Bandlimited Signal Reconstruction From the Distribution of Unknown Sampling Locations

Animesh Kumar
Electrical Engineering
Indian Institute of Technology Bombay
Consider the acquisition problem, where a smooth field in a finite interval has to be sampled or estimated.

Example: acquisition of spatial fields with sensors
Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a region, we consider random deployment of sensor for sampling the field.

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution is known
Motivated by the smart-dust paradigm, where a lot of sensors are "scattered" in a region, we consider random deployment of sensor for sampling the field.

There are two possible scenarios:

◊ When the sensor locations are random but known

◊ When the sensor locations are unknown but their statistical distribution is known
Motivated by the smart-dust paradigm, where a lot of sensors are “scattered” in a region, we consider random deployment of sensor for sampling the field.

There are two possible scenarios:

◊ When the sensor locations are random but known
◊ When the sensor locations are unknown but their statistical distribution is known
Sensor locations are unknown but their statistical distribution is known. For this work, \(U_1^n = (U_1, U_2, \ldots, U_n) \) are i.i.d. Unif[0,\(T \)].

We assume that a periodic extension of the field \(g(t) \) is bandlimited, that is, \(g(t) \) is given by a finite number of Fourier series coefficients, (WLOG) \(|g(t)| \leq 1 \), and \(T = 1 \).

\[
g(t) = \sum_{k=-b}^{b} a_k \exp(j2\pi kt)
\]
Observations made and distortion criterion

\[\mathbf{g}(t) \]

\[\mathbf{G}^T = (g(U_1), g(U_2), \ldots, g(U_n)) \]

\(\mathbf{G}^T \) is collected without the knowledge of \((U_1, U_2, \ldots, U_n)\)

We wish to estimate \(g(t) \) and measure the performance of estimate against the average mean-squared error, i.e., if \(\hat{G}(t) \) is the estimate then

\[D := \| \hat{G} - g \|_2^2 := \int_0^1 |\hat{G}(t) - g(t)|^2 \, dt \]
Main results

◊ A bandlimited field cannot be uniquely determined with (perfect) samples obtained at statistically distributed locations, even if the number of samples is infinite.

◊ If the order (left to right) of sample locations is known, a consistent estimate $\hat{G}(t)$ for the field of interest can be obtained.

• Consistency, distortion, and weak convergence results are established for this estimate $\hat{G}(t)$. Recall that

$$D := \|\hat{G} - g\|_2^2 := \int_0^1 |\hat{G}(t) - g(t)|^2 dt$$
Related work

◊ Recovery of (narrowband) discrete-time bandlimited signals from samples taken at unknown locations [Marziliano and Vetterli’2000]
◊ Recovery of a bandlimited signal from a finite number of ordered nonuniform samples at unknown sampling locations [Browning’2007].
◊ Estimation of periodic bandlimited signals in the presence of random sampling location under two models [Nordio, Chiasserini, and Viterbo’2008]
 • Reconstruction of bandlimited signal affected by noise at random but known locations
 • Estimation of bandlimited signal from noisy samples on a location set obtained by random perturbation of equi-spaced deterministic grid.
◊ Estimation of a bandlimited field from samples taken at i.i.d. distributed unknown locations. Asymptotic consistency (convergence in probability), mean-squared error bounds, and central-limit type weak law are the focus of this work
Organization

◊ Introduction and contributions
◊ Signal estimation without any knowledge of \((U_1, U_2, \ldots, U_n)\)
◊ Signal estimation and reconstruction distortion when order of samples \((U_1, U_2, \ldots, U_n)\) is known
◊ Conclusions
◊ Introduction and contributions
◊ Signal estimation without any knowledge of \((U_1, U_2, \ldots, U_n)\)
◊ Signal estimation and reconstruction distortion when order of samples \((U_1, U_2, \ldots, U_n)\) is known
◊ Conclusions
It is impossible to infer $g(t)$ from $g(U_1^\infty)$

Effectively, we are just collecting the empirical distribution or histogram of $g(U_1)$, $g(U_2)$, ..., $g(U_n)$ and, in the limit of large n, the task is to estimate $g(t)$ from the distribution of $g(U)$.
It is impossible to infer $g(t)$ from $g(U_1^\infty)$

Consider the statistic

$$F_{g,n}(x) = \frac{1}{n} \sum_{i=1}^{n} 1(g(U_i) \leq x)$$

◊ Then $F_{g,n}(x)$, x in set of reals and $g(U_1), g(U_2), \ldots, g(U_n)$ are statistically equivalent

◊ By the Glivenko Cantelli theorem, $F_{g,n}(x)$ converges almost surely to

$\text{Prob}(g(U) \leq x)$ for each x in set of real numbers [van der Vaart’1998]
It is impossible to infer $g(t)$ from $U_{1\infty}$

So what does $\text{Prob}(g(U) \leq x)$, for x in set of real numbers, looks like?
It is impossible to infer $g(t)$ from U_1^∞

So what does $\text{Prob}(g(U) \leq x)$, for x in set of real numbers, looks like?

◊ $\text{Prob}(g(U) \leq x)$ for each x is the probability of U belonging in the level-set. Thus, it is simply the length (measure) of level-set

◊ We will now illustrate that two different fields $g_1(t) \neq g_2(t)$ can still lead to $\text{Prob}(g_1(U) \leq x) = \text{Prob}(g_2(U) \leq x)$
Graphical proof of first result

\[g_1(t) \neq g_2(t) \text{ does not imply } \operatorname{Prob}(g_1(U) \leq x) = \operatorname{Prob}(g_2(U) \leq x) \]

◊ The length (measure) of the level-sets is the same in the two cases for every \(x \)

◊ As a recap, we showed that the Glivenko Cantelli theorem’s limit, obtained from a statistical equivalent of observed samples, is the same for two different signals. Thus, the observed samples alone do not lead to a unique reconstruction of the field.
Introduction and contributions

Signal estimation without any knowledge of \((U_1, U_2, \ldots, U_n)\)

Signal estimation and reconstruction distortion when order of samples \((U_1, U_2, \ldots, U_n)\) is known

Conclusions
Introduction and contributions

Signal estimation without any knowledge of \((U_1, U_2, \ldots, U_n)\)

Signal estimation and reconstruction distortion when order of samples \((U_1, U_2, \ldots, U_n)\) is known

Conclusions
Working with ordered samples

◊ If the order (left to right) of sample locations is known, a consistent estimate $\hat{G}(t)$ for the field of interest can be obtained.

◊ Recall that

\[
g(t) = \sum_{k=-b}^{b} a_k \exp(j2\pi kt)
\]

◊ Thus, due to bandlimitedness, there are $(2b+1)$ parameters to be learned or estimated.
Using field samples to get the Fourier series

From \((2b+1)\) equi-spaced samples of the field, the \((2b+1)\) Fourier series coefficients (and hence the field) can be obtained as follows

\[
\begin{bmatrix}
 g(0) \\
g(s_b) \\
 \vdots \\
g(2bs_b)
\end{bmatrix} =
\begin{bmatrix}
 1 & \ldots & 1 \\
 \phi_{-b} & \ldots & \phi_b \\
 \vdots & \ddots & \vdots \\
 (\phi_{-b})^{2b} & \ldots & (\phi_b)^{2b}
\end{bmatrix}
\begin{bmatrix}
 a_{-b} \\
 a_{-b+1} \\
 \vdots \\
a_b
\end{bmatrix}
\]

where \(s_b = 1/(2b+1)\) and \(\phi_b = \exp(j2\pi k s_b) = \exp(j2\pi k/(2b+1))\). In matrix notation and upon inversion

\[
\tilde{a} = (\Phi_b)^{-1} \tilde{g} = \frac{1}{(2b + 1)} \Phi_b^\dagger \tilde{g}
\]
Approximation of the field samples

In the absence of field values \(g(0), g(s_b), \ldots, g(2bs_b) \), we use \(\hat{\mathbf{G}} = (g(U_{1:n}), g(U_{nsb:n}), \ldots, g(U_{2bsbn:n})) \), to define the Fourier series estimate and field estimate as follows

\[
\hat{\mathbf{A}} := [\hat{A}_{-b}, \hat{A}_{-b+1}, \ldots, \hat{A}_b]^T := \frac{1}{(2b + 1)} \Phi_b^\dagger \hat{\mathbf{G}}
\]

and

\[
\hat{G}(t) = \sum_{k=-b}^{b} \hat{A}_k \exp(j2\pi kt)
\]

It is known that \(U_{np:n} \) converges to \(p \) in many ways (in \(L^2 \), in almost-sure sense, and in weak-law) [David and Nagaraja’2003]
Consistency of our estimate

Define \(\vec{G} = (g(U_{1:n}), g(U_{nsb:n}), \ldots, g(U_{2bsbn:n})) \), and the Fourier series and field estimates as

\[
\vec{A} = \frac{1}{(2b + 1)} \Phi_b^\dagger \vec{G} \quad \text{and} \quad \hat{G}(t) = \sum_{k=-b}^{b} \hat{A}_k \exp(j2\pi kt)
\]

Then

Theorem 1:
\[
\vec{A} \xrightarrow{a.s.} \vec{a}, \hat{G}(t) \xrightarrow{a.s.} g(t) \quad \text{and} \quad \vec{A} \xrightarrow{L^2} \vec{a}, \hat{G}(t) \xrightarrow{L^2} g(t)
\]

Key ideas:

◊ For \(r = [np] + 1, U_{r:n} \to p \) almost surely

◊ That is \(U_{[nsb]:n} \to s_b \) almost surely, \(U_{[2nsb]:n} \to 2s_b \) almost surely, etc.

◊ By continuity of \(g(t), g(U_{[nsb]:n}) \to g(s_b) \) almost surely, \(g(U_{[2nsb]:n}) \to g(2s_b) \) almost surely, etc.

◊ Finally, the estimates \(\vec{A} \) and \(\hat{G}(t) \) are bounded-coefficient finite linear combination of \(g(U_{1:n}), g(U_{[nsb]:n}), \ldots, g(U_{[2b nsb]:n}) \)
Mean-squared error performance

If \(r \approx [np] \) then the second moment of \((U_{r:n} - p)\) satisfies

\[
 n\mathbb{E}(U_{r:n} - p)^2 = p(1-p)\mathbb{E}(Z^2) + O(\sqrt{1/n}) \leq \frac{1}{4} + O(\sqrt{1/n}).
\]

[David and Nagaraja’2003]

Keep in mind that

\[
 \tilde{A} = \frac{1}{(2b + 1)} \Phi_b^\dagger \tilde{G} \quad \text{and} \quad \hat{G}(t) = \sum_{k=-b}^{b} \hat{A}_k \exp(j2\pi kt)
\]

Then the following mean-squared result holds for the estimate \(\hat{G}(t) \)

Theorem 2: \(n\mathbb{E} \left[||\hat{G} - g||_2^2 \right] \leq \pi^2 b^2 (2b + 1) \left[1 + O(\sqrt{1/n}) \right] \)

Key ideas:

◊ The matrix \(\Phi_b \) has entries with magnitude \(|(\phi_j^k)| = 1\). The signal’s derivative \(g'(t) \) is bounded. As a result, linear approximations can be used to get the above bound

◊ Observe that the mean-squared error decreases as \(O(1/N) \)
Weak-convergence of the estimate $\hat{G}(t)$

Fact: If $0 < p_1 < p_2 < \ldots < p_{(2b+1)} < 1$ and $(r_i/n - p_i) = o(1/\sqrt{n})$ for each i. Then,

$$\sqrt{n}[U_{r_1:n} - p_1, \ldots, U_{r_{2b+1}:n} - p_{2b+1}]^T \xrightarrow{d} \mathcal{N}\left(\vec{0}, K_U\right)$$

where $[K_U]_{j,j'} = p_j(1 - p_{j'})$ for $j \leq j'$. [David and Nagaraja’2003]

Once again

$$\vec{A} = \frac{1}{(2b + 1)} \Phi_b^\dagger \vec{G} \quad \text{and} \quad \hat{G}(t) = \sum_{k=-b}^{b} \hat{A}_k \exp(j 2\pi k t)$$

Then the following mean-squared result holds for the estimate $\hat{G}(t)$

Theorem 2: \[\sqrt{n}(\hat{G}(t) - g(t)) \xrightarrow{d} \mathcal{N}\left(\vec{0}, K_G(t)\right) \]

where, the variance $K_G(t)$ depends on K_U, the derivative of $g(t)$, and Φ_b

Key ideas:

◊ $(U_{1:n}, U_{sbn:n}, \ldots, U_{2bsbn:n})$ converges to a Gaussian vector

◊ Since $g(t)$ is smooth, therefore $\vec{G} = g(U_{1:n}), g(U_{sbn:n}), \ldots, g(U_{2bsbn:n})$ converges to a Gaussian vector by the Delta method [van der Vaart’1998]
Weak-convergence of the estimate $\hat{G}(t)$

Theorem 2: \[\sqrt{n}(\hat{G}(t) - g(t)) \xrightarrow{d} \mathcal{N}\left(0, K_G(t)\right) \]

where, the variance $K_G(t)$ depends on K_U, the derivative of $g(t)$, and Φ_b

Key ideas (contd.):

◊ Since the map from $\vec{G} = (g(U_{1:n}), g(U_{sbn:n}), \ldots, g(U_{2bsbn:n}))$ to $\hat{G}(t)$ is linear, therefore, Gaussian distribution is preserved
Conclusions and future work

◊ Estimation of a bandlimited field from samples taken at uniformly distributed but unknown locations was considered.

◊ A bandlimited field cannot be uniquely determined with (perfect) samples obtained at statistically distributed locations, even if the number of samples is infinite.

◊ If the order (left to right) of sample locations is known, a consistent estimate \(\hat{G}(t) \) for the field of interest can be obtained:
 - The estimate \(\hat{G}(t) \) converges in almost-sure sense and mean-square sense to the true field \(g(t) \).
 - The mean-squared error between \(\hat{G}(t) \) and \(g(t) \) decreases as \(O(1/n) \).
 - This leads to a central-limit type weak-law.

◊ Extensions of this result to field affected by noise and multidimensional field is of immediate interest.