantization of smooth signals, with additive noise 

as a dither. His analysis results in an mean-squared bound of O(1/N2/3) 

◊ [Wang-Ishwar’2009] and [Masry-Ishwar’2009] Acquisition of a finite-support 

field in bounded noise. Mean-squared error bounds were established 
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Interpolation of quantized samples 

+ 

W(t) 

g(t) 1(y ≥ 0) 

X(n) 

 = 1/(N) 

Y(n) 

HN (t) =         (X(n) – ½)(t – n)  


l

Define an interpolation from the quantized single-bit samples X(n) 

Note that E[X(t)]  = F(g(t)) 

        (X(n) – ½)(t – n)  


l

        (F(g(n)) – ½)(t – n)  


l

(F(g(t)) – ½)(t)  

LLN 
Smooth- 

ness 
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Interpolation of quantized samples 

+ 

W(t) 

g(t) 1(y ≥ 0) 

X(n) 

 = 1/(N) 

Y(n) 

HN (t) =         (X(n) – ½)(t – n)  


l

Proposition: Let l(t) =  (F(g(t)) – ½) and HN(t) be as defined above. Then, 

where C2 does not depend on g(t) 

Remember that 

24Jun2013, at LCAV EPFL 22 Animesh Kumar, EE, IITB 



Invertibility of the limit 

l(t) 

g(t)(t) = g(t) 
l(t)(t) 

BL 

For the set BL the signal l(t)(t) is invertible and g(t) can be obtained 

uniquely from it (in a pointwise or L sense). The proof follows using 

Banach’s contraction theorem 

L2(R) version of this problem has been considered by Landau and 

Miranker’1961. It cannot be used directly since statistical noise is not in L2 
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Banach’s contraction theorem 

Ingredients: Banach’s contraction theorem needs a closed set S, a map T, a 

distance metric d(m1, m2) and a contraction property for any m1(t), m2(t) in S 

d(T[m1], T[m2]) ≤ d(m1, m2) with 0 <  < 1 

Result: Then T[m(t)] = m(t) has a unique solution m*(t) in S. 

S S 

T[m(t)] 

m1(t) 

m2(t) 

T[m1(t)] 

T[m2(t)] 

S 

T[m(t)] 

m*(t) 

n*(t) 

S T[m*(t)] 

T[n*(t)] 
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Banach’s contraction theorem (contd.) 

Fact:  mk(t) = T[mk-1(t)] sets up a recursive procedure to approach m*(t) 

And m*(t) = m0(t) + [m1(t) – m0(t)] + [m2(t) – m1(t)] + [m3(t) – m2(t)] + … 

               = m0(t) + [m1(t) – m0(t)] + T[m1(t) – m0(t)] + T2[m1(t) – m0(t)] + … 

S S 

T[m(t)] 

m1(t) 

m*(t) 

T[m1(t)] 

m*(t) 
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Landau and Miranker’s contraction formula 

Consider L2-BL = {g(t): G(ω) with support on [–π, π]} 

The technique works since L2-BL is a closed subset and there is a value of  

for which the recursion formula is a contraction (Banach’s contraction 

mapping theorem) 

For this class of signal, the following fixed-point and recursion formula leads 

to g(t) from h(t) = [F(g(t)) – ½]  sinc(t) 

Recursion formula 
(Picard iteration) 

gn+1(t) =  h(t) + (gn(t) –  ln(t))sinc(t) 

g(t) =  h(t) + (g(t) –  l(t))sinc(t) Fixed-point equation 

Landau & Miranker [1961]   
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Landau and Miranker’s recursion in pictures 

g(t) 

l(t) 

h(t) = l(t)sinc(t) 

g0(t) 
l0(t) 

g1(t) 

gn(t) 

g2(t) 
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Ingredients of contraction for our problem 

Define Clip[x] = sgn(x) if |x| > 1 and Clip[x] = x, otherwise 

The distance metric is the maximum pointwise difference (L error) 

It turns out that there is a value of   such that T is a contraction on BLbdd 

So g(t) can be obtained from l(t) by using T and recursion on BLbdd 

T[g(t)] = Clip{ l(t)(t) + [g(t) –  l(t)](t)}(t) 

Let BLbdd be the set defined as 

BLbdd = {m(t): |m(t)| ≤ Cϕ and m(t)ψ(t) = m(t), for all t real} 

where ψ(t)  = (t)/ has slightly larger bandwidth than (t) 

gn+1(t) = Clip{ l(t)(t) + [gn(t) –  ln(t)](t)}(t) 

Set g0(t) = 0 and  
Recursion  
formula 

Fixed-point  
equation 
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Final step of the proof 

T[Gk(t)] = Clip{ HN(t)(t) + [Gk–1(t) –  (F(Gk–1(t)) – 1/2)(t) ]}(t) 

But HN(t) an approximation of l(t) = F(g(t)) – ½) is available! However, 

contraction is stable to perturbations 

The modified recursive map is 

Theorem: Let G0(t) =  0. Let Ĝ1-bit(t) be the limit of Gk(t). Then, the above 

recursion results in 

which establishes the precision-indifference principle for bandlimited signals 

in additive independent Gaussian noise 
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Picture for the final step of proof 

But HN(t) an approximation of l(t) = F(g(t)) – ½) is available. Contraction is 

stable to perturbations 

G1(t) =  HN(t) 

g1(t) =  h(t) 

G2(t) = T[G1(t)] 

g2(t) = T[g1(t)] 

d1 d2 

By contraction property, … d3 ≤  d2  ≤ 2 d1 

Thus, by triangle inequality, the maximum error can be shown to be sum of 

all di’s, or d1/(1-) 
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Summary 

◊ Optimal distortion is expected to be  

  =   O(1/N) 

◊ Distortion achievable with single-bit quantized readings 

   =  O(1/N) 

For bounded-amplitude bandlimited signals sampled in the presence of 

(additive) independent Gaussian process with oversampling N and mean-

squared distortion 
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Extensions or future work 

◊ Our estimate is not minimum risk. Fast algorithms for finding Maximum 

likelihood estimates, which will also be accurate up to O(1/N), will be 

useful 

◊ Extension of these results to more classes of signals (FRI, finite-support, 

orthogonal spaces) 
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Further reading 

1. Animesh Kumar and Vinod Prabhakaran, “Estimation of Bandlimited Signals in Additive 

Gaussian Noise: a "Precision Indifference" Principle”, arxiv preprint available at 

http://arxiv.org/abs/1211.6598 

2. Animesh Kumar and Vinod Prabhakaran, “Estimation of bandlimited signals from the 

signs of noisy samples”, ICASSP 2013, Vancouver, BC Canada. 
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