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Consider the acquisition problem, where a smooth field in a finite interval has to 

be sampled or estimated 

Example: acquisition of spatial fields with sensors 

Spatial acquisition problem of interest 
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Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a 

region, we consider random deployment of sensor for sampling the field 

Sampling model 
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–   –   – 

–   –   – 

There are two possible scenarios: 

◊ When the sensor locations are random but known 

◊ When the sensor locations are unknown but their statistical distribution  

   is known 
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Field and sensor-locations models 
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Sensor locations are unknown but their statistical distribution is known. For this 

work, U1
n = (U1, U2, …, Un) are i.i.d. Unif[0,T] 

U3 U4 U2 U1 

–   –   – 

–   –   – 

We assume that a periodic extension of the field g(t) is bandlimited, that is, g(t) is 

given by a finite number of Fourier series coefficients, (WLOG)  |g(t)| ≤ 1, and T = 1 
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Observations made and distortion criterion 
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GT = (g(U1), g(U2), …, g(Un)) is collected without the knowledge of (U1, U2, …, 

Un)  

U3 U4 U2 U1 

–   –   – 

–   –   – 

We wish to estimate g(t) and measure the performance of estimate against the 

average mean-squared error, i.e., if Ĝ(t) is the estimate then 
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Main results 

◊ A bandlimited field cannot be uniquely determined with (perfect) samples obtained  

   at statistically distributed locations, even if the number of samples is infinite 

 

◊ If the order (left to right) of sample locations is known, a consistent estimate Ĝ(t)  

   for the field of interest can be obtained 

• Consistency, distortion, and weak convergence results are established for this  

   estimate Ĝ(t). Recall that  
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◊ Recovery of (narrowband) discrete-time bandlimited signals from samples taken at 

unknown locations [Marziliano and Vetterli’2000]  

◊ Recovery of a bandlimited signal from a finite number of ordered nonuniform 

samples at unknown sampling locations [Browning’2007]. 

◊ Estimation of periodic bandlimited signals in the presence of random sampling 

location under two models [Nordio, Chiasserini, and Viterbo’2008] 

• Reconstruction of bandlimited signal affected by noise at random but known  

   locations 

• Estimation of bandlimited signal from noisy samples on a location set obtained  

   by random perturbation of equi-spaced deterministic grid. 

◊ Estimation of a bandlimited field from samples taken at i.i.d. distributed unknown 

locations. Asymptotic consistency (convergence in probability), mean-squared error 

bounds, and central-limit type weak law are the focus of this work 

Related work 
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Organization 

◊ Introduction and contributions 

◊ Signal estimation without any knowledge of (U1, U2, …, Un)  

◊ Signal estimation and reconstruction distortion when order of 
samples (U1, U2, …, Un) is known 

◊ Conclusions 
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It is impossible to infer g(t) from g(U1
) 
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U3 U4 U2 U1 

–   –   – 

–   –   – 

Effectively, we are just collecting the empirical distribution or histogram of g(U1), 

g(U2), …, g(Un) and, in the limit of large n, the task is to estimate g(t) from the 

distribution of g(U) 
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It is impossible to infer g(t) from g(U1
) 

g(t) 

t 

0 1 

sensors 

U3 U4 U2 U1 
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–   –   – 

Consider the statistic 

◊ Then Fg,n(x), x in set of reals and g(U1), g(U2), …, g(Un) are statistically 

equivalent 

◊ By the Glivenko Cantelli theorem, Fg,n(x) converges almost surely to  

   Prob(g(U) ≤ x) for each x in set of real numbers [van der Vaart’1998] 
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It is impossible to infer g(t) from U1
 

So what does Prob(g(U) ≤ x), for x in set of real numbers, looks like? 

x 

14 



g(t) 

t 

0 1 

It is impossible to infer g(t) from U1
 

So what does Prob(g(U) ≤ x), for x in set of real numbers, looks like? 

x 

◊ Prob(g(U) ≤ x) for each x is the probability of U belonging in the level-set. Thus, 

it is simply the length (measure) of level-set 

◊ We will now illustrate that two different fields g1(t) ≠ g2(t) can still lead to  

   Prob(g1(U) ≤ x)  = Prob(g2(U) ≤ x)  

Level-Set: {u: g(u) ≤ x} 
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Graphical proof of first result 

◊ The length (measure) of the level-sets is the same in the two cases for every x 

◊ As a recap, we showed that the Glivenko Cantelli theorem’s limit, obtained from  

   a statistical equivalent of observed samples, is the same for two different  

   signals. Thus, the observed samples alone do not lead to a unique  

   reconstruction of the field 
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Level-Set: {u: g(u) ≤ x} 

g2(t) = g1(–t) 

t 

0 1 

x 

Level-Set: {u: g(u) ≤ x} 

g1(t) ≠ g2(t) does not imply Prob(g1(U) ≤ x)  = Prob(g2(U) ≤ x) 
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Working with ordered samples 

◊ If the order (left to right) of sample locations is known, a consistent estimate Ĝ(t) 

for the field of interest can be obtained 

◊ Recall that 

◊ Thus, due to bandlimitedness, there are (2b+1) parameters to be learned or 

estimated 
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U1:n Un:n Ur:n 
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–   –   – 
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Using field samples to get the Fourier series 

From (2b+1) equi-spaced samples of the field, the (2b+1) Fourier series coefficients 

(and hence the field) can be obtained as follows 

where sb = 1/(2b+1)  and b = exp(j2ksb) = exp(j2k/(2b+1)). In matrix notation and 

upon inversion 
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sb 2bsb 
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Approximation of the field samples 

In the absence of field values g(0), g(sb), …, g(2bsb), we use G = (g(U1:n), g(Unsb:n), 

…, g(U2bsbn:n)), to define the Fourier series estimate and field estimate as follows 

and 

g(t) 
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U1:n Un:n Unp:n 

–   –   – 

–   –   – 

t = p 

It is known that Unp:n converges to p in many ways (in L2, in almost-sure sense, and in 

weak-law) [David and Nagaraja’2003] 
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Consistency of our estimate 

Define G = (g(U1:n), g(Unsb:n), …, g(U2bsbn:n)), and the Fourier series and field 

estimates as 

Then 

Theorem 1: 

Key ideas: 

◊ For r = [np] + 1, Ur:n   p almost surely 

◊ That is U[nsb]:n   sb almost surely, U[2nsb]:n   2sb almost surely, etc. 

◊ By continuity of g(t), g(U[nsb]:n)  g(sb) almost surely, g(U[2nsb]:n)  g(2sb) almost 

surely, etc. 

◊ Finally, the estimates A and Ĝ(t) are bounded-coefficient finite linear combination 

of g(U1:n), g(U[nsb]:n), …, g(U[2b nsb]:n)  

and 
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Mean-squared error performance 

Then the following mean-squared result holds for the estimate Ĝ(t)   

Key ideas: 

◊ The matrix b has entries with magnitude |(j)
k| = 1. The signal’s derivative g(t) is 

bounded. As a result, linear approximations can be used to get the above bound 

◊ Observe that the mean-squared error decreases as O(1/N) 

Theorem 2: 

If r  [np] then the second  

moment of (Ur:n – p) satisfies 

Keep in mind that 

and 

[David and Nagaraja’2003] 
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Weak-convergence of the estimate Ĝ(t) 

Then the following mean-squared result holds for the estimate Ĝ(t)   

Key ideas: 

◊ (U1:n , Usbn:n , …, U2bsbn:n) converges to a Gaussian vector 

◊ Since g(t) is smooth, therefore G = g(U1:n), g(Usbn:n), …, g(U2bsbn:n) converges  to a 

Gaussian vector by the Delta method [van der Vaart’1998] 

Theorem 2: 

Once again 

and 

Fact: If 0< p1 < p2 < … < p(2b+1) < 1 and (ri/n – pi) = o(1/n) for each i. Then,  

where [KU]j,j = pj(1 – pj) for j ≤ j. [David and Nagaraja’2003] 

where, the variance KG(t) depends on KU, the derivative of g(t), and b 
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Weak-convergence of the estimate Ĝ(t) 

Key ideas (contd.): 

◊ Since the map from G = (g(U1:n), g(Usbn:n), …, g(U2bsbn:n)) to Ĝ(t)  is linear, 

therefore, Gaussian distribution is preserved 

Theorem 2: 

where, the variance KG(t) depends on KU, the derivative of g(t), and b 
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Conclusions and future work 

◊ Estimation of a bandlimited field from samples taken at uniformly distributed but 

unknown locations was considered 

◊ A bandlimited field cannot be uniquely determined with (perfect) samples obtained  

at statistically distributed locations, even if the number of samples is infinite 

◊ If the order (left to right) of sample locations is known, a consistent estimate Ĝ(t)  

   for the field of interest can be obtained 

• The estimate Ĝ(t) converges in almost-sure sense and mean-square sense to 

the true field g(t) 

• The mean-squared error between Ĝ(t) and g(t) decreases as O(1/n) 

• This leads to a central-limit type weak-law 

◊ Extensions of this result to field affected by noise and multidimensional field is of 

immediate interest 
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