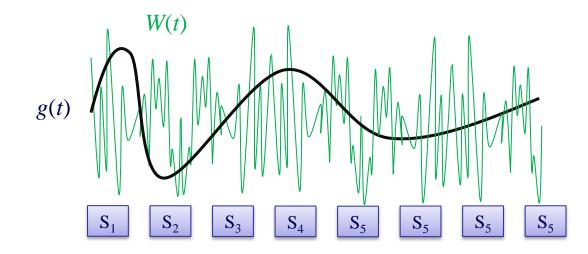
A/D conversion of bandlimited fields in additive independent Gaussian noise

Animesh Kumar Assistant Professor IIT Bombay

Joint work with Prof. Vinod M. Prabhakaran, TIFR Bombay, Mumbai

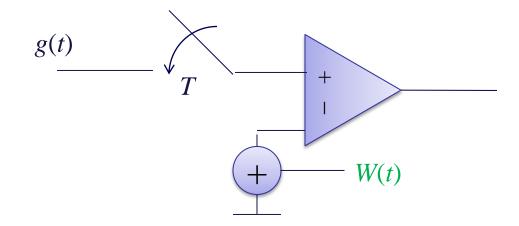
Sampling of a field in finite-variance noise



Consider an array of sensors sampling a bandlimited field in additive and independent noise process. The sampling is distributed and the noise variance is finite

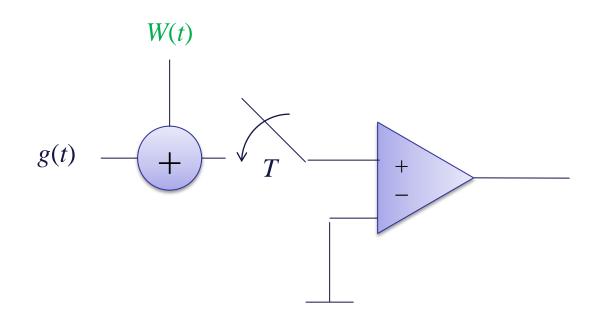
24Jun2013, at LCAV EPFL

Sampling and quantization with noisy ADCs



Consider the sampling of bandlimited signal with ADCs (comparators) which have independent offset voltages

Sampling with noisy ADCs



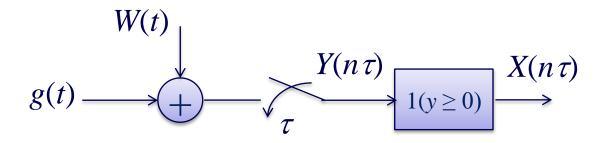
Consider the sampling of a bandlimited signal in wideband noise, where bandwidth of noise >> 1/T

24Jun2013, at LCAV EPFL

Theoretical abstraction of the problems

These sampling problems can be abstracted into the following

g(t) + W(t) is a signal or field to be sampled through precision-limited or single-bit quantizers (comparators)



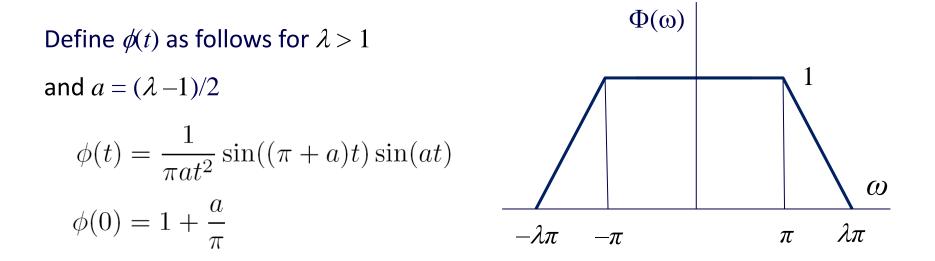
We will assume that g(t) is bandlimited in a finite bandwidth and W(t) is an additive independent Gaussian noise process

24Jun2013, at LCAV EPFL

Organization

- Introduction to the problem
- Field/signal model
- Insights into main result using degrees of freedom
- Analysis of proposed single-bit quantization scheme
- Conclusions

The bandlimited signal model



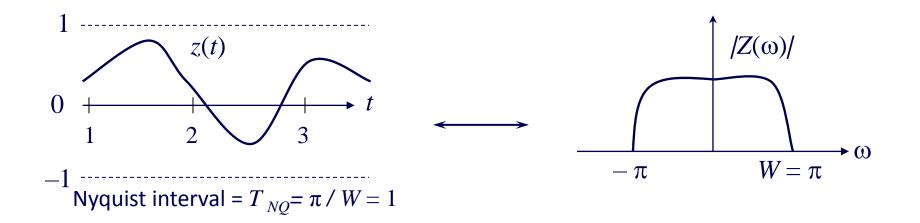
A subset of Zakai class of bandlimited signals is our signal model

 $BL = \{g(t): |g(t)| \le 1 \text{ and } g(t) \star \phi(t) = g(t), \text{ for all } t \text{ real} \}$

The kernel $\phi(t)$ is square and absolutely integrable, which aids in worst-case or pointwise error analysis

24Jun2013, at LCAV EPFL

$L^2(\mathbf{R})$ bandlimited \subset Zakai bandlimited



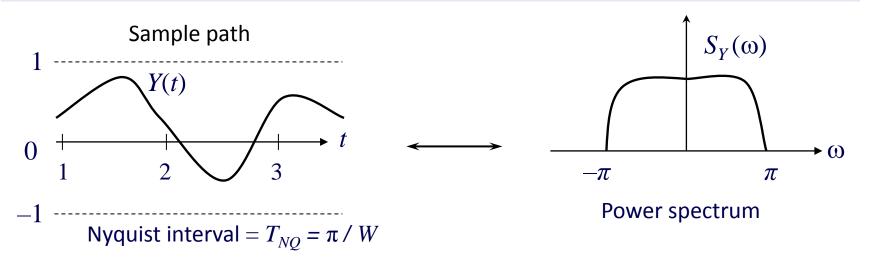
- ♦ 1-D real, continuous, and bounded: |z(t)| < 1 (normalized)
- ♦ Nyquist period, $T_{NQ} = 1$
- ♦ Finite energy in L^2 sense

Then f(t) belongs to Zakai class of bandlimited signals since

 $z(t) \star \phi(t) = \mathfrak{I}^{-1}[Z(\omega)\Phi(\omega)] = \mathfrak{I}^{-1}[Z(\omega)] = z(t)$, for all *t* real

24Jun2013, at LCAV EPFL

Stationary bandlimited ⊂ Zakai bandlimited



◊ 1-D, real valued, wide-sense stationary signals with amplitude sample paths bounded by 1.

♦ Autocorrelation function is finite-energy bandlimited with $T_{NQ} = 1$

See [Zakai'65] and [Masry'76] ,

 $Y(t) = Y(t) \star \phi(t),$

almost surely for WSS bandlimited Y(t)

24Jun2013, at LCAV EPFL

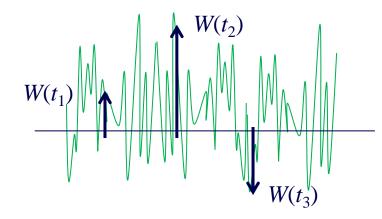
Properties of Zakai sense bandlimited signals

- Any result that applies to bounded-amplitude Zakai sense bandlimited signals will also apply to bounded-amplitude finite energy bandlimited signals as well as bounded stationary bandlimited signals
- Since $\phi(t)$ is smooth and absolutely integrable, $g(t) = g(t) \star \phi(t)$ can be used to establish smoothness of g(t)
- ♦ Zakai sense bandlimited signals admit a sampling theorem with a stability factor $\lambda > 1$. We have

$$g(t) = \lambda \sum_{n \in \mathbb{Z}} g\left(\frac{n}{\lambda}\right) \phi\left(t - \frac{n}{\lambda}\right)$$

Noise model and mean-squared distortion

The noise W(t) is assumed to be an independent Gaussian process. That is, $W(t_1), W(t_2), \ldots, W(t_n)$ are independent and identically distributed $N(0, \sigma^2)$



For example, $W(t_1)$, $W(t_2)$, $W(t_3)$ are independent for any t_1 , t_2 , t_3

Distortion considered for statistical signals is maximum mean-squared error

$$D_{\text{rec}} := \sup_{t \in \mathbb{R}} D_{\text{rec}}(t) = \sup_{t \in \mathbb{R}} \mathbb{E} \left| \widehat{G}_{\text{rec}}(t) - g(t) \right|^2$$

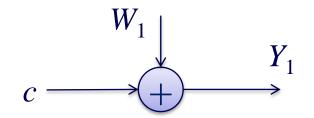
24Jun2013, at LCAV EPFL

Organization

- Introduction to the problem
- Field/signal model
- Insights into main result using degrees of freedom
- Analysis of proposed single-bit quantization scheme
- Conclusions

Estimation of a constant from one reading

Consider the problem of estimating a bounded constant (one degree of freedom) in one reading with additive Gaussian noise



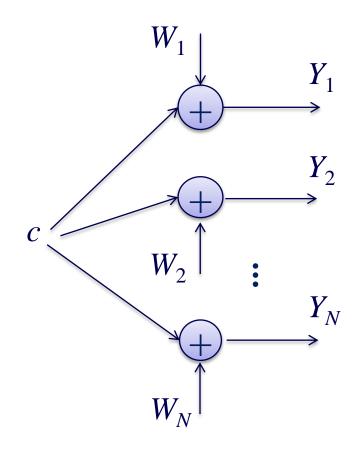
That is estimate *c* from $Y_1 = c + W_1$

There will be a mean-squared error $\geq \sigma^2$ regardless of the procedure adopted (see Cramer-Rao lower bound)

Oversampling is needed to reduce the mean-squared error

24Jun2013, at LCAV EPFL

Estimation of a constant with oversampling



Now consider the problem of estimating a
 bounded constant (one degree of freedom)
 in additive independent (i.i.d.) Gaussian
 noise

$$Y_1 = c + W_1, \dots, Y_N = c + W_N$$

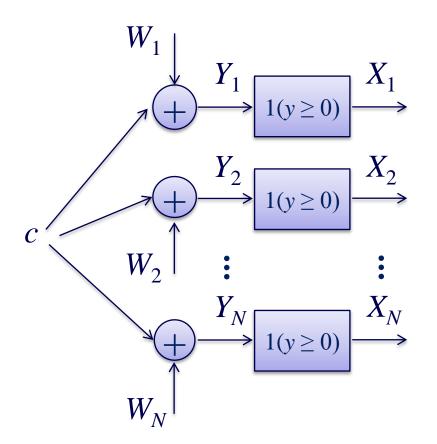
◊ It is known that the best mean-squared error estimate is the avg of Y₁, Y₂, ..., Y_N
◊ And mean-squared error between (Y₁ + ... Y_N)/N and c is O(1/N)

Unquantized samples, oversampling by N, and mean-squared error is O(1/N)

24Jun2013, at LCAV EPFL

Estimation and quantization (nonlinearity)

Now consider the same problem in the presence of single-bit quantization



$$X_1 = 1(c + W_1 \ge 0), X_2 = 1(c + W_2 \ge 0),$$

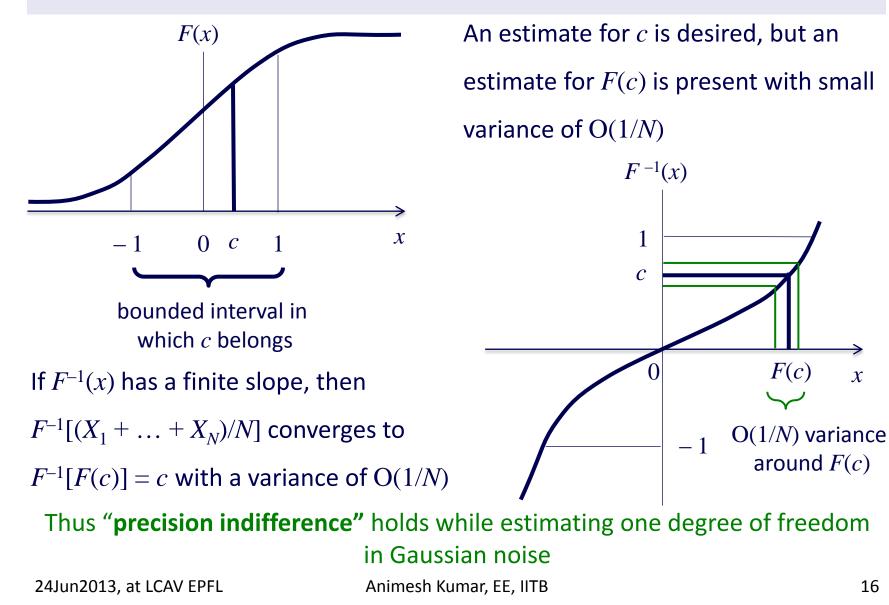
..., $X_N = 1(c + W_N \ge 0)$

◊ These variables are i.i.d.
Bernoulli(F(c)), where F(x) is the cumulative distribution function of W
◊ It is known that the average of X₁, X₂, ..., X_N converges with variance O(1/N) to F(c)

Quantized samples, oversampling by N, and mean-squared error in F(c) is O(1/N)

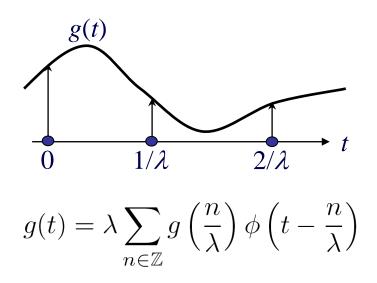
24Jun2013, at LCAV EPFL

The delta-method



X

Noisy samples and bandlimited signals



◊ Samples are uniformly spaced slightly closer than the Nyquist points (λ >1)
◊ Thus, there is one degree of freedom every Nyquist interval in g(t)

♦ If we oversample g(t) + W(t) by a factor of N, there are N noisy reading for each degree of freedom on an average

♦ Thus we expect optimal distortion to be O(1/N) with perfect samples!

24Jun2013, at LCAV EPFL

Key result that will be shown next

A distortion of O(1/N) is achievable with single-bit quantized samples! This improves the previously known bound of $O(1/N^{2/3})$ [Masry 1981]

$$W(t) \qquad \begin{array}{c} \tau = \frac{1}{(\lambda N)} \\ \tau = \frac{1}{(\lambda N)} \\ Y(n \, t) \qquad Y(n \, t) \\ 1(y \ge 0) \qquad \end{array}$$

The Zakai class of bandlimited signals will be the signal model

 $BL = \{g(t): |g(t)| \le 1 \text{ and } g(t) \star \phi(t) = g(t), \text{ for all } t \text{ real} \}$

The results will apply to finite energy bandlimited signals as well as stationary bandlimited signals

24Jun2013, at LCAV EPFL

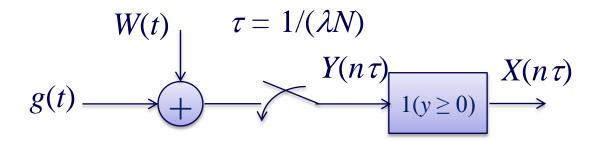
Related work

- [Masry'1981] Single-bit quantization of smooth signals, with additive noise as a dither. His analysis results in an mean-squared bound of $O(1/N^{2/3})$
- [Wang-Ishwar'2009] and [Masry-Ishwar'2009] Acquisition of a finite-support field in bounded noise. Mean-squared error bounds were established

Organization

- Introduction to the problem
- Field/signal model
- Insights into main result using degrees of freedom
- Analysis of proposed single-bit quantization scheme
- Conclusions

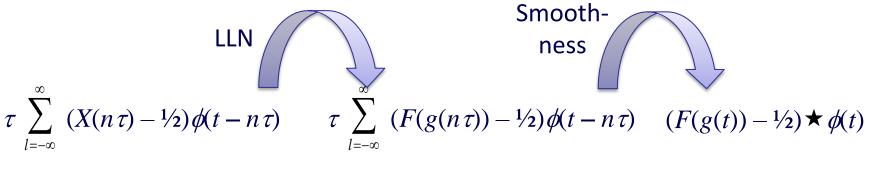
Interpolation of quantized samples



Define an interpolation from the quantized single-bit samples $X(n\tau)$

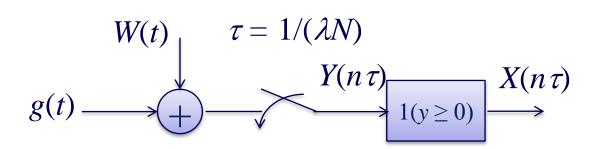
$$H_N(t) = \tau \sum_{l=-\infty}^{\infty} (X(n\tau) - \frac{1}{2})\phi(t - n\tau)$$

Note that E[X(t)] = F(g(t))



24Jun2013, at LCAV EPFL

Interpolation of quantized samples



Remember that

$$H_N(t) = \tau \sum_{l=-\infty}^{\infty} (X(n\tau) - \frac{1}{2})\phi(t - n\tau)$$

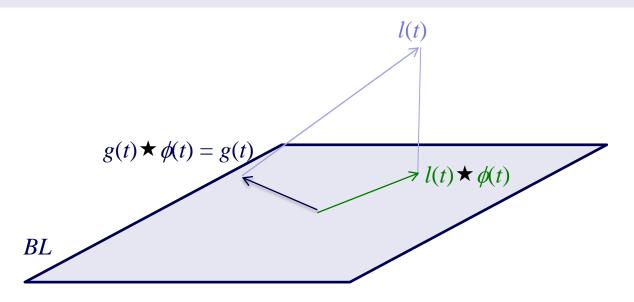
Proposition: Let $l(t) = (F(g(t)) - \frac{1}{2})$ and $H_N(t)$ be as defined above. Then,

$$\sup_{t \in \mathbb{R}} \mathbb{E} (H_N(t) - l(t) \star \phi(t))^2 \le \frac{C_2}{N}$$

where C_2 does not depend on g(t)

24Jun2013, at LCAV EPFL

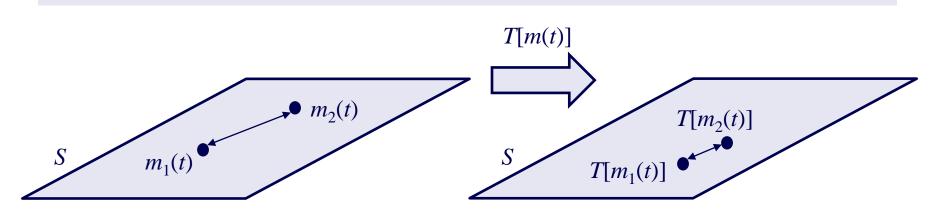
Invertibility of the limit



For the set *BL* the signal $l(t) \star \phi(t)$ is invertible and g(t) can be obtained uniquely from it (in a pointwise or L^{∞} sense). The proof follows using Banach's contraction theorem $L^2(R)$ version of this problem has been considered by Landau and Miranker'1961. It cannot be used directly since statistical noise is not in L^2

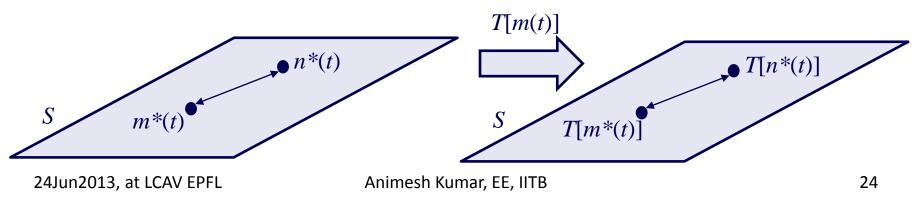
24Jun2013, at LCAV EPFL

Banach's contraction theorem

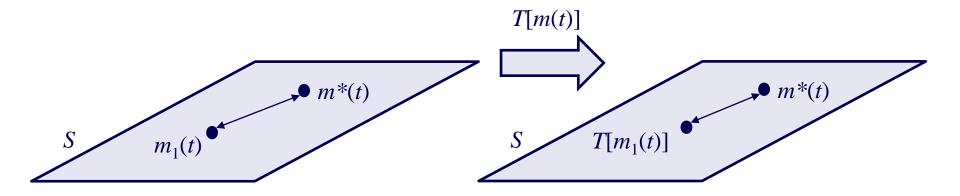


Ingredients: Banach's contraction theorem needs a closed set *S*, a map *T*, a distance metric $d(m_1, m_2)$ and a contraction property for any $m_1(t), m_2(t)$ in S $d(T[m_1], T[m_2]) \le \alpha d(m_1, m_2)$ with $0 < \alpha < 1$

Result: Then T[m(t)] = m(t) has a unique solution $m^*(t)$ in S.



Banach's contraction theorem (contd.)



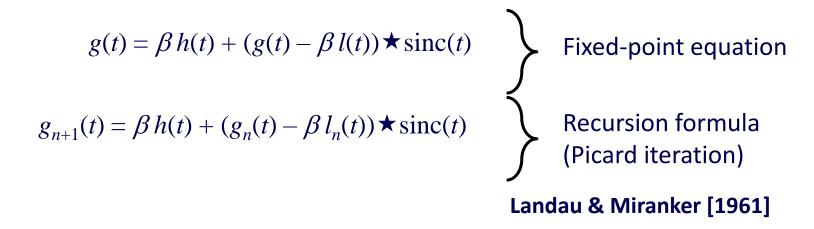
Fact: $m_k(t) = T[m_{k-1}(t)]$ sets up a recursive procedure to approach $m^*(t)$ And $m^*(t) = m_0(t) + [m_1(t) - m_0(t)] + [m_2(t) - m_1(t)] + [m_3(t) - m_2(t)] + \dots$ $= m_0(t) + [m_1(t) - m_0(t)] + T[m_1(t) - m_0(t)] + T^2[m_1(t) - m_0(t)] + \dots$

24Jun2013, at LCAV EPFL

Landau and Miranker's contraction formula

Consider L^2 - $BL = \{g(t): G(\omega) \text{ with support on } [-\pi, \pi]\}$

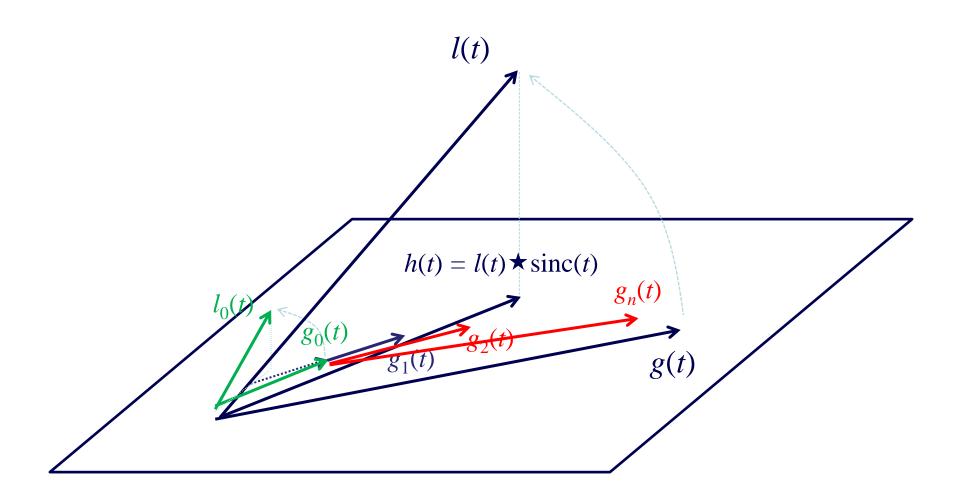
For this class of signal, the following fixed-point and recursion formula leads to g(t) from $h(t) = [F(g(t)) - \frac{1}{2}] \star \operatorname{sinc}(t)$



The technique works since L^2 -BL is a closed subset and there is a value of β for which the recursion formula is a contraction (Banach's contraction mapping theorem)

24Jun2013, at LCAV EPFL

Landau and Miranker's recursion in pictures



Ingredients of contraction for our problem

Let BL_{bdd} be the set defined as

 $BL_{bdd} = \{m(t): |m(t)| \le C_{\phi} \text{ and } m(t) \bigstar \psi(t) = m(t), \text{ for all } t \text{ real} \}$

where $\psi(t) = \phi(\lambda t)/\lambda$ has slightly larger bandwidth than $\phi(t)$

The distance metric is the maximum pointwise difference (L^{∞} error)

Define $\operatorname{Clip}[x] = \operatorname{sgn}(x)$ if |x| > 1 and $\operatorname{Clip}[x] = x$, otherwise

 $T[g(t)] = \operatorname{Clip}\{\mu l(t) \star \phi(t) + [g(t) - \mu l(t)] \star \phi(t)\} \star \phi(t)\} \star \phi(t)$ Fixed-point equation

Set $g_0(t) = 0$ and

$$g_{n+1}(t) = \operatorname{Clip}\{\mu \, l(t) \star \phi(t) + [g_n(t) - \mu \, l_n(t)] \star \phi(t)\} \star \phi(t) \right\rangle$$

It turns out that there is a value of μ such that T is a contraction on $BL_{\rm bdd}$

So g(t) can be obtained from l(t) by using T and recursion on $BL_{\rm hdd}$

24Jun2013, at LCAV EPFL

Animesh Kumar, EE, IITB

Recursion

formula

Final step of the proof

But $H_N(t)$ an approximation of $l(t) = F(g(t)) - \frac{1}{2}$ is available! However, contraction is stable to perturbations

The modified recursive map is

 $T[G_k(t)] = \operatorname{Clip}\{\mu H_N(t) \star \phi(t) + [G_{k-1}(t) - \mu (F(G_{k-1}(t)) - 1/2) \star \phi(t)]\} \star \phi(t)$

Theorem: Let $G_0(t) = 0$. Let $\hat{G}_{1-\text{bit}}(t)$ be the limit of $G_k(t)$. Then, the above recursion results in

$$D_{1-\text{bit}} := \sup_{t \in \mathbb{R}} \mathbb{E}(\widehat{G}_{1-\text{bit}}(t) - g(t))^2 = O(1/N)$$

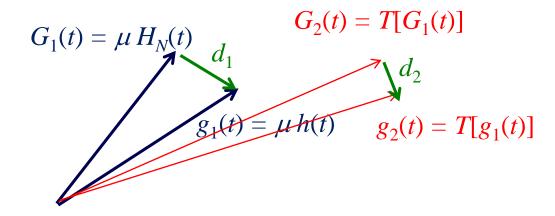
which establishes the precision-indifference principle for bandlimited signals

in additive independent Gaussian noise

24Jun2013, at LCAV EPFL

Picture for the final step of proof

But $H_N(t)$ an approximation of $l(t) = F(g(t)) - \frac{1}{2}$ is available. Contraction is stable to perturbations



By contraction property, ... $d_3 \leq \alpha \, d_2 \leq \alpha^2 \, d_1$

Thus, by triangle inequality, the maximum error can be shown to be sum of all d_i 's, or $d_1/(1-\alpha)$

24Jun2013, at LCAV EPFL

Organization

- Introduction to the problem
- Field/signal model
- Insights into main result using degrees of freedom
- Analysis of proposed single-bit quantization scheme
- Conclusions

Summary

For bounded-amplitude bandlimited signals sampled in the presence of (additive) independent Gaussian process with oversampling N and mean-squared distortion

◊ Optimal distortion is expected to be
 = O(1/N)
 ◊ Distortion achievable with single-bit quantized readings
 = O(1/N)

Extensions or future work

- Our estimate is not minimum risk. Fast algorithms for finding Maximum likelihood estimates, which will also be accurate up to O(1/N), will be useful
- Extension of these results to more classes of signals (FRI, finite-support, orthogonal spaces)

Further reading

- Animesh Kumar and Vinod Prabhakaran, "Estimation of Bandlimited Signals in Additive Gaussian Noise: a "Precision Indifference" Principle", arxiv preprint available at <u>http://arxiv.org/abs/1211.6598</u>
- 2. Animesh Kumar and Vinod Prabhakaran, "Estimation of bandlimited signals from the signs of noisy samples", ICASSP 2013, Vancouver, BC Canada.